
Uniqueness for the two dimensional Calderón’s problem with

unbounded conductivites
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Abstract

In this work we consider the Calderón problem in two dimensions with conductivity γ ∈W 1,2(Ω). This
condition allows for the conductivity to be unbounded. We prove a uniqueness result when ||∇ log γ||L2

is bounded by a fixed constant depending on the domain Ω.

1 Introduction

The inverse conductivity problem, first discussed by Calderón in [8], consists of determining the conductivity
of the interior of an object from measurements of electrical potential and current taken on the boundary.
One aspect of this problem is weather or not two different conductivity functions might give rise to the same
set of boundary measurements. This question has been considered for different spatial dimensions and under
various assumptions on the regularity of the conductivity function. An early result in dimension greater
than two and for smooth conductivities was obtained by Sylvester and Uhlmann in their seminal paper [18].
Recently, Haberman and Tataru have shown in [12], also in dimensions higher than two, that uniqueness
holds for Lipschitz conductivities γ such that ||∇ log γ||L∞ is small. In [11], Haberman has further improved
on this result in dimensions 3 ≤ n ≤ 6. In dimensions n = 3, 4 he proves uniqueness for conductivities in
W 1,n. We want to point out that in [11] the conductivity γ satisfies c ≤ γ ≤ c−1, in particular, γ ∈ L∞. In
dimension two, Nachman proved in [14] uniqueness for conductivities in W 2,p for some p > 1. Brown and
Uhlmann in [7] established the uniqueness for conductivities in W 1,p with p > 2. In [2], Astala and Päivärinta
proved the uniqueness for conductivities in L∞. In the recent paper [3], Astala, Lassas, and Päivärinta have
proved a uniqueness result (see their Theorem 1.9) that also applies to some unbounded conductivities.

In this paper we will study the two-dimensional Calderón’s problem in a different class of singular con-
ductivities. Precisely, we prove that uniqueness holds for the strictly positive conductivity γ ∈ W 1,2, with
and additional constraint that ||∇ log γ||L2(Ω) < C with C = C(Ω). It is important to emphasize that we

do not assume γ ∈ L∞. For example, γ(x) = log |log |ax|| or γ(x) = (log |ax|)s, 0 < s < 1
2 , have finite

||∇ log γ||L2(B 1
2|a|

), thus can be used to construct examples. The second of these two examples also falls

outside the conditions required by Theorem 1.9 of [3]. Therefore, our result is not a consequence of previous
work. In view of the unique continuation property for the linear convection equation with L2 coefficients in
R2 [13], the assumption of γ ∈W 1,2 is most likely optimal for the two dimensional Calderón’s problem. It is
not yet certain that the restriction on the L2 norm of ∇ log γ is necessary.

This work is inspired by the paper of Cheng and Yamamoto in [9] where they prove a uniqueness result
for the equation

4u+~b · ∇u = 0

with ~b ∈ Lp, p > 2. Here we push their result to the optimal case p = 2 (with an added requirement that

the L2 norm of ~b be bounded by a constant) and obtain the result for Calderón’s problem as a corollary.
The proof relies on reducing the second order equation to a first order one in the complex plane (see [19], [1]
for background). It also employs an inverse scattering method developed by Beals and Coifman in [4] and
by Sung in [15], [16], and [17]. Along the way we also prove a version of Brown’s result in [6] regarding the
recovery of the boundary values of the conductivity from the knowledge of the Dirichlet–Neumann map.
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2 Statement of the result

We consider a domain Ω ⊂ R2 which is open, bounded, simply connected, and with sufficiently smooth
boundary. For a conductivity γ : Ω → R positive and bounded away from zero, we will consider the
boundary value problem {

∇(γ∇u)(x) = 0, x ∈ Ω,

u|∂Ω = ω.
(1)

The Dirichlet–Neumann map for the classical Calderon problem is then

Λγ(ω) := γ|∂Ω
∂u

∂ν
,

where u is the solution with boundary value ω. Equation (1) can be put in non-divergence form as{
4u(x) +~b(x) · ∇u(x) = 0, x ∈ Ω,

u|∂Ω = ω,
(2)

where
~b := ∇ log γ.

For this equation, we consider the Dirichlet–Neumann map

Λ~b(ω) :=
∂u

∂ν
.

Throughout, we assume γ ∈ W 1,2(Ω) or ~b ∈ L2
R(Ω), where L2

R(Ω) denotes the space of L2 real-valued
vectors in Ω. For both forms of the equation, we consider strong solutions u ∈W 2,p(Ω), for some 1 < p < 2.

The Dirichlet boundary data then belong to W 2− 1
p ,p(∂Ω). In the appendix we give a proof of existence and

uniqueness of solutions for the case when ||~b||L2(Ω) < C, with C = C(p,Ω).
Our main result is the following

Theorem 2.1. There exists a constant C = C(Ω) such that if γ1, γ2 ∈ W 1,2(Ω), ||∇ log γ1,2||L2(Ω) < C and
Λγ1 = Λγ2 , then γ1 = γ2.

This follows immediately from Theorem 2.2 and Proposition 2.1 stated below.

Theorem 2.2. There exists a constant C = C(Ω) such that if ~b1,~b2 ∈ L2
R(Ω), ||~b1,2||L2(Ω) ≤ C and Λ~b1 = Λ~b2 ,

then ~b1 = ~b2.

Note that this second theorem is more general than the first. It is this result that we will prove below.
We also prove the following boundary determination result.

Proposition 2.1. If γ ∈ W 1,2(Ω), the trace γ|∂Ω can be determined from the Dirichlet-to-Neumann map
Λγ .

Since the proof of Proposition 2.1 is of a different nature from that of Theorem 2.2, the principal result
of this paper, we have provided it as an appendix.

3 Complex variable notation and the first order form of the equa-
tion

We will identify R2 with C and use the usual notation dz = dx1+i dx2, dz̄ = dx1−idx2, ∂z = 1
2 (∂x1

−i∂x2
),

∂z̄ = 1
2 (∂x1

+i∂x2
). If u ∈W 2,p(Ω) is a solution of (2), then w := ∂z u ∈W 1,p(Ω) is a solution of the equation

∂z̄ w +Bw + B̄w̄ = 0, (3)

where B(z) := 1
4 (b1 + ib2). We can also go the other way:
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Lemma 3.1. (e.g. see [19]) Given w ∈ W 1,p(Ω) a solution to (3), then there exists a solution u ∈ W 2,p(Ω)
of (2) such that w = ∂z u.

For Dirichlet boundary conditions, as we have in (2), w must satisfy

2Re (żw)|∂Ω =
∂ω

∂t
(the tangential derivative along ∂Ω). (4)

Here ż is the derivative of a parametrization z(t) of the boundary ∂Ω. In the case of Neumann boundary
conditions, we would instead need

2Im (żw)|∂Ω =
∂u

∂ν
|∂Ω. (5)

For this see [1], section 16.5. Note that the relations (4) and (5) are valid for real solutions u of (2). Since ~b
is a real vector, these relations remain true for complex-valued solutions of (2).

We define the Cauchy transform

(Cf)(z) := − 1

π

∫
Ω

f(ζ)

ζ − z
d2ζ.

It maps C : Lq(Ω)→W 1,q(Ω) continuously for all 1 < q <∞ (again, see [1]). The operator C is an “inverse”
to the differential operator ∂z̄ . For f ∈ C∞(Ω) ∩ C(Ω̄)

(C∂z̄ f)(z) = − 1

π
lim
ε

∫
Ω−B(z,ε)

∂ζ̄
f(ζ)

ζ − z
dζ̄ ∧ dζ

2i

=
1

2πi

(
lim
ε

∫
∂B(z,ε)

f(ζ)− f(z)

ζ − z
dζ + 2πif(z)−

∫
∂Ω

f(ζ)

ζ − z
dζ

)
,

so

(C∂z̄ f)(z) = f(z)− 1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ. (6)

Also, defining 〈ϕ, f〉 :=
∫

Ω
ϕf , for any ϕ ∈ C∞c (Ω)

〈ϕ, ∂z̄ Cf〉 = 〈C∂z̄ ϕ, f〉 = 〈ϕ, f〉

and so we have
∂z̄ Cf = f. (7)

Given the mapping properties of the Cauchy transform, the formulas (6), (7) extend to any f ∈ W 1,q(Ω),
1 < q <∞.

The Cauchy transform may be used to turn (3) into an integral equation.

Lemma 3.2. A function w ∈W 1,p(Ω) that satisfies (3) will also satisfy the integral equation

w(z) + C(Bw + B̄w̄)(z) =
1

2πi

∫
∂Ω

w(ζ)

ζ − z
dζ.

Also, if Φ ∈ Hol(Ω) ∩W 1,p(Ω) and w ∈W 1,p(Ω) satisfies

w(z) + C(Bw + B̄w̄)(z) = Φ(z), (8)

then w satisfies (3) and
1

2πi

∫
∂Ω

w(ζ)

ζ − z
dζ = Φ(z).

Next we would like to show the existence of solutions to (8), with suitable Φ. A contraction principle
argument of the same form as the one in the proof of Proposition A.1 would work. Instead, we present a
different type of argument which doesn’t require the norm of the coefficients to be small. Testing the equation
(8) against a test function φ we get

〈φ−
(
B + B̄

w̄

w

)
C(φ), w〉 = 〈φ,Φ〉. (9)
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Let A := B + B̄w̄/w ∈ L2(Ω), ||A||L2(Ω) ≤ 2||B||L2(Ω), and ψ := C(φ). Let 1 < p < 2 and p∗ = 2p/(2 − p).
In order to obtain an a priori estimate for the Lp

∗
norm of w, we would like that

∂z̄ ψ −Aψ = |w|p
∗−2w̄. (10)

It turns out that one solution of (10) is explicitly expressed by

ψ = C
(
|w|p

∗−2w̄ e−CA
)
eCA.

The left hand side of (9) is just ||w||p
∗

Lp∗ (Ω)
. The right hand side of (9) consists of two terms:

〈|w|p
∗−2w̄,Φ〉+ 〈Aψ,Φ〉 =: I + II.

Hölder’s inequality implies

I ≤ ||w||p
∗−1

Lp∗ (Ω)
||Φ||Lp∗ (Ω).

To deal with the second term we begin by noticing that |w|p∗−2w̄ ∈ Lp
∗/(p∗−1)(Ω). With the help of

Trudinger’s inequality, we can see that eCA, e−CA ∈ Lq(Ω) for any q <∞ (for example, see the computation
in [13]). It follows that ψ is in all Lr(Ω) with r < 2p∗/(p∗ − 2). We can then bound the second term

II ≤ ||A||L2(Ω)||ψ||Lr(Ω)||Φ||Lp∗+ε(Ω), r =
2(p∗ + ε)

p∗ + ε− 2

with ε > 0. Since ||ψ||Lr(Ω) ≤ C||w||p
∗−1

Lp∗ (Ω)
, we get

II ≤ C||w||p
∗−1

Lp∗ (Ω)
||A||L2(Ω)||Φ||Lp∗+ε(Ω).

Putting these together implies that

‖w‖Lp∗ (Ω) ≤ C(1 + ‖A‖L2(Ω))‖Φ‖Lp∗+ε(Ω)

and
‖w‖W 1,p(Ω) ≤ C(1 + ‖A‖L2(Ω))‖Φ‖Lp∗+ε(Ω).

If Φ ∈ W 1,p+ε(Ω) for some ε > 0 and B ∈ C∞0 (Ω), then a solution to (8) is known to exits (see, for
example, the proof of [9, Lemma 3.3]). Given B ∈ L2(Ω) let Bn ∈ C∞0 (Ω) be such that ||Bn − B||L2 → 0,
and let wn be the solutions of

wn + C(Bnwn + B̄nw̄n) = Φ.

Then
||wn||W 1,p+ε/2(Ω) ≤ C||Φ||W 1,p+ε(Ω)(1 + ||B||L2).

Also
wn − wm + C(Bn(wn − wm) +Bn(wn − wm)) = −C((Bn −Bm)wm + (Bn −Bm)wm).

According to the observation above, the right had side is in W 1,p+ε/2(Ω) and

||RHS||W 1,p+ε/2(Ω) ≤ C||Bn −Bm||L2 ||Φ||W 1,p+ε(Ω)(1 + ||B||L2).

Applying the a priori estimate to the difference wn − wm we get

||wn − wm||W 1,p(Ω) ≤ C||Bn −Bm||L2 ||Φ||W 1,p+ε(Ω)(1 + ||B||L2)2.

This proves that the sequence of approximate solutions is Cauchy in W 1,p(Ω). That the limit is a solution
to the equation follows from the continuity of C and the continuity of products w.r.t. strong convergence.
We have therefore proven:

Lemma 3.3. If 1 < p < 2, Φ ∈W 1,p+ε(Ω), ε > 0 with p+ ε < 2, then the equation

w + C(Bw + B̄w̄) = Φ

has a unique solution w ∈W 1,p+ε/2(Ω) and the following estimate holds

‖w‖W 1,p+ε/2(Ω) ≤ C‖Φ‖W 1,p+ε(Ω), (11)

where C = C(‖A‖L2(Ω), p, ε,Ω).
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4 CGO solutions (introduction of the parameter k)

In this section, we want to discuss complex geometrical optics (CGO) solutions of (3). These special solutions

are useful in Calderón’s problem. Let k = kx + iky ∈ C. If w is a solution to (3) then αk(z) := w(z)e−
i
2 k̄z

satisfies the equation

∂z̄ αk(z) +B(z)αk(z) + e−
i
2 (k̄z+kz̄)B(z)αk(z) = 0 in Ω. (12)

We will use the notation

ek(z) = exp

(
− i

2
(k̄z + kz̄)

)
= ei(kxx+kyy).

Clearly, |ek(z)| = 1. Analogously to the previous section, we have

Lemma 4.1. If αk ∈W 1,p(Ω), 1 < p < 2, satisfies (12), then it also satisfies the integral equation

αk(z) + C(Bαk + ekB̄ᾱk)(z) =
1

2πi

∫
∂Ω

αk(ζ)

ζ − z
dζ.

Conversely, the equation
αk(z) + C(Bαk + ekB̄ᾱk)(z) = 1 (13)

has a unique solution αk ∈W 1,p(Ω) and

||αk||W 1,p(Ω) ≤ C(||~b||L2(Ω),Ω, p).

This solution will also satisfy (12) and

1

2πi

∫
∂Ω

αk(ζ)

ζ − z
dζ = 1.

4.1 Differentiability in k

In order to investigate the differentiability with respect to k of αk , for some fixed k = kx + iky we introduce
the notations

δκα =
1

κ
(αk+κ(z)− αk(z)) and δκe =

1

κ
(ek+κ(z)− ek(z)).

Note that this quantity satisfies the integral equation

δκα+ C
(
Bδκα+ ek+κB̄δκᾱ+ δκeB̄ᾱk

)
= 0.

We will only consider real valued κ (the case of imaginary κ will only different by a minus sign). In this case

δκα+ C
(
Bδκα+ ek+κB̄δκα

)
= −C

(
(δκe)B̄ᾱk

)
. (14)

Let ε > 0 be such that p+ ε < 2, then it follows from (11) that

||δκα||W 1,p+ε/2(Ω) ≤ C(||~b||L2(Ω), p, ε)||δκe||L∞(Ω).

In order to prove that δκα is Cauchy, we need to estimate the quantity

∆κ,κ′α := δκα− δκ′α.

Note that ∆κ,κ′e→ 0 in C(Ω̄). It is clear that ∆κ,κ′α satisfies the integral equation

∆κ,κ′α+ C
(
B∆κ,κ′α+ ek+κ′B̄∆κ,κ′α

)
= −C

(
(∆κ,κ′e)B̄ᾱk + (ek+κ′ − ek+κ)B̄δκα

)
.

Applying the a priori estimate (11) again we obtain

||∆κ,κ′α||W 1,p(Ω) ≤ C(||~b||L2(Ω), p, ε)
(
||∆κ,κ′e||L∞(Ω) + κ||δκe||L∞(Ω) + κ′||δκ′e||L∞(Ω)

)
.

We have thus shown that δκα is Cauchy in W 1,p(Ω) as κ→ 0 for real κ. Taking the limit in (14) we see that
∂kxα ∈W 1,p(Ω) satisfies

∂kxα+ C
(
B∂kxα+ ekB̄∂kxα

)
= −C

(
(ixek)B̄ᾱk

)
.

We can again apply (11) to conclude that ∂kxα is bounded in W 1,p(Ω) uniformly in k. The case of imaginary
κ is almost identical. We conclude that

Proposition 4.1. The partial derivatives of αk with respect to k exist and ∂kxαk, ∂kyαk ∈ L∞(Ck;W 1,p(Ω)).

5



4.2 Behavior as k →∞
Because the αk are bounded in W 1,p(Ω) uniformly in k, we can extract a subsequence, also denoted αk, such
that αk ⇀ α0 in Lp

∗
and αk → α0 in Lq for any 1 ≤ q < p∗. Of course, α0 ∈W 1,p(Ω).

To find the equation satisfied by α0 we are going to integrate (13) against a test function ϕ ∈ C∞c (Ω),
then for the first term we have

〈ϕ, αk〉 → 〈ϕ, α0〉.

For the second term, since Cϕ ∈ L∞(Ω) and B ∈ L2(Ω),

〈ϕ, C(Bαk)〉 = −〈BCϕ, αk〉 → −〈BCϕ, α0〉 = 〈ϕ, C(Bα0)〉.

To handle the third term, we write

〈ϕ, C(ekB̄ᾱk)〉 = −〈ekB̄Cϕ, ᾱ0〉 − 〈ekB̄Cϕ, ᾱk − ᾱ0〉.

Since ᾱk → ᾱ0 strongly in L2(Ω),
〈ekB̄Cϕ, ᾱk − ᾱ0〉 → 0.

As ᾱ0B̄Cϕ ∈ Lp(Ω), the Riemann-Lebesgue lemma implies

〈ekB̄Cϕ, ᾱ0〉 → 0.

Putting these together we get that

〈ϕ, α0 + C(Bα0)− 1〉 = 0,

for any ϕ ∈ C∞c (Ω) and so
α0(z) + C(Bα0)(z) = 1, ∀z ∈ Ω.

Of course it then follows that
∂z̄ α0 +Bα0 = 0,

and applying back the Cauchy transform we need to have

1

2πi

∫
∂Ω

α0(ζ)

ζ − z
dζ = 1.

We have thus proved

Lemma 4.2. There exists a subsequence of solutions αk of (13) such that αk ⇀ α0 in W 1,p(Ω) ⊂ Lp
∗

and
αk → α0 in Lq for any 1 ≤ q < p∗. The limit satisfies the integral equation

α0(z) + C(Bα0)(z) = 1, ∀z ∈ Ω,

and
1

2πi

∫
∂Ω

α0(ζ)

ζ − z
dζ = 1.

In fact
α0 = e−C(B). (15)

Proof. We only have to show that the representation formula (15) holds. First not that extending B to
the whole plane such that B = BχΩ and using the equation to extend α0 we have that α0 ∈ 1 + W 1,p(C).
Define h := α0e

C(B) and note that ∂z̄ h = 0 in C, so it is holomorphic on C. Since B is supported within the
bonded domain Ω, C(B) and C(Bα0) are both holomorphic on C− Ω̄. Furthermore, they both decay as 1/z
at infinity. It follows then that limz→∞ h = 1 and by Liouville’s theorem this implies that h ≡ 1.
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5 Cauchy transforms of B1 and B2

In this section, we would like to show that under the assumptions of Theorem 2.2, the Cauchy transforms of
B1 and B2 are identical outside of the domain Ω. Let α1,k, α2,k ∈ W 1,p(Ω) be the solutions of the integral
equations

αj,k + C(Bjαj,k + ekB̄jᾱj,k) = 1, j = 1, 2.

First note that, according to Lemma 4.1,

1

2πi

∫
∂Ω

α1,k(ζ)

ζ − z
dζ = 1, ∀z ∈ Ω.

Define w1(z, k) := e
i
2 k̄zα1,k(z), w1(·, k) ∈W 1,p(Ω). It satisfies

∂z̄ w1 +B1w1 + B̄1w̄1 = 0.

By Lemma 3.1, there exists a u1(·, k) ∈W 2,p(Ω) such that w1 = ∂z u1 and

4u1 +~b1 · ∇u1 = 0.

Denote ω := u1|∂Ω ∈W 2− 1
p ,p(∂Ω) and let u2 ∈W 2,p(Ω) be the solution of{

4u2 +~b2 · ∇u2 = 0,

u2|∂Ω = ω.

The existence of u2 with boundary condition ω is guaranteed by choosing the constant C in the statement
of Theorem 2.2 such that Proposition A.1 applies. Then w2 := ∂z u2 will satisfy

∂z̄ w2 +B2w2 + B̄2w̄2 = 0.

Since u1 and u2 share the same Dirichlet data, Re (żw1) = Re (żw2). Since we are assuming the Dirichlet–

Neumann maps produced by ~b1 and ~b2 are identical, the Neumann data of u1 must be the same as u2, so
Im (żw1) = Im (żw2). It follows then that

w1|∂Ω = w2|∂Ω.

Define α′2,k(z) := w2(z, k)e−
i
2 k̄z. It satisfies the differential equation

∂z̄ α
′
2,k +B2α

′
2,k + ekB̄2ᾱ

′
2,k = 0

and, as α1,k|∂Ω = α′2,k|∂Ω, we see that α′2,k satisfies the integral equation

α′2,k + C(B2α
′
2,k + ekB̄2ᾱ

′
2,k) = 1.

It follows the uniqueness of the solution that α′2,k = α2,k. Consequently, we proved that

Lemma 5.1. α1,k|∂Ω = α2,k|∂Ω.

We know from Lemma 4.2 that we can find a subsequence such that αj,k ⇀ αj,0 in W 1,p(Ω), j = 1, 2,
and

αj,0 + C(Bjαj,0) = 1.

The trace operator τ maps W 1,p(Ω) to W 1− 1
p ,p(∂Ω) ⊂ L

2p
3−p (∂Ω) continuously and is compact from W 1,p(Ω)

to Ls(∂Ω) for 1 < s < 2p
3−p . Therefore

αj,k|∂Ω → αj,0|∂Ω, in Ls(∂Ω).

Lemma 5.1 them implies
α1,0|∂Ω = α2,0|∂Ω.

We can now prove
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Γ

Ω

z

R

Figure 1: Contour for the determination of e−C(Bj)(z).

Lemma 5.2. If Λ~b1 = Λ~b2 , then C(B1)(z) = C(B2)(z) for any z ∈ C− Ω.

Proof. By equation (15), we know that e−C(B1)|∂Ω = e−C(B2)|∂Ω.
Let z ∈ C− Ω̄. Since e−C(Bj) is holomorphic in C − Ω̄, using the integration contour from the figure, we

can write

e−C(Bj)(z) =
1

2πi

∫
∂Ω

e−C(Bj)(ζ)

ζ − z
dζ − 1

2πi

∫
|ζ|=R

e−C(Bj)(ζ)

ζ − z
dζ.

as ζ →∞, e−C(Bj) = 1 +O( 1
ζ ) so

lim
R→∞

1

2πi

∫
|ζ|=R

e−C(Bj)(ζ)

ζ − z
dζ = 1.

It then follows that
e−C(B1)(z) = e−C(B2)(z),

for any z ∈ C − Ω̄. This can happen only if C(B1)(z) = C(B2)(z) + 2πni. Since both Cauchy transforms
vanish at infinity we must have n = 0.

6 A related first order system

To proceed further, we now would like to apply an inverse scattering method for a related first order system
based on [4], [15], [16], and [17]. A similar idea was also used in [7] and [9]. We define

Cj := eCBje−CBj B̄j , j = 1, 2.

Note that, since CBj − CBj = 2iIm (CBj), Cj ∈ L2(Ω) and ||Cj ||L2(Ω) = ||Bj ||L2(Ω). We also define the
matrix

Qj :=

(
0 −Cj
−Cj 0

)
.

Let µj(z) be the 2× 2 matrix valued function that satisfies the integral equation

µj(z, k) = I + C (ekQj µ̄j) = I − 1

π

∫
Ω

ek(ζ)

ζ − z
Qj(ζ)µj(ζ, k) d2ζ. (16)

Consider the orthogonal matrix

R :=
1√
2

(
1 1
1 −1

)
Conjugating Qj by R we get

RQjRt =

(
−Cj 0

0 Cj

)

8



Thus, conjugating the integral equation (16) by R, we obtain a decoupled system of four scalar integral
equations. We then can apply the same method we have used to prove the existence of solutions to the
equation (8) to show (16) has unique solutions µj(·, k) ∈ W 1,p(Ω). These solutions satisfy the differential
equation

∂z̄ µj(z, k)− ek(z)Qj(z)µj(z, k) = 0

and the equality

I =
1

2πi

∫
∂Ω

µj(ζ, k)

ζ − z
dζ, ∀z ∈ Ω, k ∈ C.

Also, just like the CGO solutions αk, µj are differentiable in k and ∂kxµj , ∂kyµj ∈W 1,p(Ω).
Define

η1(z, k) := e
i
2 k̄zµ1(z, k).

This new matrix-valued function satisfies the differential equation

∂z̄ η1 = Q1η̄1.

Let

v1 :=

(
1 1
i −i

)
η1,

then

∂z̄ v1 =
1

2

(
1 1
i −i

)
Q1

(
1 i
1 −i

)
v̄1 = −C1v̄1.

Finally let
w1 := e−CB1v1

and we get that w1 satisfies the matrix differential equation

∂z̄ w1(z, k) +B1(z)wj(z, k) +B1(z)w1(z, k) = 0, ∀z ∈ Ω, k ∈ C.

Applying Lemma 3.1 to the components of w1, we obtain that there is a matrix-valued function u1 ∈
W 2,p(Ω) such that w1 = ∂z u1 and

4u1 +~b1 · ∇u1 = 0.

Let ω := u1|∂Ω ∈W 2− 1
p ,p(∂Ω) and let u2 ∈W 2,p(Ω) be the 2× 2 matrix valued solution of the equation{

4u2 +~b2 · ∇u2 = 0,

u2|∂Ω = ω.

Just as before, we know that both the Dirichlet and the Neumann data of u1 and u2 coincide. Then
w2 := ∂z u2 satisfies

∂z̄ w2 +B2w2 + B̄2w̄2 = 0

and
w1|∂Ω = w2|∂Ω.

Also v2 := eCB2w2 satisfies
∂z̄ v2 = −C2v̄2

and since, by Lemma 5.2, eCB1 |∂Ω = eCB2 |∂Ω we have

v2|∂Ω = v1|∂Ω.

Let

η2 :=
1

2

(
1 −i
1 i

)
v2, i.e., v2 :=

(
1 1
i −i

)
η2,

and finally

µ′2 := e−
i
2 k̄zη2.
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This last matrix-valued function satisfies the differential equation

∂z̄ µ
′
2 = ekQ2µ̄

′
2

and
µ1|∂Ω = µ′2|∂Ω.

Applying the Cauchy transform to the differential equation we get

µ′2 = Φ2 + C(ekQ2µ̄
′
2),

where

Φ2(z) =
1

2πi

∫
∂Ω

µ′2(ζ)

ζ − z
dζ =

1

2πi

∫
∂Ω

µ1(ζ)

ζ − z
dζ = I.

So µ′2 ≡ µ2 and we have

Lemma 6.1. µ1|∂Ω = µ2|∂Ω.

7 The ∂k̄ equation

We now extend µj(z, k), j = 1, 2, to z ∈ C \ Ω by setting

µj(z, k) = I + C (ekQjµ̄j) = I − 1

π

∫
Ω

ek(ζ)

ζ − z
Qj(ζ)µj(ζ, k) d2ζ, ∀ z ∈ C \ Ω.

Abusing notation a little, if we write Qj = QjχΩ, then µj(z, k) satisfies

µj(z, k) = I + C (ekQj µ̄j) = I − 1

π

∫
C

ek(ζ)

ζ − z
Qj(ζ)µj(ζ, k) d2ζ, ∀ z ∈ C, ∀ k ∈ C.

We can easily see that
lim
|z|→∞

µj(z, k) = I,

that
µj(·, k) ∈W 1,p(Ω),

and µj(z, k)− I decays like 1
z as z →∞.

To simplify the notations, we suppress the index j. In other words, the computations below are carried
out for µj , j = 1, 2, respectively. Define the matrix

ν(z, k) :=

(
µ11(z, k) e−k(z)µ12(z, k)

e−kµ21(z, k) µ22(z, k)

)
.

Note that

ν(z, k) = I +
1

π

∫
Ω

 C(ζ)

ζ̄−z̄ ν21(ζ, k) ek(ζ−z)C(ζ)
ζ−z ν22(ζ, k)

ek(ζ−z)C(ζ)
ζ−z ν11(ζ, k) C(ζ)

ζ̄−z̄ ν12(ζ, k)

 d2ζ

and ν is the unique solution of this integral equation. Repeating the proof of Proposition 4.1, we can show
that ∂k̄ν(z, k) exists in W 1,p(Ω) and it satisfies

∂k̄ ν =
e−k(z)

2πi

∫
Ω

(
0 ek(ζ)C(ζ)µ22(ζ, k)

ek(ζ)C(ζ)µ11(ζ, k) 0

)
d2ζ

+
e−k(z)

π

∫
Ω

C(ζ)

ζ̄−z̄ ek(z)∂k̄ ν21(ζ, k) ek(ζ)C(ζ)
ζ−z ∂k̄ ν22(ζ, k)

ek(ζ)C(ζ)
ζ−z ∂k̄ ν11(ζ, k) C(ζ)

ζ̄−z̄ ek(z)∂k̄ ν12(ζ, k)

 d2ζ.
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This can be rewritten as

ek(z)∂k̄ ν =

(
0 T12(k)

T21(k) 0

)

+
1

π

∫
Ω

 ek(ζ−z)C(ζ)

ζ̄−z̄ ek(ζ)∂k̄ ν21(ζ, k) C(ζ)
ζ−z ek(ζ)∂k̄ ν22(ζ, k)

C(ζ)
ζ−z ek(ζ)∂k̄ ν11(ζ, k) ek(ζ−z)C(ζ)

ζ̄−z̄ ek(ζ)∂k̄ ν12(ζ, k)

 d2ζ, (17)

where we define

T12(k) =
1

2πi

∫
Ω

ek(ζ)C(ζ)µ22(ζ, k) d2ζ,

T21(k) =
1

2πi

∫
Ω

ek(ζ)C(ζ)µ11(ζ, k) d2ζ.

(18)

Comparing the integral equation (17) with

ν(z, k)

(
0 T12(k)

T21(k) 0

)
=

=

(
T21(k)ν12(z, k) T12(k)ν11(z, k)

T21(k)ν22(z, k) T12(k)ν21(z, k)

)

=

(
0 T12(k)

T21(k) 0

)

+
1

π

∫
C

 ek(ζ−z)C(ζ)

ζ̄−z̄ T21(k)ν22(ζ, k) C(ζ)
ζ−z T12(k)ν21(ζ, k)

C(ζ)
ζ−z T21(k)ν12(ζ, k) ek(ζ−z)C(ζ)

ζ̄−z̄ T12(k)ν11(ζ, k)

 d2ζ,

we deduce from the uniqueness of integral equation (17) that

∂k̄ ν(z, k) = e−k(z)ν(z, k)

(
0 T12(k)

T21(k) 0

)
.

Since
µ11 = 1− C(ekC) + C(ekCC̄(e−kC̄µ̄11)),

µ22 = 1− C(ekC) + C(ekCC̄(e−kC̄µ̄22)),

it follows that µ11 = µ22, so also T12 = T21. Now let us denote

T (k) =

(
0 T12(k)

T12(k) 0

)
and specify Tj(k) be as T above defined for Cj , j = 1, 2. At this point we can also note that

∂k̄ ν(z, k) = e−k(z)ν(z, k)T (k) = e−k(z)T (k)ν(z, k).

We have

Lemma 7.1. T1(k) = T2(k) for all k.

The proof of this is identical to the argument given for the corresponding statement of [9, (4.25)] as part of
the proof of their Lemma 4.4. The result of our Lemma 6.1 is needed in the proof.

We can now use a known result of Brown on the mapping properties of the scattering map to conclude
that

Lemma 7.2. C1 = C2.

Proof. Note that the off-diagonal entries of Qj are zero. We use Theorem 2 of [5]. There it is shown that the
mapping Q→ T is invertible, hence injective, provided ‖Q‖L2 <

√
2. This can be arranged by choosing the

constant C in the statement of Theorem 2.2 appropriately. Since we have already determined that T1 = T2,
it follows that Q1 = Q2.
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8 Conclusion of the argument

By Lemma 7.2 we have that

B1e
CB1−CB1 = B2e

CB2−CB2 , ∀ z ∈ Ω,

and hence
B1e

CB1−CB1 = B2e
CB2−CB2 , ∀ z ∈ C

since B1 = B2 = 0 in C \ Ω. In view of Lemma 5.2, if we let Z := C(B2 − B1), then Z ∈ W 1,2(C) and
supp(Z) ⊆ Ω. Denote

κ := eZ̄−Z .

Then we obtain
B1 = κB2

and
∂z̄ Z = (1− κ)B2, z ∈ C.

By an easy computation (see [9, P. 1389]), we can deduce that

|κ− 1| ≤ 2|Z|

and thus
|∂z̄ Z| ≤ 2|B2| |Z|

holds. Applying the generalized Liouville theorem of [7, Corollary 3.11] (or [1, Theorem 5.8.3]), it follows
then that Z ≡ 0 and so B1 ≡ B2. This ends the proof of Theorem 2.2.

A Existence of strong solutions for coefficients with small norm

In this appendix, we will show that if ‖~b‖L2(Ω) is not too large, then (2) has a unique solution for any Dirichlet

condition in W 2− 1
p ,p(∂Ω). The proof is based on a contraction mapping principle argument.

Proposition A.1. There exists a constant c(p,Ω) > 0 such that if ||~b||L2(Ω) < c(p,Ω), then (2) has a unique
solution u ∈W 2,p(Ω).

Proof. Let H ∈W 2,p(Ω) be the unique solution to the Dirichlet boundary value problem:{
4H(x) = 0, x ∈ Ω,

H|∂Ω = ω.

Defining u0 := u−H, the equation becomes

4u0(x) +~b(x) · ∇u0(x) = −~b · ∇H(x) (19)

with u0 ∈W 1,p
0 (Ω). Let L(f) be the solution of the inhomogeneous problem{

4U(x) = f, x ∈ Ω,

U |∂Ω = 0.

Then L : Lp(Ω)→W 2,p(Ω) ∩W 1,p
0 (Ω) is continuous (e.g. Theorem 9.15 of [10]). If (19) can be solved, then

the solution should satisfy

u0 = −L
(
~b · ∇u0 +~b · ∇H

)
.

Seeing this, we define the operator T for functions v ∈W 2,p(Ω) by

Tv := −L
(
~b · ∇v +~b · ∇H

)
.
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Since ∇v ∈ W 1,p(Ω) ⊂ Lp
∗
(Ω), 1

p∗ = 1
p −

1
2 , it follows that ~b · ∇v ∈ Lp(Ω). The same is true of the second

term in the definition of T . Putting these together we get that there is a constant C(p,Ω) > 0 such that

||Tv||W 2,p(Ω) ≤ C(p,Ω)

(
||~b||L2(Ω)||v||W 2,p(Ω) + ||~b||L2(Ω)||ω||

W
2− 1

p
,p

(∂Ω)

)
.

So T : W 2,p(Ω)→W 2,p(Ω). Moreover, for two v1, v2 ∈W 2,p(Ω),

||Tv1 − Tv2||W 2,p(Ω) ≤ C(p,Ω)||~b||L2(Ω)||v1 − v2||W 2,p(Ω).

If ||~b||L2(Ω) <
1

C(p,Ω) , the operator T is a contraction hence it will have a fixed point: the solution of (19).

Uniqueness follows easily from these same estimates.

B Recovering the conductivity at the boundary

Since γ ∈ W 1,2(Ω) we can consider its trace γ|∂Ω ∈ W
1
2 ,2(∂Ω). In this section, following the method of

Brown in [6], we will prove that we can recover γ|∂Ω from the Dirichlet-to-Neumann map. We cannot quote
the result of [6] directly since there the conductivity is assumed to be bounded.

First we need to straighten out the boundary. If P ∈ ∂Ω, then there is a ball B(P,R) and a diffeomorphism
φ : Ω→ Ω̃ such that φ(Ω∩B(P,R)) ⊂ {y2 > 0} and 0 ∈ φ(∂Ω∩B(P,R)) ⊂ {y2 = 0}. In the new coordinates
the equation (1), denoting F := φ−1 and v := u ◦ F , becomes

∂k(akj∂jv) = 0,

where
akj(y) := γ(F (y))∂iφ

k(F (y))∂iφ
j(F (y)) det(DF )(y).

Hereafter, we adopt the summation convention. We can make sure that Dφ ∈ C1 ∩ L∞, DF ∈ C1 ∩ L∞, so
akj ∈W 1,2

loc .
Choose η : R→ [0,∞), supp η ⊂ [−1, 1], η|[− 1

2 ,
1
2 ] ≡ 1, smooth. Also choose α ∈ R2 such that

∂iφ
j(P )αj∂iφ

k(P )αk = ∂iφ
j(P )δj2∂iφ

k(P )δk2,

∂iφ
j(P )αj∂iφ

k(P )δk2 = 0.

In other words, R2 3 α satisfies |Dφ(p)α| = |Dφ(P )e2| and Dφ(P )α ⊥ Dφ(P )e2. Define µ := Dφ(P )(iα −
e2) ∈ C2. Then µ · µ = 0, µ · µ̄ = 2|Dφ(P )e2|2 > 0. With these notations we introduce the functions

vN (y) := η(N1/2y1)η(N1/2y2)eN(iα−e2)·y =: ψ(N1/2y)E(Ny),

where N ∈ N.

Lemma B.1. There is a non-zero constant A such that∫
Ω̃

aij(y)∂ivN (y)∂j v̄N (y) dy = N
1
2 γ(F (0))A+ o(N

1
2 ),

as N →∞.

Proof. Let γ̃(y) := γ(F (y)) det(DF )(y). We compute∫
Ω̃

aij(y)∂ivN (y)∂j v̄N (y) dy

= N2

∫
Ω̃

γ̃(0)µ · µ̄ψ(N1/2y)2e−2Ny2 dy

+N2

∫
Ω̃

(γ̃(y)− γ̃(0))µ · µ̄ψ(N1/2y)2e−2Ny2 dy

+N

∫
Ω̃

aij(y)(∂iψ)(N1/2y)(∂jψ)(N1/2y)e−2Ny2 dy

−N3/2

∫
Ω̃

aij(y)δj2(∂iψ)(N1/2y)ψ(N1/2y)e−2Ny2 dy

=: I1 + I2 + I3 + I4. (20)
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We begin with the estimate of I4. Note that

N−
3
2 |I4| ≤ sup

i,j

∫ N−
1
2

−N−
1
2

∫ N−
1
2

0

|aij(0)|e−2Ny2 dy2 dy1

+ sup
i,j

∫ N−
1
2

−N−
1
2

∫ N−
1
2

0

|aij(y1, 0)− aij(0)|e−2Ny2 dy2 dy1

+ sup
i,j

∫ N−
1
2

−N−
1
2

∫ N−
1
2

0

|aij(y1, y2)− aij(y1, 0)|
y2

y2e
−2Ny2 dy2 dy1

=: J1 + J2 + J3.

By direct computation, we have that
J1 = γ(F (0))CN−

3
2

for some constant C. If 0 is a Lebesgue point for aij |∂Ω̃ then

N
1
2

∫ N−
1
2

−N−
1
2

|aij(y1, 0)− aij(0)| dy1 → 0,

which gives that also J2 = o(N−
3
2 ). And finally Hardy’s inequality implies

J3 ≤ C sup
i,j
||∇aij ||L2N−

7
4 .

Hence I4 = O(1). The same type of estimates give I3 = O(N−
1
2 ).

The first term of (20) is easily seen by direct computation to satisfy

I1 = γ(F (0))AN
1
2 + o(N

1
2 ).

Finally, arguing in the same way as in the case of the terms J2 and J3 we have

N−2I2 =

∫
Ω̃

(γ(F (y1, 0))− γ(F (0)))µ · µ̄ψ(N1/2y)2e−2Ny2 dy

+

∫
Ω̃

(γ(F (y1, y2))− γ(F (y1, 0)))µ · µ̄ψ(N1/2y)2e−2Ny2 dy

= o(N−
3
2 ) +O(N−

7
4 ),

which gives I2 = o(N
1
2 ).

Lemma B.2. ||∂i(aij∂jvN )||H−1(Ω̃) = o(N
1
4 ).

Proof. We begin by splitting the left hand side into several terms

∂i(aij∂jvN )(y) = aij(0)N3/2(∂iψ)(N1/2y)(iα− e2)jE(Ny)

+ aij(0)N(∂i∂jψ)(N1/2y)E(Ny)

+ ∂i

(
(aij(y)− aij(0))∂j(ψ(N1/2y)E(Ny))

)
= I1 + I2 + I3.

Let ϕ ∈ H1
0 (Ω̃) (we use the norm ||ϕ||H1

0
= ||∇ϕ||L2) and denote δ(y) the distance between y and ∂Ω̃.

N−
3
2

∣∣∣∣∫
Ω̃

ϕ(y)I1(y) dy

∣∣∣∣ ≤ |aij(0)|
∫

Ω̃

ϕ(y)

δ(y)
δ(y)(∂iψ)(N1/2y)|(iα− e2)j |e−Ny2 dy

≤ sup
ij
|aij(0)|

(∫
Ω̃

ϕ(y)2

δ(y)2
dy

) 1
2

∫ N−
1
2

−N−
1
2

∫ N−
1
2

0

y2
2e
−2Ny2 dy

 1
2

≤ C||ϕ||H1
0
N−

7
4 ,
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hence
||I1||H−1(Ω̃) = O(N−

1
4 ).

In the same way we get
||I2||H−1(Ω̃) = O(N−

3
4 ).

For the third term, we have∣∣∣∣∫
Ω̃

ϕ(y)I3(y) dy

∣∣∣∣ ≤ C||∇ϕ||L2

×

N1/2 sup
i

∫ N−
1
2

−N−
1
2

∫ N−
1
2

0

(aij(y)− aij(0))2(∂jψ)2(N1/2y)e−2Ny2 dy

 1
2

+ N sup
ij

∫ N−
1
2

−N−
1
2

∫ N−
1
2

0

(aij(y)− aij(0))2ψ2(N1/2y)e−2Ny2 dy

 1
2


≤ C||∇ϕ||L2

[
N1/2J1 +NJ2

]
.

We first look at J1,

J1 ≤ sup
ij

∫ N−
1
2

−N−
1
2

∫ N−
1
2

0

(aij(y1, y2)− aij(y1, 0))2

y2
2

y2
2e
−2Ny2 dy

 1
2

+ sup
ij

∫ N−
1
2

−N−
1
2

∫ N−
1
2

0

(aij(y1, 0)− aij(0))2e−2Ny2 dy

 1
2

= K1 +K2.

Using the inequality
s2e−2Ns ≤ N−2e−2, ∀s ∈ [0,∞),

we get K1 = O(N−1). Using the same methods as in previous estimates, we also have K2 = o(N−
3
4 ). This

gives J1 = o(N−
3
4 ) and similarly also J2 = o(N−

3
4 ). Then we have

||I3||H−1(Ω̃) = o(N
1
4 )

and the lemma is proved.

Lemma B.3. The boundary value problem

∂i(aij∂jwN ) = ∂i(aij∂jvN ), wN |∂Ω̃ ≡ 0,

has solutions that satisfy ||wN ||H1
0 (Ω̃) = o(N

1
4 ).

Proof. Existence of weak solutions follows from applying the standard Lax-Milgram argument in the energy
space

Ha :=

{
v : Ω̃→ C :

∫
Ω̃

aij(y)∂iv(y)∂jv(y) dy <∞, v|∂Ω̃ = 0

}
.

Recall that γ is positive and bounded away from zero. So aij is a positive-definite matrix function and we

can see that Ha ⊂ H1
0 (Ω̃). Since H−1 ⊂ (Ha)′ the right hand side of the equation the usual method can

indeed be applied. Integrating the equation against wN we obtain

||∇wN ||2L2 ≤ ||∇wN ||L2 ||∂i(aij∂jvN )||H−1

and the result follows.
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We are now ready to prove the result of boundary determination.

Proof of Proposition 2.1. Let P ∈ ∂Ω, φ, F , Ω̃ be as above. Assume φ(P ) = 0 and 0 is a Lebesgue point for
aij so that our Lemmas above apply. Almost every point on the boundary satisfies this, so there is no loss
of generality. Define

fN := A−
1
2N−

1
4 vN ◦ φ.

Let uN be the solution of {
∇(γ∇uN )(x) = 0, x ∈ Ω,

u|∂Ω = fN |∂Ω.

which exists, as argued in Lemma B.3. Then∫
∂Ω

f̄NΛγfN dx

=

∫
Ω

γ|∇uN |2 dy =

∫
Ω̃

aij(y)∂i(uN ◦ F )∂j(ūN ◦ F ) dy

= A−1N−
1
2

∫
Ω̃

aij∂ivN∂j v̄N dy + o(1)

= γ(P ) + o(1).

Taking the limit as N →∞ we see that we can determine γ|∂Ω almost everywhere on the boundary from the
Dirichlet-to-Neumann map.

References

[1] K. Astala, T. Iwaniec, and G. Martin. Elliptic Partial Differential Equations and Quasiconformal
Mappings in the Plane (PMS-48). Princeton University Press, 2008.
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