Real Analysis Homework #5

Due 10/27

 If (X, S, μ) is a measure space and f a nonnegative measurable function on X, let (fμ)(A) := ∫_A fdμ for any set A ∈ S.
(a) Show that fμ is a measure.

(b) If T is measurable and 1-1 from X onto Y for a measurable space (Y, \mathcal{A}) , with a measurable inverse T^{-1} , show that $(f\mu) \circ T^{-1} = (f \circ T^{-1})(\mu \circ T^{-1})$.

2. Let f be a simple function on \mathbb{R}^2 defined by $f := \sum_{j=1}^n j \mathbf{1}_{(j,j+2] \times (j,j+2]}$. Find the atoms of the algebra generated by the rectangles $(j, j+2] \times (j, j+2]$ for $j = 1, \dots, n$ and express f as a sum of constants times indicator functions of such atoms.

3. Let $x \in [0, 1]$ have the expansion to the base *m* for some integer *m*, i.e., $x = 0.x_1x_2\cdots$. The non-terminating expansion is used in case of ambiguity. Show that $f_n(x) = x_n$ is a measurable function of *x* for each *n*.

4. Let (X, \mathcal{S}) be a measurable space and f_n any sequence of measurable functions from X into $[-\infty, \infty]$. Show that

(a) $f(x) := \sup_n f_n(x)$ defines a measurable function.

(b) $g(x) := \limsup_{n \to \infty} f_n(x)$ defines a measurable function g, as does $\liminf_{n \to \infty} f_n(x)$.

5. Prove or disprove: |f| is measurable $\Rightarrow f$ is measurable.