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Abstract. In this work, we are concerned with the problem of
estimating the size of an inclusion embedded in an object laying
in the two dimensional domain. We assume that the object is
occupied by an exotic material which obeys a nonlinear Ohms’
law. In view of the assumption of the power law, we thus consider
the weighted p-Laplace equation as a model problem in this case.
Using only one voltage-current measurement, we give upper and
lower bounds of the size of the inclusion.

1. Introduction

We study the size estimate problem for the non-linear p-Laplace type
equation in the plane. Let Ω ⊂ R2 be a bounded domain with boundary
∂Ω. The regularity of ∂Ω will be specified later. Suppose that Ω is
occupied by a special material which obeys a nonlinear Ohms’ law.
The usual Ohms’ law states that the current density I(x) = −a(x)∇v,
where v is the electric potential and a(x) is the conductivity of the
material. Here we assume that the conductivity a also depends on ∇v
according to the following power law

a(x) = γ(x)|∇v|p−2,

i.e.,
I(x) = −γ(x)|∇v|p−2∇v

for 1 < p < ∞, where γ(x) ∈ L∞+ (Ω), an essentially bounded function
that is positive almost everywhere. Such power laws can occur in di-
electrics, plastic moulding, electro-rheological and thermo-rheological
fluids, viscous flows in glaciology and plasticity phenomena, etc. We
refer to [13] for related references. In the absence of sources in Ω, the
potential v satisfies the equilibrium equation

div(γ(x)|∇v|p−2∇v) = 0 in Ω.

This is the well known p-Laplace equation with weight γ for all 1 <
p <∞.
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Let D ⊂ Ω be a subdomain of Ω, where Ω \ D̄ is connected. The
region D represents an inclusion whose medium parameter is different
from the background one. In other words, we can assume that the
medium parameter γ(x) is distributed as follows

γ(x) =

{
σ(x) when x ∈ Ω \D,
σ̃(x) when x ∈ D.

In this work we are concerned with the estimate of the size of D by one
voltage-current pair on the boundary ∂Ω. Namely, we would like to de-
rive upper and lower bounds of |D| using {v|∂Ω, γ(x)|∇v|p−2∇v · ν|∂Ω},
where ν is the unit outer normal of ∂Ω. In practice, this problem can be
considered as a preliminary assessment of the size of the abnormality
inside of Ω.

The size estimate problem for linear equations or systems has been
extensively studied. We refer to the nice survey article [5] for some early
results and to the recent paper [17] for the case where the background
medium is discontinuous. The idea is to use the power gap to derive
upper and lower bounds of |D|. To do so, let us consider the Dirichlet
boundary value problem{

div(γ(x)|∇v|p−2∇v) = 0 in Ω,

v = f on ∂Ω.
(1.1)

Under the assumption γ, for a given Dirichlet data f ∈ W 1,p(Ω)/W 1,p
0 (Ω),

the problem (1.1) is well posed in W 1,p(Ω). The power

W =

∫
∂Ω

f(x)γ(x)|∇v|p−2∇v · νds =

∫
Ω

γ(x)|∇v|pdx

is the energy that needs to maintain the voltage f on ∂Ω. Likewise,
we also consider the unperturbed equation, i.e., D is empty,{

div(σ(x)|∇u|p−2∇u) = 0 in Ω,

u = f on ∂Ω
(1.2)

and the associated power

W0 =

∫
∂Ω

f(x)σ(x)|∇u|p−2∇u · νds =

∫
Ω

σ(x)|∇u|pdx.

Our main result in this paper is to estimate the size of D in terms of
the ”normalized power gap”. Precisely, we plan to prove the following
estimate

C1

∣∣∣∣W −W0

W0

∣∣∣∣ ≤ |D| ≤ C2

∣∣∣∣W −W0

W0

∣∣∣∣1/q , (1.3)
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where q > 1, which appears from the fact that |∇u|p is an Aq weight.
The constants C1 and C2 depend on the apriori data. If we assume
that D satisfies the fatness condition (see (4.8)), then we can obtain
the following estimate

C1

∣∣∣∣W −W0

W0

∣∣∣∣ ≤ |D| ≤ C̃2

∣∣∣∣W −W0

W0

∣∣∣∣ . (1.4)

To prove (1.3) and (1.4), we first derive energy inequalities connect-
ing the power gap and the energy of the free solution u (see (4.3)).
With the help of the energy inequalities, lower bounds in (1.3) and
(1.4) are consequences of the interior estimate for the solution of (1.2).
Derivations of upper bounds in (1.3) and (1.4) rely on some quantita-
tive unique continuation estimates for (1.2) with constants depending
on a priori data.

The unique continuation property for the p-Laplace equation in higher
dimensions (n ≥ 3) is largely an open problem (see [19] for some par-
tial results). On the contrary, when n = 2, the problem is much more
manageable due to the intimate connection between the solutions of
the p-Laplace equation and quasiregular mappings, see [2], [9], [25] for
some qualitative results and [20] for related quantitative estimates. On
the other hand, we refer to [11], [12], [13], [14], [21], [28] for some recent
results on inverse problems for the p-Laplace equation.

This paper is organized as follows. In Section 2, we list the assump-
tions used throughout the paper. We also recall some useful estimates
of quasiregular mappings. Based on these estimates, we derive doubling
and three-ball inequalities for quasiregular mappings. In Section 3, we
prove the Lipschitz propagation of smallness and doubling inequalities
for solutions of the weighted p-Laplacian. Finally, in Section 4, we state
and prove lower and upper bounds of |D| in terms of the normalized
power gap with or without the fatness condition.

2. Assumptions and preliminaries

2.1. Assumptions. The following assumptions will be needed through-
out the paper. We first assume that Ω ⊂ R2 is a bounded domain with
C1,α boundary for some α ∈ (0, 1) with parameters r0,M0. We say a do-
main is C1,α regular if for any x ∈ ∂Ω, there exists a C1,α-regular trans-
formation ψ satisfying ψ(0) = 0,∇ψ(0) = 0 and ‖ψ‖C1,α(−r0,r0) ≤ M0

so that

Ω ∩Br0(0) = {x = (x1, x2) ∈ Br0(0) : x2 > ψ(x1)}.
Unless otherwise stated, we denote z = x1+ix2, x = (x1, x2) and Br(x),
the disc of radius r centered at x. We assume that σ is Lipschitz, i.e.,
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there exists M > 0 such that

‖σ‖C0,1(Ω) ≤M

and for λ ≥ 1
1

λ
≤ σ(x) ≤ λ, ∀ x ∈ Ω. (2.1)

Also, we use the usual differential operators

∂

∂z̄
=

1

2

(
∂

∂x1

+ i
∂

∂x2

)
,

∂

∂z
=

1

2

(
∂

∂x1

− i ∂
∂x2

)
.

We assume that the Dirichlet condition f is zero on some part of the
boundary ∂Ω. Precisely, let Γ be a subset of ∂Ω with positive measure.
Suppose that

f = 0 on Γ. (2.2)

Finally, we assume there

dist(D, ∂Ω) > d

with 0 < d < 1. Throughout the paper, we denote for ρ > 0

Ωρ = {x ∈ Ω : dist(x, ∂Ω) > ρ}.

2.2. Quasiregular mapping and some properties. A mapping φ ∈
W 1,2
loc (Ω;R2) is said to be a K-quasiregular mapping if

‖Dφ(x)‖2 ≤ K|Jφ(x)|, ∀ x ∈ Ω,

where, K ≥ 1 is a constant, Jφ is the Jacobian determinant, Dφ is the
derivative of φ and ‖·‖ denotes the usual Euclidean norm of the matrix.
For more detailed discussion on quasiregular mappings, we refer to [6].

In this subsection, we will recollect some properties of the quasiregu-
lar mappings and give sketchy proofs of some of the results if necessary.
We mainly recall Hadamard’s three circle theorem, Harnack type in-
equality and doubling inequality for the quasiregular mapping. We
begin with Hadamard’s three circle theorem whose proof can be found
in [3, Theorem 3.9] or [20, (3.8)]. From now on, we identify R2 = C
and write φ as a complex-valued function.

Lemma 2.1. (Hadamard’s three circle theorem) Let φ : Br3(x) → C
be a K-quasiregular mapping. Then for all 0 < r1 < r2 < r3, there
exists a constant 0 < θ < 1, depending only on K, r3/r1, r3/r2, such
that

‖φ‖L∞(Br2 (x)) ≤ ‖φ‖θL∞(Br1 (x))‖φ‖1−θ
L∞(Br3 (x)).
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We also recall a version of Harnack’s inequality for the quasiregular
mapping from [20, Lemma 4.1].

Lemma 2.2. (Harnack’s inequality) If φ : B1(x)→ C is a K-quasiregular
mapping, then for each r ∈ (0, 1), we have

‖φ‖L∞(Br/2) ≤ C
1

|Br|

∫
Br

|φ|dx,

where the constant C > 0 depends on K.

Lemma 2.3. (Doubling inequality) Let φ : Ω→ C be a K-quasiregular
mapping. Given any ρ > 0, there exist positive constants δ = δ(ρ) ∈
(0, ρ) and C = C(ρ) such that, for all x ∈ Ωρ and r ∈ (0, δ), we have

‖φ‖L∞(B4r(x))

‖φ‖L∞(Br/2(x))

≤ C
‖φ‖L∞(Bρ2 (x))

‖φ‖L∞(Bρ1 (x))

where ρ1, ρ2 > 0 explicitly depend on ρ and δ but not on r.

Proof. The proof follows the similar arguments used in [27]. Since φ :
Ω→ C is K-quasiregular mapping, by the Ahlfors-Bers representation
[1] (see also [8]), we have that

φ = h ◦ χ,
where h : χ(Ω) → C is holomorphic, and χ : Ω → χ(Ω) is a K-
quasiconformal homeomorphism. Moreover, χ satisfies the bi-Lipschitz
property, i.e., there exist M̃, β > 1 depending on K such that

M̃−1 |x− y|β ≤ |χ(x)− χ(y)| ≤ M̃ |x− y|1/β , ∀ x, y ∈ Ω.

Choosing δ = (10M̃2)−βρβ
2

and R = (10M̃)−1ρβ, we have χ(Bδ) ⊂
BR(χ(x)) and B10R(χ(x)) ⊂ Ω.

We note that, since χ is K-quasiconformal in Ω, so due to Theorem
3.6.2, [6], there exists an increasing function η depending only on K
with η(0) = 0 such that if x1, x2, x3 ∈ Bδ(x) then

|χ(x1)− χ(x2)|
|χ(x1)− χ(x3)|

≤ η

(
|x1 − x2|
|x1 − x3|

)
.

Letting c = η(8) > 1, then for any x ∈ Ωρ and r ∈ (0, δ), there exists
s ∈ (0, R/c) such that if y = χ(x) then

Bs(y) ⊂ χ(Br/2(x)) and χ(B4r(x)) ⊂ Bcs(y). (2.3)

By the Hadamard’s three circles theorem for the holomorphic function,
see [26], there exists an absolute positive constant C such that

‖h‖L∞(Bcs(y))

‖h‖L∞(Bs(y))

≤ C
‖h‖L∞(B4R(y))

‖h‖L∞(B3R(y))

. (2.4)
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Finally, using the fact that, measure zero sets map to a measure zero
set via the quasiconformal mapping, see (Theorem 3.1.2, [6]) and com-
bining (2.3) and (2.4), we obtain

‖φ‖L∞(B4r(x))

‖φ‖L∞(Br/2(x))

≤ C
‖φ‖L∞(Bρ2 (x))

‖φ‖L∞(Bρ1 (x))

,

where

ρ1 = (3R/M̃)β = 3βδ > δ,

and

ρ2 = (4M̃R)1/β = (2/5)1/βρ < ρ.

�

Lemma 2.4. Let φ : Br3 → C be a K-quasiregular mapping. Then for
all 0 < r1 < r2 < r3, there exists C > 0 depending on r1

r3
, r2
r3
, K such

that,

‖φ‖L∞(Br2 ) ≤ Cr−1
3 ‖φ‖

θ
L2(B2r1 ) ‖φ‖

1−θ
L2(B2r3 ) ,

where θ is given in Lemma 2.1.

Proof. From Lemma 2.1, we have

‖φ‖L∞(Br2 ) ≤ ‖φ‖
θ
L∞(Br1 ) ‖φ‖

1−θ
L∞(Br3 ) . (2.5)

Applying Harnack’s inequality (see Lemma 2.2) and Hölder’s inequal-
ity, we deduce that

‖φ‖L∞(Br1 ) ≤ C
1

|B2r1|

∫
B2r1

|φ| dx

≤ C |B2r1|
−1/2 ‖φ‖L2(B2r1 ) (2.6)

Hence combining (2.5) and (2.6) we obtain our required result. �

2.3. Quasilinear Beltrami equation. In this section, we are aim-
ing at transforming the weighted p-Laplace equation into the Beltrami
equation in the planar domain. To be more precise, the nonlinear coun-
terpart of the gradient of the solution of p-Laplace satisfies a certain
kind of quasilinear Beltrami equation. Here, we mainly follow some
computations from [21, Appendix A3] to deduce the following Beltrami
equation in the complex plane. Let G = σux1 − iσux2 , where u solves

(1.2) and define F = |G|
p−2
2 G. Then F satisfies

∂F

∂z̄
= q1

∂F

∂z
+ q2

∂F

∂z
+ q3F, in Ω, (2.7)
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where

q1 = −1

2

(
p− 2

p+ 2
+

p− 2

3p− 2

)
F

F
,

q2 = −1

2

(
p− 2

3p− 2
− p− 2

p+ 2

)
F

F
and

q3 =σ
p

p+ 2

[
F

F

∂

∂z

(
1

σ

)
− ∂

∂z̄

(
1

σ

)]
− σp−2 p

3p− 2

[
F

F

∂

∂z

(
1

σp−2

)
+

∂

∂z̄

(
1

σp−2

)]
.

Since σ ≥ 1
λ

and σ is Lipschitz in Ω, it is easy to check that κ =
‖q1‖L∞(Ω) + ‖q2‖L∞(Ω) < 1 and ‖q3‖L∞(Ω) ≤M .

We now state the following proposition, which allows one to represent
the solution of the Beltrami equation (2.7) in terms of the quasiconfor-
mal maps and holomorphic functions. The proof can be found in ([20],
Theorem 3.1). See also ([10], Theorem 4.4).

Proposition 2.5. Under the above stated assumptions on q1, q2, q3 and
σ, the solution of the Beltrami equation (2.7) has the following repre-
sentation:

F (z) = (h ◦ χ)(x)eω(x) in Ω

where χ : Ω → χ(Ω) is K-quasiconformal (with K depending only on
p), h : χ(Ω) → C is holomorphic, and ω(x) = (Tg)(x) is the Cauchy
transform of g for some g ∈ Lδ(Ω) with 2 < δ < (1 + 1

κ
).

Remark 2.6. Here the function g satisfies the integral equation

g − qSg = χΩq3 in C,
where ‖q‖L∞(C) ≤ κ and S is the Beurling transform. It follows from
[7, Theorem 1] that I − qS is invertible in Lδ(C) if δ ∈ (2, 1 + 1

κ
). In

view of (2.7), we then obtain that

‖g‖Lδ(Ω) ≤ C(δ, λ, p,Ω)M. (2.8)

3. Propagation of smallness and doubling inequality

We begin this section with the following three-ball inequality.

Lemma 3.1. (three-ball inequality) Let u be the solution of the weighted
p-Laplace equation (1.2) in BR0. For all 0 < 2r1 < r2 < 2r3 < R0, there
exist constant C, depending on r1

r3
, r2
r3
, p, R0, λ,M , such that

‖∇u‖Lp(Br2 ) ≤ Cr−1
3 ‖∇u‖

θ
Lp(B2r1 ) ‖∇u‖

1−θ
Lp(B2r3 ) ,
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where θ is given in Lemma 2.1.

Proof. As above, we define F = |G|
p−2
2 G, with G = σux1−iσux2 . Then

Proposition 2.5 asserts that

F (x) = (h ◦ χ)(x)eT (g(x)), (3.1)

where χ : BR0(x)→ χ(BR0(x)) is aK-quasiconformal map, h : χ(BR0(x))→
C is holomorphic and T (g) is the Cauchy transform of g for some
g ∈ Lδ(BR0(x)) with 2 < δ < 1 + 1

κ
satisfying ‖g‖Lδ(BR0

) ≤ CM ,

where C = C(R0) with any fixed δ. Recall that the Cauchy transform
T : Lδ(BR0)→ L∞(BR0). Therefore, we have that

‖eT (g)‖L∞(BR0
) ≤ CeCM . (3.2)

∫
Br2 (x)

|∇u|p ≤ C

∫
Br2 (x)

|F |2

≤ C

∫
Br2 (x)

|h ◦ χ|2 e2|T (g(x))|

≤ C ‖h ◦ χ‖2
L∞(Br2 (x))

∫
Br2 (x)

e2|T (g(x))|

≤ CeCM ‖h ◦ χ‖2
L∞(Br2 (x)) .

Replacing φ by h ◦ χ in Lemma 2.4, we obtain that

‖∇u‖pLp(Br2 (x)) ≤ CeCMr−1
3 ‖h ◦ χ‖

2θ
L2(B2r1 (x)) ‖h ◦ χ‖

2(1−θ)
L2(B2r3 (x)) . (3.3)

Now, we compute

‖h ◦ χ‖2
L2(B2r1(x)

) =

∫
B2r1

|h ◦ χ|2 =

∫
B2r1

|F |2 e−2T (g(x))

≤ C

∫
B2r1

|∇u|p e−2T (g(x))

≤ CeCM
∫
B2r1

|∇u|p . (3.4)

Similar computations hold for ‖h ◦ χ‖2
L2(B2r3 (x)) and Lemma follows.

�

We now will derive two key estimates. The first important estimate is
the Lipschitz propagation of smallness, where we show that the Lp norm
of the gradient of the solution for p-Laplace over the whole domain can
be controlled by the Lp norm of the gradient over a smaller subdomain
in a Lipschitz manner. Precisely, we will prove the following lemma.
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Lemma 3.2. Assume that the assumptions in Section 2 hold. Let
u ∈ W 1,p(Ω) be the solution for the p-Laplace equation (1.2) with 2 <
p < ∞. Then there exists ρ0, depending on |Ω|, α, p, r0,M0,Γ and
C(α, λ,Ω, p, ‖f‖C1,α(∂Ω))/‖f‖W 1−1/p,p(∂Ω), such that for all ρ ≤ ρ0 and
for every x ∈ Ω8ρ, we have∫

Ω

|∇u|pdx ≤ Cρ

∫
Bρ(x)

|∇u|pdx,

where the constant Cρ > 0 depends on λ,M, p, |Ω| and ρ.

Proof. The proof of this lemma goes along the same line as [5]. For
any x ∈ Ω8ρ, choosing r1 = ρ

2
, r2 = 3ρ, r3 = 4ρ in the Lemma 3.1, we

have

‖∇u‖Lp(B3ρ(x)) ≤ C ‖∇u‖θLp(Bρ(x)) ‖∇u‖
1−θ
Lp(B8ρ(x)) . (3.5)

Here C depends on ρ, p, λ,M . Let us first take two points x, y in B8ρ.
Then join x and y with a curve γ̃ as follows: Let x1 = x. For k > 1,
let xk = γ̃(tk), where tk = max{t : |γ̃(t)− xk−1| = 2ρ} if |xk − y| > 2ρ;
otherwise let xk = y, N = k and stop the process. Remark that the

balls Bρ(xk) are disjoint and N ≤ N0 = |Ω|
πρ2
. Also note that

Bρ(xk+1) ⊂ B3ρ(xk)

since |xk+1 − xk| ≤ 2ρ. Therefore, using (3.5), we deduce that

‖∇u‖Lp(Bρ(xk+1))

‖∇u‖Lp(Ω)

≤ C

(
‖∇u‖Lp(Bρ(xk))

‖∇u‖Lp(Ω)

)θ

.

By induction we obtain

‖∇u‖Lp(Bρ(y))

‖∇u‖Lp(Ω)

≤ C
1

1−θ

(
‖∇u‖Lp(Bρ(x))

‖∇u‖Lp(Ω)

)θN

.

Since, we can cover Ω8ρ by no more than |Ω|
πρ2

balls of radius ρ, so we

obtain,

‖∇u‖Lp(Ω8ρ)

‖∇u‖Lp(Ω)

≤ C

(
‖∇u‖Lp(Bρ(x))

‖∇u‖Lp(Ω)

)θN0

. (3.6)

where C depends on λ,M, p, |Ω| and ρ. Note that,∫
Ω\Ω8ρ

|∇u|p ≤ C |Ω \ Ω8ρ| ‖∇u‖pL∞(Ω) . (3.7)

Now we want to estimate ‖∇u‖L∞(Ω). First of all, combining the es-
timates for the Dirichlet problem (1.2) and the trace map, we have
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that
‖u‖W 1,p(Ω) ≤ C‖f‖W 1−1/p,p(∂Ω)

(see for example [24, 28]). From the Sobolev embedding theorem, if
p > 2, we have

‖u‖L∞(Ω) ≤ C‖f‖W 1−1/p,p(∂Ω). (3.8)

Having bounded the solution u, we can apply the regularity estimate
of the Dirichlet problem for the degenerate elliptic equation in [23] to
(1.2) and derive that

‖∇u‖L∞(Ω) ≤ C(α, λ,Ω, p, ‖f‖C1,α(∂Ω)). (3.9)

Note that we have used the fact that the embedding C1,α(∂Ω) ↪→
W 1−1/p,p(∂Ω) is continuous. On the other hand, using the Poincaré
inequality, recalling f |Γ = 0 (see (2.2)), and the trace theorem, we
have

‖f‖W 1−1/p,p(∂Ω) ≤ C ‖u‖W 1,p(Ω) ≤ C ‖∇u‖Lp(Ω) . (3.10)

Recall from [4, Lemma 2.8] there exists a constant C ′ = C ′(|Ω|, α, r0,M0)
such that

|Ω \ Ω8ρ| ≤ C ′ρ. (3.11)

Combining (3.9) and (3.10) implies

‖∇u‖pLp(Ω8ρ)

‖∇u‖pLp(Ω)

= 1−
‖∇u‖pLp(Ω\Ω8ρ)

‖∇u‖pLp(Ω)

≥ 1−C ′ρ
(C(α, λ,Ω, p, ‖f‖C1,α(∂Ω)))

p

‖f‖p
W 1−1/p,p(∂Ω)

≥ 1

2

(3.12)
for all ρ ≤ ρ0, where ρ0 depends on |Ω|, α, p, r0,M0,Γ and
C(α, λ,Ω, p, ‖f‖C1,α(∂Ω))/‖f‖W 1−1/p,p(∂Ω). Applying (3.12) to the left-

hand side of (3.6) finishes the proof of this lemma. �

Now we derive a version of doubling inequality for the solution of
p-Laplace equation (1.2).

Lemma 3.3. Let u be a solution of the p-Laplace equation (1.2). Given
any ρ > 0, there exist positive constants δ = δ(ρ) ∈ (0, ρ) and C > 0
such that, for all x ∈ Ω2ρ and r ∈ (0, δ), we have

‖∇u‖Lp(B4r(x))

‖∇u‖Lp(Br(x))

≤ C
‖∇u‖Lp(B2ρ2 (x))

‖∇u‖Lp(Bρ1 (x))

(3.13)

where ρ1, ρ2, δ are constants given in the proof of Lemma 2.3 and C > 0
depends only on ρ1, ρ2, p, λ,M but not on r.

Proof. We recall the following estimate from Lemma 2.3.

‖h ◦ χ‖L∞(B4r(x))

‖h ◦ χ‖L∞(Br/2(x))

≤ C
‖h ◦ χ‖L∞(Bρ2 (x))

‖h ◦ χ‖L∞(Bρ1 (x))

, (3.14)
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where r ∈ (0, δ), δ = (10M̃2)−βρβ
2

(see the explicit forms of these
quantities in the proof of Lemma 2.3).

Applying Harnack inequality for the quasiregular mapping in Lemma 2.2
implies

‖h ◦ χ‖L∞(Br/2(x)) ≤
C

|Br(x)|1/2
‖h ◦ χ‖L2(Br(x)) .

On the other hand, a simple estimate gives

‖h ◦ χ‖L2(B4r(x)) ≤ |B4r(x)|1/2 ‖h ◦ χ‖L∞(B4r(x)) .

Therefore, using above estimates and (3.14), we obtain

‖h ◦ χ‖L2(B4r(x))

‖h ◦ χ‖L2(Br(x))

≤ C
‖h ◦ χ‖L2(B2ρ2 (x))

‖h ◦ χ‖L2(Bρ1 (x))

, (3.15)

where, C > 0 is independent of r. We recall the form F (x) = (h ◦
χ)(x)eω(x), where F (x) = σ

p
2 |∇u|

p−2
2 (ux1 − iux2) and ω(x) = T (g(x))

as described in (3.1). Now replacing h ◦ χ in (3.15) by F (x)e−ω(x) and
using the estimate for ω(x) as in (3.2), we derive that

‖∇u‖pLp(B4r(x)) ‖∇u‖
p
Lp(Bρ1 (x))

≤ C

∫
B4r(x)

|h ◦ χ|2
∣∣e2ω(z)

∣∣ dz ∫
Bρ1 (x)

|h ◦ χ|2
∣∣e2ω(z)

∣∣ dz
≤
∥∥e2ω(z)

∥∥
L∞(B4r(x))

∥∥e2ω(z)
∥∥
L∞(Bρ1 (x))

‖h ◦ χ‖2
L2(B4r(x)) ‖h ◦ χ‖

2
L2(Bρ1 (x))

≤ CeCM ‖h ◦ χ‖2
L2(Br(x)) ‖h ◦ χ‖

2
L2(B2ρ2 (x))

≤ CeCM
∫
Br(x)

|F |2 e−2ω(z)dz

∫
B2ρ2 (x)

|F |2 e−2ω(z)dz

≤ CeC
′M ‖∇u‖pLp(Br(x)) ‖∇u‖

p
Lp(B2ρ2 (x)) ,

i.e.,
‖∇u‖Lp(B4r(x))

‖∇u‖Lp(Br(x))

≤ C
‖∇u‖Lp(B2ρ2 (x))

‖∇u‖Lp(Bρ1 (x))

,

where C > 0 is constant independent of r. �

4. Size estimate for p-Laplace

To begin, we need to impose some suitable jump conditions. Assume
that for some constants η, ζ > 0 we have either

(1 + η)σ ≤ σ̃ ≤ ζσ a.e. in D (4.1)

or
ζσ ≤ σ̃ ≤ (1− η)σ a.e. in D. (4.2)
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The following energy estimate is key to our approach.

Lemma 4.1. Assume that the background conductivity σ satisfies the
ellipticity condition (2.1). If either (4.1) or (4.2) holds, then,

C1

∫
D

|∇u|pdx ≤ |W0 −W | ≤ C2

∫
D

|∇u|pdx, (4.3)

where C1, C2 are positive constants depending only on p, λ, η and ζ.

Proof. Note that,

W = 〈Λγ(f), f〉 =

∫
Ω

γ(x)|∇v|pdx,

where v solves the equation (1.1) and

W0 = 〈Λσ(f), f〉 =

∫
Ω

σ(x)|∇u|pdx,

where u solves the equation (1.2). Now, applying the monotonicity
inequality, see Lemma 2.1, [14], we obtain

(p− 1)

∫
Ω

σ

γ1/(p−1)

(
γ

1
p−1 − σ

1
p−1

)
|∇u|p dx (4.4)

≤ ((Λγ − Λσ)f, f) ≤
∫

Ω

(γ − σ) |∇u|p dx. (4.5)

Using the assumptions either (4.1) or (4.2) and the ellipticity condition
on σ, the above monotonicity inequality becomes

C1

∫
D

|∇u|pdx ≤ |W0 −W | ≤ C2

∫
D

|∇u|pdx,

where C1, C2 positive constants depending only on p, λ, η and ζ. �

We also need an interior estimate.

Lemma 4.2. Let u satisfy the first equation of (1.2). Then for any
Br(x) ⊂ Ω, we have

‖∇u‖L∞(Br/2(x)) ≤
C

r2/p
‖∇u‖Lp(Br(x)), (4.6)

where C > 0 depends on λ,M, p.

Proof. We apply the Harnack inequality in Lemma 2.2 to Fe−Tg. Thus,
we have

‖Fe−Tg‖L∞(Br/2(x)) ≤ C
1

|Br|

∫
Br(x)

|Fe−Tg|dx

≤ C
1

|Br|1/2

(∫
Br(x)

|Fe−Tg|2dx
)1/2

.
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In view of the form of F and the mapping property of the Cauchy
transform, we immediately obtain (4.6) from the above inequality.

�

Now we are in a position to state and prove our main result. From
now on we consider the case 2 < p <∞.

Theorem 4.3. (i) We assume that all the assumptions in Section 2
hold. Then there exists C1 > 0, depending on λ, p,M, d, η, ξ, C2 > 0
and q > 1, depending on Ω,Γ, λ, α,M0,M, p, d, η, ζ, ρ and
C(α, λ,Ω, p, ‖f‖C1,α(∂Ω))/‖f‖W 1−1/p,p(∂Ω), such that

C1

∣∣∣∣W −W0

W0

∣∣∣∣ ≤ |D| ≤ C2

∣∣∣∣W −W0

W0

∣∣∣∣1/q . (4.7)

(ii) If moreover, there exists h > 0 such that

|Dh| ≥
1

2
|D| (fatness condition), (4.8)

then

C1

∣∣∣∣W −W0

W0

∣∣∣∣ ≤ |D| ≤ C̃2

∣∣∣∣W −W0

W0

∣∣∣∣ , (4.9)

where C1 is given in (i) and C̃2 depend on various constants as C2 in
(i) and h.

Proof. We follow the approach of [5] and [27]. In order to proceed that
we begin with the derivation of the lower bound estimate. We note

‖∇u‖pLp(D) ≤ |D|‖∇u‖
p
L∞(D). (4.10)

Recall that dist(D, ∂Ω) > d. By covering D with balls of radius d/4
and using the interior estimate (4.6), we obtain

‖∇u‖pL∞(D) ≤ C‖∇u‖pLp(Ωd/2) ≤ C‖∇u‖pLp(Ω) ≤ CW0, (4.11)

where C depends on λ, p,M, d. Combining (4.10), (4.11), and the
second inequality of (4.3) leads to the lower bound of (4.7) and (4.9)
with C1 depending on λ, p,M, d, η, ξ.

The upper bound estimate is little bit tricky, which involves propaga-
tion of smallness estimate and the doubling inequality for the solutions
of p-Laplace equation. We consider this part in two cases.

Case 1. Without assuming the fatness condition (4.8).

We will show that |∇u|p is an Aq-weight, for some q > 1. To prove
this argument, we follow the proof of Theorem 1.1 in [18]. Let ρ =
min{d

8
, ρ0} and δ, ρ1 > δ be defined in Lemma 2.3. For any x ∈ Ω8ρ, we
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can derive from the propagation of smallness, Lemma 3.2, the Poincaré
inequality, and the trace estimate, that

‖∇u‖Lp(Bρ1 (x)) ≥ ‖∇u‖Lp(Bδ(x)) ≥ C‖∇u‖Lp(Ω)

≥ C‖u‖W 1,p(Ω) ≥ C‖f‖W 1−1/p,p(∂Ω),
(4.12)

where C > 0 depends on |Ω|, α, p, r0,M0,Γ, d,M , and
C(α, λ,Ω, p, ‖f‖C1,α(∂Ω))/‖f‖W 1−1/p,p(∂Ω). On the other hand, we can
estimate

‖∇u‖Lp(B2ρ2 (x)) ≤ ‖u‖W 1,p(Ω) ≤ C‖f‖W 1−1/p,p(∂Ω). (4.13)

Therefore, combining (4.12), (4.13), and the doubling inequality (3.13),
we have that

‖∇u‖Lp(B4r(x)) ≤ C ‖∇u‖Lp(Br(x)) , (4.14)

where C depends on |Ω|, α, p, r0,M0,Γ, d,M , and
C(α, λ,Ω, p, ‖f‖C1,α(∂Ω))/‖f‖W 1−1/p,p(∂Ω).

To show that |∇u|p is an Aq-weight, it suffices to prove that |∇u|p
satisfies a reverse Hölder inequality [15]. To do so, we will apply
the Caccioppoli inequality for the p-Laplace (see [22, Lemma 3.32])
and the Poincaré inequality or the Poincaré-Sobolev inequality (see
for example [6, Theorem A.6.3]) on both sides of (4.14). Denote
c1 = |Br|−1

∫
Br(x)

u. We first apply the Caccioppoli inequality and

then the Poincaré-Sobolev inequality to the right hand term of (4.14)

‖∇u‖Lp(Br(x)) ≤ Cr−1‖u−c1‖Lp(B2r(x)) ≤ C|B2r|1/p
(

1

|B2r|

∫
B2r

|∇u|s
)1/s

,

(4.15)
where s = 2p

p+2
< 2 and C = C(λ, p). Similarly, letting c2 = |B4r|−1

∫
B4r(x)

u,

first applying the Poincaré inequality and then the Caccioppoli inequal-
ity, we can obtain

‖∇u‖Lp(B4r(x)) ≥ Cr−1 ‖u− c2‖Lp(B4r(x)) ≥ C ‖∇u‖Lp(B2r(x)) , (4.16)

where C = C(λ, p). Putting together (4.14), (4.15), (4.16) gives(
1

|B2r|

∫
B2r

|∇u|p
)1/p

≤ C

(
1

|B2r|

∫
B2r

|∇u|s
)1/s

with C depending on |Ω|, α, p, r0,M0,Γ, d,M , and
C(α, λ,Ω, p, ‖f‖C1,α(∂Ω))/‖f‖W 1−1/p,p(∂Ω). This reverse Hölder inequal-

ity shows that |∇u|p is an Aq-weight for some q > 1. We now cover
D internally by the sequence of disjoint closed squares Qk with side
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length 2ρ. In view of [16, (7.2)], we can show that

|D ∩Qk|
|Qk|

≤ C

(∫
D∩Qk

|∇u|p∫
Qk
|∇u|p

)1/q

.

Summing over k and applying Lemma 3.2 again, we obtain

|D| ≤ C

( ∫
D
|∇u|p

mink
∫
Qk
|∇u|p

)1/q

≤ C

(∫
D
|∇u|p∫

Ω
|∇u|p

)1/q

.

The upper bound of |D| then follows from the first inequality of (4.3).

Case 2. Assuming the fatness condition (4.8).

Let ρ = 1
4

min{d, h, ρ0}, Dh = ∪Jk=1Qk, for some indices J , where
Qk’s are nonoverlapping closed squares of side length 2ρ. Therefore
using Lemma 3.2 and (4.8), we have∫

D

|∇u|p dx ≥
∫
∪Jk=1Qk

|∇u|p dx

≥ |Dh|
ρ2

min
k

∫
Qk

|∇u|p dx

≥ C
|D|
ρ2

∫
Ω

|∇u|p dx.

Again, the upper bound of |D| is then a consequence of the first in-
equality of (4.3). �
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