Real Analysis Homework #1

Due 9/29

1. Let \mathcal{S} be the σ -algebra generated by \mathcal{A} , then \mathcal{S} is the union of the σ -algebras generated by \mathcal{E} as \mathcal{E} ranges over all countable subsets of \mathcal{A} .

2. Let $\mathcal{A} \subset 2^X$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ} . Let $\mu : \mathcal{A} \to [0, \infty]$ be countably additive on \mathcal{A} and μ^* the induced outer measure.

(i) For any set $E \subset X$ and $\epsilon > 0$ there exists $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ such that $\mu^*(A) \leq \mu^*(E) + \epsilon$.

(ii) If $\mu^*(E) < \infty$, then E is μ^* -measurable iff there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B \setminus E) = 0$.

(iii) Generalize (ii) to the case where μ is σ -finite.

3. As in last problem, we further assume $\mu(X) < \infty$. Let $E \subset X$, we define the inner measure of E to be $\mu_*(E) = \mu(X) - \mu^*(E^c)$. Then E is μ^* -measurable iff $\mu^*(E) = \mu_*(E)$.

4. Let \mathcal{E} be the collection of the sets $A_{a,b} = [-b, -a) \cup (a, b]$ for all $0 < a < b < \infty$ and \mathcal{A} the algebra generated by \mathcal{E} . Define $\mu(A_{a,b}) = b - a$. Show that μ extends to a countably additive measure on a σ -algebra. Is [1,2] measurable for μ^* ?