Real Analysis Homework #7

Due 11/17

1. Do the exercise given in class.

2. Let $g(x) := 1/(x \log x)$ for x > 1. Let $f_n = c_n 1_{A(n)}$ for some constants $c_n \ge 0$ and measurable subsets A(n) of $[2, \infty)$. Prove or disprove: If $f_n(x) \to 0$ and $|f_n(x)| \le g(x)$ for all x, then $\int_2^{\infty} f_n(x) dx \to 0$ as $n \to \infty$.

3. Let f(x, y) be a measurable function of two real variables having a partial derivative $\partial f/\partial x$ which is bounded for a < x < b and $c \le y \le d$, where c and d are finite and such that $\int_c^d |f(x, y)| dy < \infty$ for some $x \in (a, b)$. Prove that the integral is finite for all $x \in (a, b)$ and that we can "differentiate under the integral sign," that is, $(d/dx) \int_c^d f(x, y) dy = \int_c^d \partial f(x, y)/\partial x dy$ for a < x < b.

4. (a) Show that $\int_0^\infty \sin(e^x)/(1+nx^2)dx \to 0$ as $n \to \infty$. (b) Show that $\int_0^1 (n\cos x)/(1+n^2x^{3/2})dx \to 0$ as $n \to \infty$.

5. Show that if $\mu(X) < \infty$, $f_n \to f$ in measure and $g_n \to g$ in measure, then $f_n g_n \to fg$ in measure. Does the statement still hold if $\mu(X) < \infty$ is removed?

6. If $m \ge 0$ is an integer, let $J_m(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+m)!} (x/2)^{m+2n}$, Bessel function of order m.

(i) Show that if *a* is a constant, $2 \int_0^\infty J_m(2ax) x^{m+1} e^{-x^2} dx = a^m e^{-a^2}$. (ii) Show that if a > 1, $\int_0^\infty J_0(x) e^{-ax} dx = (1+a^2)^{-1/2}$.