Real Analysis Homework #4

Due 10/20

1. Let \mathcal{L} be the collection of Lebesgue measurable sets of \mathbb{R}^1 and λ the Lebesgue measure on \mathcal{L} . Show that \mathcal{L} is invariant under translation and dilation, i.e., if $E \in \mathcal{L}$, then $E + s \in \mathcal{L}$ and $rE \in \mathcal{L}$ for any $s, r \in \mathbb{R}$. Also show that $\lambda(E+s) = \lambda(E)$ and $\lambda(rE) = |r|\lambda(E)$.

2. Let *E* be Lebesgue measurable and $\lambda(E) < \infty$. Show that for any $\varepsilon > 0$ there exists a finite union of disjoint open intervals I_1, \dots, I_n such that

$$\lambda(E \triangle \bigcup I_n) < \varepsilon.$$

3. Let A the set of numbers in [0, 1] which decimal expansions do not contain digit 5. Show that $\lambda(A) = 0$.

4. Given $0 < \varepsilon < 1$, construct a *dense* subset $E \subset [0, 1]$ such that $\lambda(E) = \varepsilon$.