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Abstract

We study the problem of estimating the size of an inclusion embed-
ded inside a two dimensional body with discontinuous conductivity by
one voltage-current measurement. This problem is practically impor-
tant because the conductivity of a human body is discontinuous. The
proofs rely on quantitative uniqueness estimates for the conductivity
equation with discontinuous coefficients.

1 Introduction

An important clinical problem is to estimate the size of a cancerous tumor
inside an organ by noninvasive methods. In this paper, we study this problem
by the method of electrical impedance tomography (EIT) with one measure-
ment. Previous works on this problem assumed that the conductivity of the
studied body is Lipschitz continuous (see, for example, [5, 6]). However, this
is not guaranteed in reality, for example, the conductivities of heart, liver,
intestines are 0.70 (S/m), 0.10 (S/m), 0.03 (S/m), respectively. In this paper,
we show that in the two dimensional case, the assumption on the regularity
of the conductivity can be weaken.

We briefly outline the framework, following [6]. Let Ω ⊂ R2 be an open
bounded domain with Lipschitz boundary. Assume that the background

∗This work is dedicated to Professor Neil Trudinger for his 70th birthday.
†Department of Mathematics, National Taiwan University, Taipei 106, Taiwan. Email:

anhtu@uw.edu
‡Institute of Applied Mathematical Sciences, National Taiwan University, NCTS

(Taipei), Taipei 106, Taiwan. Email: jnwang@ntu.edu.tw

1



conductivity σ(x) is elliptic, i.e. for some λ > 0,

λ−1 |y|2 ≤ 〈σ(x)y, y〉 ≤ λ |y|2 , ∀y ∈ R2, a.e. x ∈ Ω. (1.1)

Let D be a subdomain of Ω and σ̃ be a matrix-valued function on D with
bounded measurable coefficients, representing the conductivity of the inclu-
sion. Let v be the electric potential with boundary value φ, i.e.{

div((σ(x)χΩ\D̄ + σ̃(x)χD)∇v) = 0 in Ω,

v = φ on ∂Ω.
(1.2)

The energy required to maintain voltage potential φ on ∂Ω is

W :=

ˆ
∂Ω

φ 〈σ∇v, ν〉 ds.

Let u be the electric potential with the same boundary value when there is
no inclusion, i.e. {

div(σ(x)∇u) = 0 in Ω,

u = φ on ∂Ω.
(1.3)

Similarly, we define the energy

W0 :=

ˆ
∂Ω

φ 〈σ∇u, ν〉 ds.

In [6], it is shown that if σ is Lipschitz continuous and for some ζ, η > 0
either

(1 + η)σ ≤ σ̃ ≤ ζσ a.e. in Ω, (1.4)

or
ζσ ≤ σ̃ ≤ (1− η)σ a.e. in Ω, (1.5)

then the size of D can be estimated using the normalized power gap
∣∣∣W−W0

W0

∣∣∣.
More precisely, the following estimate holds

K1

∣∣∣∣W −W0

W0

∣∣∣∣ ≤ |D| ≤ K2

∣∣∣∣W −W0

W0

∣∣∣∣ 1p , (1.6)

where p > 1, K1 andK2 are constants depending on a priori data. If moreover
D satisfies the fatness condition (4.3), then a better estimate holds

K1

∣∣∣∣W −W0

W0

∣∣∣∣ ≤ |D| ≤ K2

∣∣∣∣W −W0

W0

∣∣∣∣ . (1.7)
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We will show that in two dimension, the method of [6] works even when
σ is only piecewise Hölder continuous. Essentially, this is because in two
dimension, the three-ball and doubling inequalities for solutions of (1.3) hold
for bounded σ; and a gradient estimate needed in proving the propagation of
smallness for∇u was proved in [15] for piecewise Hölder σ (in any dimension).

We would like to mention that size estimates have also been derived for
other systems, for example, [2] for the isotropic elasticity, [16, 17, 18] for the
isotropic/anisotropic thin plate, [11, 10] for the shallow shell.

The paper is organized as follows. In next section, we define several
notations and list several assumptions used in the paper. In Section 3, we
prove some quantitative estimates for solutions of (1.3). In Section 4, we
prove (1.6) and (1.7).

2 Notations and assumptions

Definition 2.1. Let Ω be an open bounded domain of R2. Given 0 < α < 1,
we say that ∂Ω is of class C1,α with parameters r0, M0, if for any P ∈ ∂Ω,
there exists a rigid coordinates transform under which P = 0 and

Ω ∩Br0(0) = {z = (z1, z2) ∈ Br0(0) : z2 > ψ(z1)},

where ψ(z1) ∈ C1,α(−r0, r0) satisfying ψ(0) = 0 and ∇ψ(0) = 0 and

‖ψ‖C1,α(−r0,r0) ≤M0.

Recall that

‖ψ‖C1,α(−r0,r0) = ‖ψ‖L∞(−r0,r0)+‖∇ψ‖L∞(−r0,r0)+ sup
x,y∈(−r0,r0)

|∇ψ(x)−∇ψ(y)|
|x− y|α

.

We now state the assumptions used in the paper.
Assumptions

• Ω ⊂ R2 is an open bounded C1,α domain with parameters r0 and M0.

• There exist disjoint C1,α domains Ωj ⊂ Ω, 1 ≤ j ≤ m such that Ω =
∪mj=1Ωj and for some µ > 0, we have σj(x) := σ(x)χΩj ∈ C0,µ(Ωj), 1 ≤
j ≤ m. For α′ = min{µ, α

3(α+1)
}, let M1 = supj ‖σj‖C0,α′ (Ωj)

.
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• For any x ∈ Ω, there exist r > 0 and an appropriate rotation of co-
ordinates such that the set (∪mj=1∂Ωj) ∩ Br(x) consists of the graphs
of `(x, r) functions of class C1,α, whose C1,α norms are bounded by
L(x, r). We assume that

L := sup
x∈Ω

inf
r>0

{
L(x, r) + `(x, r) +

1

r

}
<∞.

• d = dist(D, ∂Ω) > 0.

• For some Γ ⊂ ∂Ω of positive measure, φ|Γ = 0.

Remark 2.2. The boundaries of subdomains may touch each other. The
inclusion D is only required to stay away from the boundary ∂Ω, it may
intersect ∂Ωj’s (see Figure 2.1).

Figure 2.1: Ωj’s may touch each other and D is allowed to intersect the
interfaces.

We also define for h > 0,

Ωh = {x ∈ Ω | dist(x, ∂Ω) > h}.

3 Quantitative uniqueness estimates

In this section, we prove quantitative uniqueness estimates for solutions of
(1.3) that will be used in the next section. We first recall the three ball
inequality of [4].

Lemma 3.1. [4, Theorem 3.11] For all 0 < r1 < r2 < r3, there exist con-
stants C > 0 and 0 < τ < 1 depending only on λ, r1

r3
, and r2

r3
such that for

any solution of (1.3) in Br3(x), we have

‖u‖L2(Br2 (x)) ≤ C‖u‖τL2(Br1 (x))‖u‖1−τ
L2(Br3 (x)). (3.1)

Using this three-ball inequality, we can prove
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Lemma 3.2. (propagation of smallness) Assume that the assumptions in
Section 2 holds. Let u ∈ H1(Ω) be the solution of (1.3). For any ρ > 0 and
every x ∈ Ω4ρ, we have ˆ

Bρ(x)

|∇u|2 ≥ C

ˆ
Ω

|∇u|2, (3.2)

where C depends on Ω, Γ, λ, α, µ, r0, M0, M1, L, ρ, and ‖φ‖H2(∂Ω)/‖φ‖H1/2(∂Ω).

Proof. We follow the arguments presented in [6, Lemma 2.2]. We first ob-
serve that it suffices to consider the case ρ is small, so we can assume that
Ωρ is connected. Using Caccioppoli and Poincaré inequalities, we can deduce
from Lemma 3.1 that

‖∇u‖L2(B3r(x)) ≤ C‖∇u‖τL2(Br(x))‖∇u‖1−τ
L2(B4r(x)). (3.3)

Given x, y ∈ Ω4ρ, let γ be a curve in Ω4ρ joining x and y. We define a sequence
xk’s as follows: Let x1 = x. For k > 1, let xk = γ(tk) where tk = max{t :
|γ(t) − xk−1| = 2ρ} if |xk − y| > 2ρ; otherwise let xk = y, N = k and stop

the process. Note that since the balls Bρ(xk) are disjoint, N ≤ N0 = |Ω|
πρ2

.

Using (3.3), noting that Bρ(xk+1) ⊂ B3ρ(xk) because |xk+1 − xk| ≤ 2ρ, we
can deduce that

‖∇u‖L2(Bρ(xk+1))

‖∇u‖L2(Ω)

≤ C

(‖∇u‖L2(Bρ(xk))

‖∇u‖L2(Ω)

)τ
.

By induction, we obtain

‖∇u‖L2(Bρ(y))

‖∇u‖L2(Ω)

≤ C1/(1−τ)

(‖∇u‖L2(Bρ(x))

‖∇u‖L2(Ω)

)τN
. (3.4)

Since we can cover Ω5ρ by no more than |Ω|
2ρ2

balls of radius ρ, we obtain

‖∇u‖L2(Ω5ρ)

‖∇u‖L2(Ω)

≤ C

(‖∇u‖L2(Bρ(x))

‖∇u‖L2(Ω)

)τN0

, (3.5)

where C depends on λ, |Ω|, and ρ.
By Corollary 1.3 in [15], ‖∇u‖2

L∞(Ω) ≤ C‖φ‖2
C1,1/2(Ω)

, hence by the em-

bedding H2(∂Ω) ↪→ C1,1/2(∂Ω), we getˆ
Ω\Ω5ρ

|∇u|2 ≤ C|Ω \ Ω5ρ|‖φ‖2
C1,α′ (∂Ω)

≤ Cρ‖φ‖2
H2(∂Ω). (3.6)
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Here we have used |Ω\Ω5ρ| . ρ since ∂Ω is Lipschitz.
Using the Poincaré inequality of [9, Theorem 6.1-8 (b)], recalling that

ϕ|Γ = 0, we have

‖φ‖2
H1/2(∂Ω) ≤ C‖u‖2

H1(Ω) ≤ C‖∇u‖2
L2(Ω). (3.7)

Combining this and (3.6), we see that if ρ is small enough depending on Ω,
Γ, λ, r0, M0, M1, α, µ, L, and ‖φ‖H2(∂Ω)/‖φ‖H1/2(∂Ω),

‖∇u‖2
L2(Ω5ρ)

‖∇u‖2
L2(Ω)

≥ 1

2
.

The lemma follows from this and (3.5).
Next, we derive a local doubling inequality for solutions of (1.3).

Lemma 3.3. For any ρ > 0, there exist δ = δ(ρ, λ) ∈ (0, ρ) and a constant
C = C(ρ, λ) such that for all x ∈ Ωρ and r ∈ (0, δ) and any non-trivial
solution u of (1.3), we have

‖u‖L2(B4r(x))

‖u‖L2(Br(x))

≤ C
‖u‖L∞(Bρ(x))

‖u‖L∞(Bδ(x))

. (3.8)

Proof. The proof, using the theory of quasiconformal maps, follows the ideas
of the proof of Proposition 2 in [1]. We first note that it suffices to consider
the case u is real-valued. Let v ∈ H1

loc(Ω) be a σ-harmonic conjugate of u,
i.e.

∇v = Jσ∇u

where J =

(
0 −1
1 0

)
. Then f = u+ iv satisfies

∂zf = ν1∂zf + ν2∂zf,

where

ν1 =
bc− ad+ 1 + i(b− c)

(a+ 1)(d+ 1)− bc
, ν2 =

d− a+ i(b+ c)

(a+ 1)(d+ 1)− bc
.

It is easy to check that |ν1| + |ν2| ≤ κ < 1. Here κ is a constant depending
only on λ.

By Bers-Nirenberg representation theorem (see [8], p. 259), there exists
a quasiconformal map χ : Ω→ χ(Ω) and an analytic function h : χ(Ω)→ C
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such that f = h ◦ χ. Furthermore, there exist K,α > 1 depending on κ such
that

K−1 |x− y|α ≤ |χ(x)− χ(y)| ≤ K |x− y|
1
α , ∀x, y ∈ Ω.

Let δ = (10K2)−αρα
2

and R = (10K)−1ρα, then we have

χ(Bδ(x)) ⊂ BR(χ(x)) and B10R(χ(x)) ⊂ Ω.

By Theorem 3.6.2 in [7], there exists an increasing function γ depending only
on κ with γ(0) = 0 such that if x1, x2, x3 ∈ B(x, δ) then

|χ(x1)− χ(x2)|
|χ(x1)− χ(x3)|

≤ γ

(
|x1 − x2|
|x1 − x3|

)
.

Let c = γ(8) > 1 then for any x ∈ Ωρ and r ∈ (0, δ), there exists s ∈ (0, R/c)
such that if y = χ(x) then

Bs(y) ⊂ χ(Br/2(x)) and χ(B4r(x)) ⊂ Bcs(y). (3.9)

Since ũ = <h is harmonic on χ(Ω), by Hadamard’s three-circle theorem,
there exists an absolute constant C such that

‖ũ‖L∞(Bcs(y))

‖ũ‖L∞(Bs(y))

≤ C
‖ũ‖L∞(B4R(y))

‖ũ‖L∞(B3R(y))

.

By Theorem 3.1.2 in [7], |E| = 0 iff |χ(E)| = 0, hence (3.9) implies

‖u‖L∞(B4r(x))

‖u‖L∞(Br/2(x))

≤ C
‖u‖L∞(Bρ2 (x))

‖u‖L∞(Bρ1 (x))

.

Here

ρ1 = (3R/K)α = 3αδ > δ, ρ2 = (4KR)
1
α = (2/5)1/αρ < ρ.

Using well-known estimates for elliptic equations with measurable coeffi-
cients, we have

‖u‖L2(B4r(x))

‖u‖L2(Br(x))

≤ C
‖u‖L∞(B4r(x))

‖u‖L∞(Br/2(x))

≤ C
‖u‖L∞(Bρ(x))

‖u‖L∞(Bδ(x))

.
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4 Size estimates

To begin, we recall the following energy inequalities proved in [6].

Lemma 4.1. [6, Lemma 2.1] Assume that σ satisfies the ellipticity condition
(1.1). If either (1.4) or (1.5) holds, then

C1

ˆ
D

|∇u|2dx ≤ |W0 −W | ≤ C2

ˆ
D

|∇u|2dx, (4.1)

where C1, C2 are constants depending only on λ, η, and ζ.

We now state and prove the main theorem.

Theorem 4.2. i/ Suppose that the assumptions in Section 2 hold. Then
there exist constants K1, K2 > 0 and p > 1 depending only on Ω, Γ, λ, α, µ,
r0, M0, M1, L, d, η, ζ, ρ, and ‖φ‖H2(∂Ω)/‖φ‖H1/2(∂Ω) such that

K1

∣∣∣∣W0 −W
W0

∣∣∣∣ ≤ |D| ≤ K2

∣∣∣∣W0 −W
W0

∣∣∣∣ 1p . (4.2)

ii/ If moreover, there exists h > 0 such that

|Dh| ≥
1

2
|D| (fatness condition). (4.3)

then

K1

∣∣∣∣W0 −W
W0

∣∣∣∣ ≤ |D| ≤ K2

∣∣∣∣W0 −W
W0

∣∣∣∣ , (4.4)

where K1 and K2 depend on the various constants as in i/ and also on h.

Proof. The proof closely follows the arguments of [6].
We first establish the lower bound. Let c = 1

|Ωd/4|
´

Ωd/4
u. By the gradient

estimate of [15, Theorem 1.1], the interior estimate of [14, Theorem 8.17] and
the Poincaré inequality for the domain Ωd/4, we have

‖∇u‖L∞(Ωd/2) ≤ C‖u− c‖L∞(Ωd/3) ≤ C‖u− c‖L2(Ωd/4) ≤ C‖∇u‖L2(Ω).

From this, the trivial estimate ‖∇u‖2
L2(D) ≤ C|D|‖∇u‖2

L∞(Ωd/2) and Lemma

4.1, the lower bound follows.
Next, we establish the upper bounds.
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i/ We will first establish that |∇u|2 is an Ap-weight, following the proof
of Theorem 1.1 in [13]. Let ρ = d/5 and δ be the constant appears in Lemma
3.3. By Cacciopolli inequality and (3.2), for any x ∈ Ω5ρ we have

‖u− c‖L∞(Bδ(x)) ≥ C ‖u− c‖L2(Bδ(x)) ≥ C ‖∇u‖L2(Bδ/2(x)) ≥ C ‖∇u‖L2(Ω) .

(Note that C depends also on δ). By interior estimate, we have

‖u− c‖L∞(Bρ(x)) ≤ 2 ‖u‖L∞(Bρ(x)) ≤ C ‖ϕ‖H1/2(∂Ω) .

For r ∈ (0, δ), applying the doubling inequality of 3.3 to u − c where c =
1
|Br|

´
Br(x)

u, we get

‖u− c‖L2(B2r(x))

‖u− c‖L2(Br(x))

≤ C
‖u− c‖L∞(Bρ(x))

‖u− c‖L∞(Bδ(x))

≤
C ‖ϕ‖H1/2(∂Ω)

‖∇u‖L2(Ω)

≤ C.

At the last inequality we have used (3.8). We note that the constant C
depends on various constants, including ‖ϕ‖H2(∂Ω) / ‖ϕ‖H1/2(∂Ω) but is inde-
pendent of r.

This and the Caccioppoli inequality give

r−1 ‖∇u‖L2(Br(x)) ≤ C ‖u− c‖L2(B2r(x)) ≤ C ‖u− c‖L2(Br(x)) .

Combining this with the Poincaré inequality(
1

|Br(x)|

ˆ
Br(x)

|u− c|2
) 1

2

≤ Cr−1

(
1

|Br(x)|

ˆ
Br(x)

|∇u|
3
2

) 2
3

,

we get (
1

|Br(x)|

ˆ
Br(x)

|∇u|2
) 1

2

≤ C

(
1

|Br(x)|

ˆ
Br(x)

|∇u|
3
2

) 2
3

.

This reverse Hölder inequality shows that |∇u|2 is an Ap-weight for some
p > 1 (see [12, Chapter 7]).

We cover D with internally nonoverlapping closed squares Qk, 1 ≤ k ≤ I,
with side length 2ρ. Since |∇u|2 is and Ap-weight, by [12, (7.2)], we have

|D ∩Qk|
|Qk|

≤ C

(´
D∩Qk

|∇u|2´
Qk
|∇u|2

)1/p

.
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Summing over k and using (3.2), we get

|D| ≤ C

( ´
D
|∇u|2

mink
´
Qk
|∇u|2

)1/p

≤ C

(´
D
|∇u|2´

Ω
|∇u|2

)1/p

.

The upper bound of |D| now follows from (4.1).
ii/. Let ρ = 1

4
min{d, h} and cover Dh with internally nonoverlapping

closed squares {Qk}Jk=1 of side length 2ρ. It is clear that Qk ⊂ D, hence

ˆ
D

|∇u|2dx ≥
ˆ
∪Jk=1Qk

|∇u|2dx ≥ |Dh|
ρ2

min
k

ˆ
Qk

|∇u|2dx.

≥ C|D|
ρ2

ˆ
Ω

|∇u|2dx.

Here we have used Lemma 3.2 and the fatness condition at the last inequality.
The upper bound of |D| follows from this and Lemma 4.1.
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