- 1. By the assumption, $S = \sigma(A) = \text{the } \sigma\text{-algebra generated by } A$. Let $F = \{ \mathcal{E} \subset A | \mathcal{E} \text{ has countable elements} \}$. We want to show that $S = \bigcup_{\mathcal{E} \in F} \sigma(\mathcal{E})$.
 - 1° claim: $\bigcup_{\mathcal{E}\in F} \sigma(\mathcal{E})$ is also a σ -algebra containing \mathcal{A} . pf: $\bigcup_{\mathcal{E}\in F} \sigma(\mathcal{E}) \supset \mathcal{A}$ is obviously.
 - (i) $\forall \{E_n\}_{n=1}^{\infty} \subset \bigcup_{\mathcal{E}\in F} \sigma(\mathcal{E}),$ there exists $\mathcal{E}_n \in F$ such that $E_n \in \mathcal{E}_n, \forall n$. Since \mathcal{E}_n has countable elements, $\bigcup_{n=1}^{\infty} \mathcal{E}_n$ has countable elements. Let $\bigcup_{n=1}^{\infty} \mathcal{E}_n = \mathcal{E}_0 \in F$, we have $E_n \in \mathcal{E}_0, \forall n$. Since $\sigma(\mathcal{E}_0)$ is a σ -algebra, then $\bigcup_{n=1}^{\infty} E_n \in \bigcup_{\mathcal{E}\in F} \sigma(\mathcal{E}).$
 - (ii) Given $E_1, E_2 \in \bigcup_{\mathcal{E} \in F} \sigma(\mathcal{E})$. Similarly to (i), there exists \mathcal{E}_1 such that $E_1, E_2 \in \sigma(\mathcal{E}_1)$. Therefore, $E_1 \setminus E_2 \in \sigma(\mathcal{E}_1) \subset \bigcup_{\mathcal{E} \in F} \sigma(\mathcal{E})$. Moreover, $\emptyset, X \in \bigcup_{\mathcal{E} \in F} \sigma(\mathcal{E})$. Therefore by (i) and (ii),

 $\bigcup_{\mathcal{E}\in F} \sigma(\mathcal{E}) \text{ is a } \sigma\text{-algebra containing } \mathcal{A}.$

Since S is the σ -algebra generated by A, by the claim, $S \subset \bigcup_{\mathcal{E} \in F} \sigma(\mathcal{E})$

2° On the other hand, for each $\mathcal{E} \in F$, $\mathcal{E} \subset \mathcal{A} \Rightarrow \sigma(\mathcal{E}) \subset \sigma(\mathcal{A}) = \mathcal{S}$, $\forall \mathcal{E} \in F.$ $\Rightarrow \bigcup_{\mathcal{E} \in F} \sigma(\mathcal{E}) \subset \mathcal{S}.$

By 1° and 2°, $\bigcup_{\mathcal{E}\in F} \sigma(\mathcal{E}) = \mathcal{S}$

- 2. Since $\mathcal{A} \subset 2^X$ is an algebra, $\therefore X \in \mathcal{A}$. Let $\mathcal{M}(\mu^*)$ = the collection of μ^* -measurable sets.
 - (i) Given $E \subset X$, we always can find $A_n \subset \mathcal{A}$ such that $E \subset \bigcup_{n=1}^{\infty} A_n (: X \in \mathcal{A})$ Define

$$\mu^*(E) = \inf\{\sum_{n=1}^{\infty} \mu(A_n) | E \subset \bigcup_{n=1}^{\infty} A_n, A_n \in \mathcal{A}\}.$$

Therefore $\forall \varepsilon > 0, \exists \{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ with $E \subset \bigcup_{n=1}^{\infty} A_n$ such that

$$\sum_{n=1}^{\infty} \mu(A_n) < \mu^*(E) + \varepsilon$$

Let $A = \bigcup_{n=1}^{\infty} A_n$. $\Rightarrow A \in \mathcal{A}_{\sigma}$.

$$\mu^*(A) = \inf\{\sum_{n=1}^{\infty} \mu(B_n) | A \subset \bigcup_{n=1}^{\infty} B_n, B_n \in \mathcal{A}\}$$
$$\leq \sum_{n=1}^{\infty} \mu(A_n)$$
$$\leq \mu^*(E) + \varepsilon$$

- (ii) $\mu^*(E) < \infty$.
 - (⇒) Suppose that E is μ^* -measurable. Given $F \subset X$,

$$\mu^*(F) = \mu^*(F \cap E) + \mu^*(F \setminus E) \tag{1}$$

By (i), we have $\forall n \in \mathbb{N}, \exists A_n \in \mathcal{A}_{\sigma}$ such that

$$\mu^*(A_n) \le \mu^*(E) + \frac{1}{n}$$

Let $B = \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}_{\sigma\delta} \Rightarrow E \subset B$. Since $B \subset A_n, \forall n$, we have

$$\mu^*(B) \le \mu^*(A_n) \le \mu^*(E) + \frac{1}{n}, \forall n.$$

$$\Rightarrow \mu^*(B) \le \mu^*(E).$$

By $E \subset B$, $\mu^*(B) = \mu^*(E)$. By (1), we have
$$\mu^*(E) = \mu^*(B) = \mu^*(B \cap E) + \mu^*(B \setminus E) = \mu^*(E) + \mu^*(B \setminus E)$$

Since $\mu^*(E) < \infty$, we have $\mu^*(B \setminus E) = 0$

- (\Leftarrow) Suppose that there exists $B \in (A)_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B \setminus E) = 0 \Rightarrow B \setminus E$ is μ^* -measurable. Since $E = B \setminus (B \setminus E)$ and $B, B \setminus E$ are μ^* -measurable, we have E is also μ^* -measurable. ($\because \mathcal{M}(\mu^*)$ is a σ -algebra.)
- (iii) Since μ is σ -finite, there exists $\{X_n\}_{n=1}^{\infty} \subset \mathcal{A}$ such that

$$X = \bigcup_{n=1}^{\infty} X_n$$
 and $\mu(X_n) < \infty$

- (\Leftarrow) This proof is the same as \Leftarrow of (ii).
- (⇒) Suppose that *E* is μ^* -measurable. Then $E = \bigcup_{n=1}^{\infty} (E \cap X_n)$. Since $\mathcal{M}(\mu^*)$ is a σ -algebra and $X_n \in \mathcal{A} \subset \mathcal{M}(\mu^*)$, Let $E_n = E \cap X_n \in \mathcal{M}(\mu^*), \forall n$. Moreover, we have $\mu^*(E_n) \leq \mu^*(X_n) < \infty, \forall n$. By (i), $\forall k \in \mathbb{N}, \exists B_{n,k} \in \mathcal{A}_{\sigma}$ with $B_{n,k} \supset E_n$ and

$$\mu^*(B_{n,k}) \le \mu^*(E_n) + \frac{1}{k2^n}$$

Since $\mu^*(E_n) < \infty$ and $E_n \in M(\mu^*)$, we have

$$\mu^*(B_{n,k} \setminus E_n) = \mu^*(B_{n,k}) - \mu^*(E_n) \le \frac{1}{k2^n}$$

Therefore $\sum_{n=1}^{\infty} \mu^*(B_{n,k} \setminus E_n) \leq \frac{1}{k}$. Let $B^{(k)} = \bigcup_{n=1}^{\infty} B_{n,k} \in \mathcal{A}_{\sigma} \Rightarrow E \subset B^{(k)}$.

$$\mu^*(B^{(k)} \setminus E) \le \mu^*(\bigcup_{n=1}^{\infty} (B_{n,k} \setminus E_n)) \le \sum_{n=1}^{\infty} \mu^*(B_{n,k} \setminus E_n) \le \frac{1}{k}$$

Let $B = \bigcap_{k=1}^{\infty} B^{(k)}$. Then

$$\mu^*(B \setminus E) \le \mu^*(B^{(k)} \setminus E) \le \frac{1}{k}, \forall k.$$

Therefore $\mu^*(B \setminus E) = 0$ and $E \subset B$, $B \in \mathcal{A}_{\sigma\delta}$. Hence B is what we want.

3. (\Rightarrow) Suppose that E is μ^* -measurable. Then by the definition of measurable sets, we have

$$\mu^*(X) = \mu^*(X \cap E) + \mu^*(X \setminus E)$$

Therefore, by $\mu(X) < \infty$, we obtain

$$\mu^*(E) = \mu(X) - \mu^*(E^c) = \mu_*(E)$$

(\Leftarrow) Suppose that $\mu^*(E) = \mu_*(E)$. We have

$$\mu^*(E) = \mu_*(E) = \mu(X) - \mu^*(E^c).$$
(2)

We give two proofs.

proof(a): For any $F \subset X$, $\forall n \in \mathbb{N}$, $\exists A_n \in \mathcal{A}_\sigma$ with $F \subset A_n$ such that $\mu^*(A_n) \leq \mu^*(F) + \frac{1}{n}$. Thus, $\mu^*(\cap A_n) \leq \mu^*(A_n) \leq \mu^*(F) + \frac{1}{n}$, $\forall n$. Therefore, we have $\mu^*(\cap A_n) = \mu^*(F)$. Let $\mathcal{M}(\mu^*)$ = the collection of μ^* -measurable sets. Since $\mathcal{A} \subset \mathcal{M}(\mu^*)$ and $\mathcal{M}(\mu^*)$ is a σ -algebra, we know that $\mathcal{A}_\sigma \subset \mathcal{M}(\mu^*)$. So, $\cap A_n \in \mathcal{M}(\mu^*)$. So far, we have the following conclusion: For any $F \subset X$, there exsits a μ^* -measurable set B such that $B \supset F$ and $\mu^*(F) = \mu^*(B)$. Thus, we pick two measurable sets B_1, B_2 such that

$$B_1 \supset E, B_2 \supset E^c$$
 and $\mu^*(B_1) = \mu^*(E), \mu^*(B_2) = \mu^*(E^c).$

By (2), we have $\mu(B_1) + \mu(B_2) = \mu(X)$. Since B_1 and B_2 are μ^* -measurable set, we have

$$\mu(X) = \mu(B_1) + \mu(B_2) = \mu(B_1 \cap B_2) + \mu(B_1 \setminus B_2) + \mu(B_2)$$

= $\mu(B_1 \cap B_2) + \mu(B_1 \cup B_2)$
= $\mu(B_1 \cap B_2) + \mu(X).$

Since $\mu(X) < \infty$, we have $\mu(B_1 \cap B_2) = 0$. Thus, $\mu(B_1 \setminus E) \le \mu(B_1 \cap B_2) = 0$. And we have $B_1 \cap B_2$ is μ^* -measurable. By $E = B_1 \setminus (B_1 \cap B_2)$, we have E is μ^* -measurable.

proof(b): For any $F \subset X$, $\forall \varepsilon > 0$, $\exists A_{\varepsilon} \in \mathcal{A}_{\sigma}$ with $F \subset A_{\varepsilon}$ such that $\mu^*(A_{\varepsilon}) \leq \mu^*(F) + \varepsilon$.

Let $\mathcal{M}(\mu^*)$ = the collection of μ^* -measurable sets. Since $\mathcal{A} \subset \mathcal{M}(\mu^*)$ and $\mathcal{M}(\mu^*)$ is a σ -algebra, we know that $\mathcal{A}_{\sigma} \subset \mathcal{M}(\mu^*)$. So, $\mu(X) = \mu^*(A_{\varepsilon}) + \mu^*(A_{\varepsilon}^c)$. By countably subadditivity of μ^* , we obtain the following inequality

$$\mu(X) = \mu^*(A_{\varepsilon}) + \mu^*(A_{\varepsilon}^c)$$

$$\leq \mu^*(A_{\varepsilon} \cap E) + \mu^*(A_{\varepsilon} \cap E^c) + \mu^*(A_{\varepsilon}^c \cap E) + \mu^*(A_{\varepsilon}^c \cap E^c)$$

$$= \mu^*(E) + \mu^*(E^c) \qquad \text{(because } A_{\varepsilon} \in M(\mu^*).)$$

$$= \mu(X) \qquad \qquad \text{(by (2))}$$

Therefore, we in fact have

$$\mu^*(A_{\varepsilon}) = \mu^*(A_{\varepsilon} \cap E) + \mu^*(A_{\varepsilon} \cap E^c)$$
$$\mu^*(A_{\varepsilon}^c) = \mu^*(A_{\varepsilon}^c \cap E) + \mu^*(A_{\varepsilon}^c \cap E^c)$$

Since $F \cap A_{\varepsilon}$, we have

$$\mu^*(F \cap E) + \mu^*(F \cap E^c) \le \mu^*(A_{\varepsilon} \cap E) + \mu^*(A_{\varepsilon} \cap E^c)$$
$$= \mu^*(A_{\varepsilon}) \le \mu^*(F) + \varepsilon$$

Since ε is arbitrary, $\mu^*(F \cap E) + \mu^*(F \cap E^c) \leq \mu^*(F)$. The opposite inequality is obvious, therefore E is μ^* -measurable.

4. (i) By the following two theorem (one is proved in the class and the other is showed in Folland,Real Analysis):

Theorem 1. (Carathéodory extension) Let ν be a countably additive on a ring R and $\nu : R \to [0, \infty]$. There exists a measure on a σ -algebra, that coincides with ν on R. (Indeed,)

Theorem 2. (Folland, Real Analysis, Theorem 1.14)

We know we can extend μ from a ring or an algebra to a σ algebra if μ is countably additivite. But notice that \mathcal{E} is not a ring! For instance, we may define $A_1 = (-2, -1] \cup (1, 2]$ and $A_2 = (-4, -3] \cup (3, 4]$. Thus it's easy to see $A_1 \cup A_2$ doesn't belog to \mathcal{E} .

Therefore we need to find a way to prove this problem. Here are 2 methods to prove it, but the ideas are essentially the same. Since if we write down them all, the proof becomes too long, we only show the sketches.

1) Define \mathcal{R} = the ring generated by \mathcal{E} . Show that

$$\mathcal{R} = \{\emptyset\} \bigcup \{E | E = \bigcup_{n=1}^{m} A_{a_n, b_n}, \text{ for some } m \in \mathbb{N} \text{ and}$$

 $A_{a_n,b_n} \in \mathcal{E}$ are mutually disjoint}.

Hence we can define $\tilde{\mu}$ on \mathcal{R} by

$$\tilde{\mu}(\bigcup_{n=1}^{m} A_{a_n,b_n}) = \sum_{n=1}^{m} \mu(A_{a_n,b_n})$$
 ,
and $\tilde{\mu}(\emptyset) = 0$

Check $\tilde{\mu}$ is countable additive on \mathcal{R} and $\tilde{\mu} = \mu$ on \mathcal{E} . By Theorem1, there exists a measure on a σ -algebra, that coincides with μ on \mathcal{R} and therefore on \mathcal{E} . 2) Show that E' = E ∪ Ø is a semi-ring. That is E' satisfies the following properties:

a. Ø ∈ E'
b. A, B ∈ E' ⇒ A ∩ B ∈ E'
c. A, B ∈ E' ⇒ ∃n ≥ 0, ∃A_i ∈ E' are disjoint s.t. A \ B =

 $\bigcup_{i=1}^{n} A_i$ Use the following theorem, then we can a extension of μ to a

Use the following theorem, then we can a extension of μ to a σ -algebra:

Theorem 3. Let S be a semi-ring on X and $\mu : S \to [0, \infty]$ be a measure on S. There exists a measure $\bar{\mu} : \sigma(S) \to [0, \infty]$ such that $\bar{\mu} = \mu$ on S.

(ii) [1,2] is NOT a μ^* -measurable! By definition of μ^* :

$$\mu^*(E) = \inf\{\sum_n \mu(A)_n | E \subset \bigcup_n A_n, A_n \in \mathcal{A}\},\$$

therefore $\mu^*([1,2]) = \mu^*[-2,-1] = 1$. Suppose to the contrary that [1,2] is μ^* -measurable, then

$$1 = \mu^*([-2, -1] \cup [1, 2]) = \mu^*([1, 2]) + \mu^*([-2, -1]) = 1 + 1 = 2$$

Therefore we get a contradiction! Hence [1, 2] is not μ^* -measurable.