Real Analysis Homework #9

Due 12/8

1. Let ν be the Lebesgue measure in [0, 1], and let μ be the counting measure on the same σ -algebra of the Lebesgue measurable subsets of [0, 1]. Show that ν is absolutely continuous with respect to μ . Does there exist a nonnegative μ -measurable function $f : [0, 1] \to [0, \infty]$ for which $\nu(E) = \int_E f d\mu$ for any measurable set E?

2. Let μ_j, ν_j be σ -finite measures on $(X_j, \mathcal{B}_j), j = 1, 2$. Assume that $\nu_j \ll \mu_j$. Then $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1)\frac{d\nu_2}{d\mu_2}(x_2).$$

3. Show that the Jordan decomposition is minimal in the sense that if μ is a signed measure and $\mu = \mu_1 - \mu_2$, where μ_1 and μ_2 are measures, then $|\mu| \leq \mu_1 + \mu_2$ with equality only if $\mu_1 = \mu^+$ and $\mu_2 = \mu^-$.

4. Let λ and μ be two measures on (X, \mathcal{B}) . Suppose that μ is σ -finite and $g \geq 0$ measurable. Show that

$$g = \frac{d\lambda}{d\mu}$$
, i.e., $\lambda(E) = \int_E g d\mu$

if and only if for all $A \in \mathcal{B}$ and $\alpha, \beta \ge 0$,

$$\lambda(A \cap \{x : g(x) \ge \alpha\}) \ge \alpha \mu(A \cap \{x : g(x) \ge \alpha\}),$$
$$\lambda(A \cap \{x : g(x) < \beta\}) \le \beta \mu(A \cap \{x : g(x) < \beta\}).$$

Hint: For the "if" part, using these two conditions to show that for $\mu(A) < \infty$

$$\beta\mu(A \cap \{x : g(x) \in [\alpha, \beta)\}) \ge \lambda(A \cap \{x : g(x) \in [\alpha, \beta)\})$$
$$\ge \alpha\mu(A \cap \{x : g(x) \in [\alpha, \beta)\}).$$