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Abstract

We study the local behavior of a solution to a generalized non-stationary
Stokes system with singular coefficients in R"™ with n > 2. One of our main
results is a bound on the vanishing order of a nontrivial solution u satisfying
the generalized non-stationary Stokes system, which is a quantitative version
of the (strong) unique continuation property for u. Different from the previous
known results, our unique continuation result only involves the velocity field w.
Our proof relies on some delicate Carleman-type estimates. We first use these
estimates to derive crucial optimal three-cylinder inequalities for u.
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1 Introduction

In this work we study the local behavior of the solution to a generalized non-stationary
Stokes system. This generalized Stokes system includes the usual Navier-Stokes equa-
tions with velocity that can become singular at one point. Let €2 be a connected
bounded domain in R™ with n > 2. Without loss of generality, we assume 0 is in
the interior of Q and define B,(z) = {y : |y — x| < r}. We consider the following
time-dependent Stokes systems

{ Ou—Au+ A(t,xz) - Vu+ B(t,x)u+Vp=0 in (—1,1) x Q, (1.1)

Vou=0 in (=1,1)x Q.
We assume that coefficients A(t, z) and B(t, ) satisfy

{ [A(t,2)] < Mz, te (-1,1), (1.2)

|B(t,x)| < Mz|=72t¢, te(—1,1)
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for some A > 0 and 0 < € < 1. Our main concern is the local vanishing behavior of
u(t,z) in (—1,1) x .

We now describe our main results. For s € (=1,1), let Q7 = {(t,y) : y €
Br(x) € R",t € (-7 + 5,7+ s)} Let w € H'((—1,1); H?.(2)) be a nontrivial
solution of with an appropriate pressure function p € L*((—1,1); H. (€2)). For
the local case, we derive the following optimal three cylinder inequality and doubling

cylinder inequality.

Theorem 1.1 Given T m}d to such that 0 < tqg <T < 1. For any R < 1 such that
zf(] <RI <Ry < R3/3 < R then

K 1-k
// ul*dzdt < C (// |u|2dxdt> (// |u|2dmdt> : (1.3)
0,T—tq 0,T 0,7
QO,R2 QO,RI QO,R3

where C depends on €, \,n, T ty, Ra/R3 and

log(552)

K= :
4log(%) + log(%)

We remark that the optimality of (1.3 is due to the fact that k ~ —1/log R;. From
Theorem [1.1] we can get the following double cylinder inequality.

Theorem 1.2 Let e,n, \, Ry, Tty and R3 be as in Theorem[1.4. Then we have
4R
// uf2dzdt < Ce0o8 "™ // |uldzd, (1.4)
0,T—tg 0,T
QO,R2 QO,RI

2fo8:£3 \u|2da:dt)
T 2dxdt
foz,%stO |ul*dz

where

1
ma ::64+§—|—64 log(

and [z] is the largest integer small than x.

We also obtain a vanishing order of the velocity over one cylinder.

Corollary 1.3 Let e,n,\, Ry, Tty and Rz in Theorem[1.9 be fived. Then we have

(// ]u\zd:vdt)R’ln < // lu|2dxdt
0,7 0,T
0,R3 QO,Rl

for all Ry sufficiently small, where

Joor |ul?dxdt
— Ci + Cylog )
m 1+ Crlog foO,TitO |u|2dxdt
0,Ro

and Cy is a positive constant depending on €,n, \,T,ty and Ry/R3.
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Corollary[1.3|and Theorem|[L.1]immediately imply that if (u, p) € H*((—1,1); H2 (Q))x
L*((—1,1); H. (Q)) satisfies (1.1]) and

// u(t, z)[*dzdt = O(r"Y) V N €N, (1.5)

then u is zero and p is a constant in (=7, 7)) x Q. It is clear that our theorems imply

the following unique continuation property of the Navier-Stokes equation. Assume

that (u,p) € H'((—1,1); H? () x L*((—1,1); H. .(Q)) satisfies
Ou—Au+u-Vu+Vp=0 in (—1,1) xQ,
V-ou=0 in (—1,1) x Q.

If the velocity field u satisfies the first condition of and , then w is trivial
and p is a constant.

The main tool in the derivation of and is Carleman type estimates. We
derive such estimates with a weight function depending only on the spatial variable
x. To take care of the time variable ¢, we introduce a cut-off function x(t) into the
Carleman estimates. The main difficulty comes from the integral over the set where
0 < x(t) < 1. Fortunately, we can overcome the difficulty by carefully choosing the
cut-function x(t) (see the definition of x in (4.1))).

For parabolic equations with time-independent or time-dependent coefficients,
optimal three cylinder inequalities similar to are derived in Vessella [13] and
Escauriaza-Vessella [2]. These quantitative estimates are useful in the study of the
stability for various types of inverse parabolic problems with unknown boundaries
(see Vessella’s review article [14]). Our approach share the same spirit as in Ves-
sella’s works. We refer readers to Yamamoto’s review article [15] for other types
of Carleman estimates for the parabolic equation and their applications to inverse
problems. In the consideration of the inverse source problem for the Navier-Stokes
equations [I], a Carleman estimate for the linearized Navier-Stokes equations is de-
rived. We would like to point out that the weight function in our Carleman estimate
is time-independent and singular at the origin, while the weight function used in the
Carleman estimate of [I] is regular in the spatial variable x while blows up at end
points of time. Other Carleman estimates for the Navier-Stokes equations can also be
found in the references in [I5]. For the stationary Stokes or Navier-Stokes equations,
unique continuation and quantitative estimates (local or at infinity) are proved in
[3, 17, [8l [12].

The singular behavior of A(t,z) and B(t,x) is motivated by the study of
the strong unique continuation property for the elliptic equations [4]. For the ellip-
tic equation, the critical case (when € = 0) are considered in [9] [I1]. This paper is
organized as follows. In Section 2, we derive suitable Carleman estimates. A tech-
nical interior estimate is proved in Section 3. Section 4 is devoted to the proofs of

Theorem Corollary [1.3] and Theorem [I.2]



2 Reduced system and Carleman estimates

To study the Stokes type equation, it is useful to consider the vorticity equation. Let
us now define the vorticity ¢ of the velocity u by

1
V2

Note that here ¢ is a matrix-valued function. The formal transpose of curl is given

by

q=curlu := (Ouj — Ojui)1<i j<n-

1
(CuI‘lTU)lgiSn = E Z 8j<'UZ'j — Uji)?

1<j<n

where v = (v;;)1<i j<n. It is easy to see that
Au = V(V -u) — curl curly
(see, for example, [10] for a proof), which implies
Au + curl g = 0. (2.1)

Since there is no equation for p in the Stokes system (|1.1)), we apply the curl operator
V x on the first equation and obtain

Oq—Aq+V-F =0, (2.2)

where ¢ = V x u is the vorticity and V - F' is a vector function defined by (V- F); =
> 0iFiy, i = 1,2, ,m, where Fy; = >0, Agjke(,1)Opue + D5y Bijr(, t)ug
with appropriate A;jx(z) and B;jx(x) satisfying

|Aijre(z, )] < M| 77 | Bie (2, )] < M| 727,V (2,8) € Q x (—1,1). (2.3)

In summary, to study our problem it suffices to consider equations (2.1]), (2.2)), which
is a system of elliptic and parabolic equations.

The proof of main theorem relies heavily on suitable Carleman estimates. In the
rest of the section, we will derive two needed Carleman estimates. We begin with
the delicate construction of the weight function ¢ = p(z) = exp(¢(y)), where 5 > 0,
y = —log |z| and

1 1
W(y) = By + 15y tan~'y — 35 (1 + y?) + o(y).

To define ¥y(y), we let u(y) € C°(R) satisfy 0 < p(y) < 1 and

()_ 07 y§07
P71, gt



We now set

" _ —ey/2
o(y) 12806#@)6
and
Yy /2
= )ds — s)ds — —e ¢
/ W(s)ds / Ui (s)ds — e,
/ Yy (s) / Vo(s)ds + oo —e™/?
with
a:/ E/L(y)efey/z—l—e*/2 > 1
0 2 2
It should be noted that
_év ?JSO»
' - 64
O(y) - 5
_%e—ey/Q’ y=>1
and
/wo s+ oo ey <,
Yo(y) = 5
eV oy >,

32¢0 ’

Moreover, the function v (y) for y > 0 is a convex function satisfying for ’B e N+ ﬁ
that

1

56 S W S 2/87

dist(2¢',Z) + 4" 2 1
and for any C' > 0 there exists R. > 0 such that

Cla|8 < (14 ¢"(—log|zl)) (2.5)

for all 8 and |z| < R.. From now on, the notation X < Y or X 2 Y means
that X < CY or X > CY with some constant C' depending only on a priori given
constants. To check the second inequality of (2.4)), we note that

s

2
//>_ <_1 ~

vz g ys e
B

1 2
dist(2¢',2) > =, y > =log—.
4 € o

(2.4)

We now introduce polar coordinates in R™\{0} by setting z = rw, with r = |z,

w= (Wi, ,w,) € 8" L. Using new coordinate y = —logr, we obtain that
0
0y +9Qj), 1<5<
830] ( w] + ) —= j —= n?



where Q; is a vector field in S"~!. We could check that the vector fields ; satisfy

ijQj =0 and Zijj =n—1.
j=1 j=1

It is easy to see that

82

Ox;0m, e (—w;0y — wj + Q) (~widy + Q), 1<jl<n.

and, therefore, the Laplacian becomes
e WA =092 — (n—2)9, + A,

where A, = E;-‘:lQ? denotes the Laplace-Beltrami operator on S™~!. We recall that
the eigenvalues of —A,, are k(k+n—2), k € NU{0}, and the corresponding eigenspaces
are Fj, where E} is the space of spherical harmonics of degree k. We remark that

Z//‘ijpdyd”:;k(kJF”—Q)/Ivk\Zdy, (2.6)

where vy, is the projection of v onto Ej. Let

then A is an elliptic first-order positive pseudodifferential operator in L*(S™!). The
eigenvalues of A are k;+”T_2 and the corresponding eigenspaces are Fj, which represents
the space of spherical harmonics of degree k. Hence

-2
A: Ekzo(k‘i‘ I

)7Tk, (27)
where 7 is the orthogonal projector on Ej. Let

n—2

L*=0,— + A,

then it follows that
eYA=LTL =L L".

Denote Ly = 9, — %52 £ A — ¢'(y). Then we have that Lyv = e*® L*(e7*®)p) and
e e WA(e VW) = LI Lyv = L, Liv.



Lemma 2.1 Let x(t) € C2(R). There exists a sufficiently large constant 31, de-
pending on n, such that for all v(t,y,w) € CY(R; C°(R x S™1)) and B > By with

B 1
& € N+ o, we have that

/ IX(Ly Ly — 2L v — e o) [* + / X e 2Yo|?
D ﬁ22(j+|a)/(1 +9)|0;Q% (xv) I,
JHlal<1

where we denote [ f = [ fdtdydw for any function f(t,y,w).

Proof. From v = ¥ v, we can compute
X(Ly Lyv —2Lv)
=x[020 — 2¢'0,v — ndyv + (n — 2+ (Y')* + nY’ —¢")v — 2Av 4+ A 0]
=Yks0X (0vr — b0, vy, + dvg),
where
a= ' -k +k+n) -y
b= 2 +n.

By abusing the notation v = vy, it is enough to prove that

> [+ i + o))
j<1 (2.9)

5/ |X(3§v — Bﬁyv +av — e_2t6t0)|2 + / |X'e_2yv|2,

It is helpful to note that

1 318
I t —1 / >
1 B _ 1 B _

O " — ey/2 < _ L < T > 4
VS Tt s gt sy A2t
" -y /6 2 —ey/2 B / —ey/2 < "

= - S 2

™| |8(1+y2)2 556 p(y)e™ V= + 95~ (y)e™¥/=| < 29",

where we choose |¢/| < 4 in the last inequality. Observe that
2|} (020 — bOyv + av — e O)|* + 4| e Hv|?
>|x (020 — bO,v + av) — e~ 20, (xv)|? (2.10)
=[H(0)[* = 200, (xv) H(v) — 2720, (xv) H (v) + b3, (xv) + e 28, (xv) ",



where H(v) := x(05v + av). Now we write

=2 [B0,00)H0) = -2 [ 39,0c0)2200) - 2 [ by o)

—2 [ a0 = -2 [ 0,030 -2 [ ) a0w)

Straightforward computations imply that
—2 [0,0002200) =2 [ 10,00
~2 [abwo ) = [ oyl

=2 [ ea0adiw) = -1 [ e Pa 0w, (w),
—2/&(Xv)62y8t(xv) =0,

Note that here a is independent of ¢. Combining ([2.10]) to ( - yields
2/ X (D20 — bd,v + av — e~ 2ov)|* + 4/ IXe o
> [ (IH@P + 50,000 + e a0)) +2 [ 07lo, (w0
—4 et + 3 [wrehel -5 [ Bl

for 3 > By. In deriving (2.15), we have used estimates (¢")? < 3%1&’1//’ <

and |¢/¢///| < 2,¢/¢// < %(@Z)I)Q@/}”.

Likewise, we write

(60, (xv) + e 28, (xv)?

+ 4e29,(xv) 9y, (xv).

1 9
| S1H)? = SH() + 360l - 3" yeH () - S ("ol

Tt is easy to check that
— 3/¢”XUH(U)
= —3/w” 20(020 + av)
>3 [ 10,0 - [Pl +3 [ B0

8

= |(2¢" +n = 2)9,(xv) + e, (xv)|* + 4(2¢' + n — 1)]9, (xv)|*

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

S0

(2.16)

(2.17)



for all B > (y. From (2.15)-(2.17)), we have that for 5 > Sy
2/ IX(0%v — bIyv + av — e ) |* + 4/ Ix'e”%v|?
28 [Wlo,0) +2 @il + 5 [l

+3 [1HE)P (2.18)

Our next strategy is to divide y into three region. Before doing so, we need to
further simplify (2.18)). Note that

1 B = k)xv 2 B —k)
11 / 10~ S+ | o=t
62 'QZ)/ ) | U|2
400008 — k[2"X
B — k) B2 — k)? 2
200(3 — k|XUH(U) ~ J 10000]5 — kP2 el
and note
BW k) o )2+ py" 2
200(8 — k| k;| /200|5 k‘| )l /400|6 krlm|
BB — )2 + B(=p(y) — g5 tan"'y) 2
200|6 — k||8 v) / 200I6 kl 9]l
/Bw/// 9
+ —400‘6_k||xv|
with
B —k) B (Y +k+n) B — k)y”
20008 — k| kl / 200|6 LU

Combining (2.18)), we have that
2/ IX(02v — bdyv + Gv — e~ * ) * + 4/ Ix'e”%v)?
3 1
=7 [ w’wy(wi 45 [Pl + 5 [P
B P +k+n), / 2
— H . 2.19
+ [ el + 5 [ 17 (219)

We need further simplification. Let ji(y) = u(y + 1), then

~ ]-a yﬁ—l
1—M<y)={0 y> 0
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For a small positive constant p < % which will be determined later, we can estimate

i/|H( /| laé]g(i//kT k)XU|2+/pﬁ(1 ‘_ﬁgggf k>va(v)
2/32 1 W 2 )
-/ <4|63ﬂ> <k|2 B2
y /p6(1|—635)(w’| Dot - [ 220 |63§) <;¢|'2 LI

Observe that

BB h o,

2|%2 — k|
_ pB(— )W — k) 2 33[0/3(1— ) = k)] 2
=~ [+ [ Sl
(B —p)(BE—k) o [pB(L—p)tan'y 2
-/ ) -/ L a0
Blop(L - W — B,
+/ NEEp x|

o [PDEE 0 (B D),

’63ﬂ . k" ’636 . k‘ |X

and

/ﬂﬁ(l— pW —k) ,

’635 y X vav

:/pﬁ(l— DICES )QWJ”””)\XUF—/”B( i)@' — k)"

2
21 7] T

To estimate the term f pi(llmf; )(ZI “l10|2, we compute that
0511 = )W = k)| = | = i/ (' — k) = 20¢" + (1 — )y

<A1 =kl + 2@ " + (1 = @)[9"|

It should be noted that the supports of i’ and ji” are [—1,0]. We assume ||f||s +

||/"]|oe < Cs, then we can choose p < syoe;- Recall that for y <0
1 1 y
_ 0o " " _ m_ _ .
V= BJF T 6+ ¥ 8(1 + 12)?

10



Therefore, combining (2.19), we have that

1
> [ w’\ayuv)ﬁ + [ pebal +§ [ R
B W' +k+n), pB(L— @)W — k)@ +k+n)
= Y 15 | el

(2.20)

We now use (12.20)) to deduce ([2.9)). The trick is to divide the domain of integration
into three regions.

(i) For -1 <y < %logg, we have 9" > 55 (1 + ") and ( - ) follows immediately.
Recall that ¢" < % for all y € R provided 3 > 4.

(ii) Fory > %log and 7 € N+ 5=, we can see that

1
k| > |B— k| — —
W =k 2 16—k -

which implies
/ 2 s 1 1 2
[0 = b 2 16— K = 518 — K| 2 516 — kP
The fourth term on the right hand side of (2.20)) now satisfies

5 ¢/—|—k+n 2 5‘5 k\i/}'+k+n) ) . )
/ 400|5 k| = 300 Xl Z/(ﬁ +E2) [ xvl.

Consequently, (2.9)) holds over this domain of integration.

(iii) For y < —1, we obtain from the last term on the right hand side of (2.20))

pB— )W — kW +k+n) PR — kP +k+n) o
/ 4|635 . k?| ’XU| 2 /;y< 1} 4|635 . k’| |X/U‘ °

That the estimate ([2.9)) is satisfied over y < —1 follows from the same arguments
as in (ii).

O

We need another Carleman estimate to handle the divergence terms in the reduced
system.
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Lemma 2.2 Let x(t) € C2(R). There exists a sufficiently large number 3} depending
on n such that for all u(t,y,w) € CYR;CP(R x S™1), g = (90,91, ,n) €
(Co(R; C(R x S™1))™*1 and 8 > B} with & € N + Sk, we have that

2567
8 / (1+ ") xal® / (G Lu — 2 0) + yg0 + 3 Qg
j=1 (2.21)
T Blgl + / N

Proof. For fixed t € R, we consider v(t,y,w) € C(R x S"1). We denote (¢, n, w)
its Fourier transformation with respect to y, and define

Tyv(t,y,w) = (2m) /2 Z /OO e (in — ' —k — (n — 2))m0(t,n,w)dn.

k>0 Y~
(2.22)
Similarly, we define
Tyo(t,y,w) = (2m) /2 Z/ e (in — B =k — (n — 2))m0(t, n, w)dn.
k>0 v~
(2.23)

Note that we have Tyv = Ljv = d,v — ¢'v — @v — Av = Tyo+ (B — " )v. Tt is

clear that Tw is invertible whose inverse is given by
TNJIU(IS, y,w) = (2m) "2 Z/ eM(in— B —k—(n—2) tmot,n,w)dn. (2.24)
k>0 T
From (2.23)), (2.24), Plancherel’s theorem, and integrating in ¢, we have for v €
L*(R; CP(R x S™71)) that
HTQZJU||L2(R2><S"*1) > 6||U||L2(R2><S"*1)a
BIT olemonsny < Iollzaesn .
1T, D 950%0) |2 mexse—) S l0llz2@exsnr)
JHlal<1
(see [12], p.1896] for the proofs). From (2.22)), (2.23]) and (2.24]), we get that
T, = +T, (86— T,
Consequently, it follows from (2.25)) that for v € L?*(R; C5°(R x S"!)) we have

(
g
||T1/)'U||L2(R2><S”*1) Z —||’U||L2(R2><Sn71),
2
< 5||TJIU||L2(R2xsn*1) S ||U||L2(R2xsn*1)a (2.26)
[vant Z 0V || r2mexsa—) S vl 2@mexsn-)-

j+al<1

\
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Now for u(t, y,w) € C3(R; C5°((yo, y1)x 5" 1)), we define v(t, y,w) = (T, u)(t,y,w),
Le,u(t,y,w) =Tyv(t,y,w). Let ug(t,y,w) = mpu(t, y,w) and vi(t, y,w) = mpo(t, y, w).
From the definition of T}, we have that

Zuk = u = Tyv

k>0

- ey | T i — & — (n— 2))md (¢, w)dy

I _ (V' + k+n—2)uvy). (2.27)

k>0

We would like to find vy, satisfying limyye vk (t,y,w) = 0. Thus, from (2.27), we
have that

07 Y > Y1,
vty w) =19 _ / Y Ok -2y, (1 ¢ e - Dy (228)
y
Note that for y < yo, vg of (2.28)) is equivalent to
07 Yy > Y1,
vt w) =9 _ eV W Hhy+(n=2)y /y1 e VOTRDEy, (1, € w)dE, Y < Yo

Yo

We remark that although estimate (2.8)) is proved for v € C'(R; Cg°(R x S™71)), it
remains valid for e*v(t, y,w) = >, e*ur(t,y,w) with vy, given in (2.28§).
Using Ty, = L,, and estimates in (2.26]), we obtain that

||XL;L:;u — xe 0 + 0,90 + Z Q9] L2m2x5m-1)
j=1

= [Ty (L:Z(XU) + qul (—xe 0 + dyg0 + Z Q95)) |l 2 (@2 x 571

J=1

BILE (xw) + T (=xe 0 + 0,90 + Y 95) |2 (2501

j=1
[3|]L$(Xu) — @(Tw_l(xe_%u)) + Tw_l(x’e_Qyu)HLz(szsnfl)

—BIT, (9yg0 + Z Q9;) l2®2xsm-1)

v

v

j=1
2 BIILE (xu) = 0T, (xe™w)) + Ty (X e u) || 2 (re xsn-1)
—Blgllr2®2xs0-1)- (2.29)

13



Now, we let v = TJl(e*Zyu) and hence Tyv = e Yy and yv = TJl(e*Zyxu). We
immediately obtain from ([2.8)) that
1L Oxu) = 0(T, (xe™ ) + T (X e ) [l 12 (maxsn-1)
:||X(L:;L1;(62yv) — 2L:;(62yv) — e_ant(Gva)) | L2m2x 5n-1)
> ST BRI (1 4+ B0 () sty — | 060 [ pacmansns
JHlal<1
(2.30)

From the substitution u = e*Tsv, the definitions of Tj, A, and the first inequality of
(2.26)), it is not difficult to show that

11+ ") 2xull L2 (g2 xsn-1)
S Z 51_(j+|a‘)||(1+@D”)l/zaiQa(Xerv)||L2(R2><Snfl), (2.31)

JHlal<1
BHX/UHL%R?xSM) S ||X/€_2yu||L2(R2><S”*1)'
By and , we obtain that
BIILS (xu) — 0T, (xe > u)) + T, (e u) | 2 rexsn)
2 B+ ")l e = [X e ul| 2oy

Finally, combining (2.29)) and ({2.32)) yields ([2.21]). O

Now we are ready to prove our main Carleman estimate.

(2.32)

Lemma 2.3 Let x(t) € CZ(R). There exists a sufficiently large number By de-
pending on n such that for all w(t,z) € C*(R;CP(R™\ {0}), f = (f1,--, fn) €
(Co(R; CE(R™\ {0}))" and B > Bo with & € N + 5 we have that

2567

/ / G+ 0" (2 (xw) 2 + B P ] dacdt
< // ap2|x|2(x|x|2Aw — X|x|28tw + |x|divf)2dxdt

+ 32 // g02|x|2]|f|]2dxdt+// 0|2 |®| Y w|*dxdt. (2.33)
Proof. The estimate (2.33) remains valid if we replace ¥ by ¢ + 5y —y. We first

set w = e %u and g = e~¥f. Working in polar coordinates and using the relation
e”2A = L*tL~, it suffices to prove that

> g [ unjojeral

Jtlal<1

< / |XL1;L:ZU — e 20, (xu) + yg0 + Z Q97 (2.34)

Jj=1

T — / =2 ul?,

14



where go = (w,e™"f), gj = e ¥f;, j = 1,2,--- ,n. Denote J(u) = XL;LZZU —
e, (xu) + ygo + D7, Q;g;. We now write
| T(@)[* = [T (u) + (1 + 4" )xul* = 2(1+ ¢ )xud (u) — (L +9")?|xul. (2.35)

Denote that ~
A=)+ (n—2)0 —y"
b=—2¢ —(n—2).

We obtain that for g > [

/ )P + (14 ")yl
> -2 [ (L4 vt ()

> 2 / (1+ 0" )xulxLy Lju — =28, (xu) + dy90 + D Q595)

j=1

— 9 /(1 + @b")xu(@i(xu) + Bay(xu) + A(xu) + Aw(xu)) (2.36)

2 / (1+ ") xue 2, (xu) — 2 / 1+ a0+ 3 )

> [+ unio,oaP-co [a+ehal+ [0+u) Y 0,0

— CBllgl 2@ wsn1y;

where C' is an absolute constant. By multiplying a large constant K on both side
of (2.21)), if necessary, and adding this new estimate to ([2.36]), we obtain the desired
estimate (2.34)). 0

We will apply Carleman estimate to the parabolic equation (2.2). To treat
the elliptic equation ([2.1f), we use the Carleman estimate below, which can be proved
by following the same lines above while ignoring the t derivative. Alternatively, we
can simply recall Theorem 3.1 of [6]. By replacing ¢ by ¢ +y + 3 log(1 +¢”), which
also satisfies , we can derive the following Carleman estimate.

Lemma 2.4 Let x(t) € C3(R). There exists a sufficiently large number B3 with
6—54 € N + 5 depending on n such that for all w(t,z) € C*'(R; Cg*(R™ \ {0})) and
B > By, we have that

[ [+ e + ol dsar
S [ [ enlalat e (2.37)
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3 Interior estimate

Due to the use of cut-off functions, in addition to Carleman estimates, we also need
the following interior estimate.

Lemma 3.1 Let X = {(t,z) : t; <t < to,x € w C Q} and (u,p) be a solution of
(1.1). Assume that
diam X < 2

Denote d(t,x) the distance from (t,x) € X to R*™N\X. Then for any 0 < a; < as
such that w = Ba,, \ Ba,r, we have that

/ / d(t, o) |Vl dedt + / / d(t, )2 ql2dwdt + / / d(t, 2)|Vg|2dwdt

X X X

/ lu|*dxdt. (3.1)
X

Proof. The method used here is motivated by the proof of Theorem 17.1.3 in [5].
We apply a suitable cut-off function on u. Take £(X) € C5°(R™!) satisfying 0 <

£(X) <1and
L X< 1/,
&) = { 0, |X|>1/2.

Let us denote &y (Z) = &y (t,2) = E(Z-Y)/d(Y)) for Y € X. Multiplying &2 (Z)u(Z)
on yields that

// |Vul?dZ
Z-Y|<d(Y)/4
< 5// (V)2 |Vq|2dZ+5// Vul2dz
Z-Y|<d(Y |Z-Y|<d(Y)/2
// (V) ?|ul?dZ (3.2)
Z-Y|<d(Y)/

for some absolute constant C;. Now multiplying d(Y)? on both sides of (3.2)), we

obtain
/ / d(Y)?|Vul*dZ
Z-Y|<d(¥)/4
< 5// ()’ |vq|2dz+5// d(Y)?|Vul?dz
Z-Y|<d(Y 1Z-Y|<d(Y)/2
/ / ul2dz. (3.3)
Z-Y|<d(Y)/2
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Integrating d(Y) ™" 'dY over X on both sides of (3.3]) and using Fubini’s Theorem,

we get that
/ / / / AV )| Vul2dY dz
Z-Y|<d(Y)/4
< 5// // (V) "|Vq|*dYdZ
Z-Y|<d(Y)/
+5// // () " Vul*dY dZ
Z-Y|<d(Y)/
+= / / / / d(Y)*1*"|u\2deZ. (3.4)
4 x JJ|z-v|<dy)/2

Note that |d(Z) — d(Y)| < |Z —Y|. If |Z — Y| < d(Z)/3, then

2d(Z)/3 < d(Y) < 4d(Z)/3. (3.5)
If |Z — Y| < d(Y)/2, then

d(Z)/2 <d(Y) < 3d(Z)/2. (3.6)
By and (3.6)), we have

/ d(Y) ™"y > (3/4)"H / d(Z) ™" 'dy > 8! / dy,
|Z-Y|<d(¥)/4 |Z-Y|<d(2)/6 vi<t

/ d(Y) 14y < 9 / d(Z)"dy < (3/2)™! / qy.
Z-Y|<d(¥)/2 Z-Y|<8d(2)/4 ¥i<1
(37)

Combining (3.4)—(3.7) and taking ¢ small, we obtain

// VRIVudZ < Cod // i1Vl dZ+—//\ 24z, (38)

where C5 is another absolute constant.
On the other hand, if we multiply £Z(Z)q(Z) on both sides of (2.2)), we have that

// IVq|?dZ < Cs // |F|?dZ
|Z-Y|<d(Y) /4 |Z-Y|<d(Y)/2
1
+—// Vq|*dz (3.9)
Z-Y|<d(Y)/2

coff (V) 2laaz
Z-Y|<d( Y)/2
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since d(Y) < 1 for all Y € X. Now multiplying d(Y)?* on both sides of (3.9) and
repeating the argument (3.4)—(3.8]), we have for v small that

// )| Vq|?dZ
<04y// )2 Vul dZ+O4y/ |ul dZ+(J4y// d(Z)?|q|*dZ (3.10)
X
<c5y// 12Vl dZ+C5z// uf2dZ.

Taking v = and 0= 40 o we obtain
// P2IVul dZ+// VlgPdz + // i|Vg|2dz
<C6/ lu|*dZ
X
by adding (3.8) and (3.10). O

4 Proofs of main results

This section is devoted to the proofs of Theorem [I.1], Corollary [1.3] and Theorem 1.2
We choose the cut-off function x as follows

17 |t‘ S T47
07 |t‘ Z T37

- o] - (4.1)
eXp( ( ’t‘)f%( T4) ) ;o Ty < |t| < T,

x(t) =

where Ty = T — %, Ty = T —t. Moreover, we let 6(xz) € C5°(R") satisfy 0 < 6(x) < 1

and R
0, |ol <=,
e

R ~
1, 71 < ’(L’| < 2R3,
0, |z| > 3Rs

with Rg < 1.
Applying (2.37)) to Hu gives

[ [+ e eIV ou) + o)z
//(1 + ") ? 2| A(xOu)|Pdadt. (4.2)
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Here and after, C' and C denote general constants whose value may vary from line to
line. The dependence of C' and C' will be specified whenever necessary. Next applying

to w = 0q and f = x|x|0F yields that
k0 [ [+ 6 (ol 1900 + ool dod
< [ [ ol 1o 5(60) = Xl Pa,60) + |aldiv(x[ol0F) *drdt (43
+ k32 // <p2\x|2H|a:]>(9FH2d:cdt + k:// ©°|7|°|x 0q|*dxdt,

where k is chosen such that kC||Vq|| > 2C|curl’¢|. Note that the choice of k is

independent of q.
Observe from ([2.3)) that

|2l Fy| < n? A2l [Vl + nAlz ]~ ul.

Combining (£.2), (4.3) and using [2.1)), 2-2), (2.5) (by choosing R; sufficiently small,

if necessary) we obtain that
/ / (1 + 22|22V ()2 + B2 |ul?)dadt
w
T / / (1+ ) (e IV (@) + Bl lxal?)dadt (4.4)
%%

SJ// ©*|2 (%X q|*dxdt + C B /[ *|U)Pdxdt,
w YUz

where W = {(t,z) : [t| < T3, & <|z|< 2R}, Y = {(t,z) : |t| < Ty, B <) <
By Z ={(t,x): |t| < T3, 2R3 <|z| <3R3} and |U(z)|? = |z[*|Vq|* + |z[*|q|* +
|z|*|Vul|* + |u|?>. We then obtain from (4.4) that

// (14 ") 9?82 | xu|*dzdt + // (14 ") ? 32|z || xq|*dzdt
w W

< JL+Cp? // QU Pdadt, (4.5)
Yuz

!
ji—c / / Sl P g Pt
w X

Here we define X;/ = 0 whenever y = 0. To estimate .J;, we only need to consider
the integrals over Wy = {(t,z) : Ty < |t| < T3, &L < |z] < 2Rs}. To this end, we
consider two cases. Firstly, with the help of (2.5)), we have
! 3 1 "\ 32
C|&|2§6_‘x|73§( +¢)ﬁ |x|—4
X 4 4

where
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In this case, J; can be absorbed by the left hand side. On the other hand, we consider
the case ) g

Cl1Ap > Ejgs.
X
Since ) -
voXi<e 1
e Y

it suffices to consider the set

~ T3 ;33 1/2
C<T3—|t|>42(4|x|3> ' (46)

. 1/3 “249 7 1/3
Consequently, taking § > (3 with 03 = (CQ49T6) > <CQ49R§T6> , we can get

£ £
from (4.6]) that

|T5 — [¢]] < to/4,
which implies that

13 -1

-7 > (4.7)

Combining (4.1)), (4.6) and (4.7)), we get for (t,z) € W, that

x(t) < ex p< L (ms—;w)m). (4.8)

Thus, from (4.8)) and (3.1) we have that for g > (3
Ji<cgery) [[ PP < cery ([ P @)
Wi Q0:3ﬁc3

where (] is a positive constant depending on ¢, A, n, T’ to. Putting together (4.5) and
(4.9) implies that for Ry < Ry < Rj

B20*(Ry) // |ul dxdt<// (1 +¢")*B%ul*dxdt
Wa

S 1+62//Y ZSOQIU!?dxdt (4.10)
U

< B2 Rl // |u|2da:dt+62g02 2Rs) // |u| dxdt,

where Wo = {(t,z) : |t| <T —to, & <|z| < Ry}.
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Dividing /8290%(R2) on both sides of (4.10)) and by (2.4]), we have that

// lu|?drdt < ew(_log(%))_W(_logR” // u|?dxdt
W2 QO,T

0,Rq

| 2(~ 10g(2R3)~20(~ log R2) |ul*dxdt
QO,T-
05Rs (4.11)

< 64,3(10g4R2—logR1) |U|2dl'dt
~ QT

0,Rq

+ e*ﬁ(log(ZRS)*log R2) / |u‘2d:€dt.
QO,T

0,3R3

Adding [[ 07—t [w[*dzdt to both sides of (.1I]) leads to
0,Ry/2

4R
// lu|?dxdt < ¢*P1oaCRy) // Jul*dadt
o Q

0,7
ary o (4.12)
+ e—ﬂlog(ng) // |U|2d$dt,
Qolrg

where Ry = 3R5. Standard arguments give

K 1-k
// lu*dzdt < C (// |u|2dmdt> (// |u|2dmdt) : (4.13)
0,T—tg 0,T o,T
QO,RQ QO,RI QO,R3

where C' depends on \, e, n, T, to, %’ and

log(37)

K= .
4log(%) + log(%)

Hence, Theorem [I.1] is proved.
We now turn to the proof of Theorem . Let us recall (4.12)), i.e.,

4R
Jgor—to [ufPdzdt S P18 Ry // |ul*dwdt
A W,

2R,
—i—e'mog(“‘é)// |u|®dwdt.
Q0T

0,R3

We choose [ large enough such that

2 [[or |ul*dadt
HlosR) < oy, I

- fogzggto \u|2dzdt’

(4.14)
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Indeed, if 3Ry < R3, we can take

2
fongﬁg [ul dxdt>
T 2dxdt/ |’
fog,ggto |ul*dz

1
B =m ::64+§+64 log(

where [z] is the largest integer small than 2. Combining (4.12)) and (4.14]), we imme-

diately obtain
4R
// lu|*dzdt < 9¢ 108 7yt ) // |ul*dxdt,
'y oy

which is ((1.4)). This ends the proof of Theorem .
Finally, we would like to prove Corollary [I.3] We fix Ry, Tty and R3 in Theo-

rem [L.T] and define
u(r) = u(m)/ // |u|2dzdt.
0Tt

0,Ro
From (4.13), we have that

K 1
1<¢é / / 2 ddt / / dedt | . (4.15)
iy Qs

Raising both sides of (4.15) by 1/k yields that

1/k
/ / 2 dzdt < ( / / |m2dmdt> ((5 / / |ﬂ|2dxdt) o (416)
Q0T Q0T Q0T
0,R3 0,Ry 0,R3

In view of the formula for &, it follows from (4.16]) that

1 C1+Cq log(fooyT |%|2dxdt)
[uPdzdt < u|?dxdt | [ = O , (4.17)
0,T 0,T R
0:R3 QO:Rl 1

where C is a positive constant depending on n, e, A\, T, tg and Rs/R3. Consequently,

(4.17) is equivalent to
R // lu|?dxdt < // |lu|?dxdt
Qg Qhy

for all R; sufficiently small, where

fo&gS |u|2dxdt
fo&;;to |u|2dxdt

The proof of Corollary [1.3]is now completed. O

m = C1 + Clog
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