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Abstract

In this paper, we study a Liouville-type theorem for the Lamé
system with rough coefficients in the plane. Let u be a real-valued two-
vector in R2 satisfying ∇u ∈ Lp(R2) for some p > 2 and the equation
div
(
µ
[
∇u+ (∇u)T

])
+∇(λdivu) = 0 in R2. When ‖∇µ‖L2(R2) is not

large, we show that u ≡ constant in R2. As by-products, we prove the
weak unique continuation property and the uniqueness of the Cauchy
problem for the Lamé system with small ‖µ‖W 1,2 .

1 Introduction

The study in this work is motivated by the Liouville theorem for harmonic
functions and the unique continuation property for the Lamé system with
rough coefficients. Let u be a harmonic function in Rn with n ≥ 2. The
Liouville theorem states that if u is bounded, then u is a constant. Alterna-
tively, we can also formulate the Liouville theorem in terms of an integrability
condition. Precisely, if u is harmonic and u ∈ Lp(Rn) for some p ∈ [1,∞),
then u is zero. This implication can be easily seen by the mean value property
of u.
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The Lamé system in Rn, which represents the displacement equation of
equilibrium, is given by

div
(
µ
[
∇u+ (∇u)T

])
+∇(λdivu) = 0 in Rn, (1.1)

where u = (u1, · · · , un)T is the displacement vector and (∇u)jk = ∂kuj for
j, k = 1, · · · , n. The coefficients µ and λ are called Lamé parameters, which
usually satisfy the ellipticity condition:

λ+ 2µ > 0 and µ > 0.

When both λ and µ are constant, the Lamé system can be written as the
Navier equation

µ∆u+ (λ+ µ)∇divu = 0.

When n = 2, if we define f = ∂1u1 + ∂2u2 and g = ∂2u1 − ∂1u2, then
straightforward computations show that h = (λ+2µ)f − iµg is holomorphic.
Thus, the Liouville theorem is valid for h. In particular, if ∇u ∈ Lp(R2) with
p ∈ [1,∞), then h ≡ 0, and therefore, u must be a constant.

The aim of this paper is to extend this property to the case where µ and
λ are not constants and may even be unbounded. Precisely, we prove the
following.

Theorem 1.1 Let u ∈ W 1,p
loc (R2) be a real-valued 2-vector satisfying (1.1)

with p ∈ (2,∞). Assume that ∇u ∈ Lp(R2), that the Lamé coefficients λ, µ
are measurable functions satisfying

0 < c ≤ µ(x), c ≤ λ(x) + 2µ(x) a.e. x ∈ R2 (1.2)

for some 0 < c < 1. Furthermore, suppose that linear maps Tλ and Tµ,
defined by Tλw = λw and Tµw = µw, satisfy{

Tλ : Lp(R2)→ Lr1(R2) is bounded, for some r1 ∈ [1,∞),

Tµ : Lp(R2)→ Lr2(R2) is bounded, for some r2 ∈ [1,∞).
(1.3)

Then there exists a constant ε = ε(p, c) such that if ‖∇µ‖L2(R2) < ε, then u
is a constant.

Remark 1.2 It can be seen that if λ ∈ Ls1(R2) and µ ∈ Ls2(R2) with s1, s2 ≥
p′, where p′ is the conjugate exponent of p, then Tλ and Tµ satisfy (1.3). In

2



particular, if µ ∈ W 1,2(R2), then Tµ satisfies (1.3) and ‖∇µ‖L2(R2) is finite.
The regularity of µ ∈ W 1,2(R2) is most likely optimal. We also want to
point out that µ could be unbounded since W 1,2(R2) 6⊂ L∞(R2). In view of
(1.2), the coefficient λ can be unbounded as well. That is, we do not require
λ ∈ L∞(R2).

By Theorem 1.1, we can establish the following weak unique continuation
property for (1.1).

Corollary 1.3 Let u ∈ W 1,p
loc (R2) (for p ∈ (2,∞)) be a solution to (1.1) for

which ∇u is supported on a compact set K ⊂ R2. Assume that λ, µ are
measurable functions of R2, µ ∈ W 1,2(K) and λ ∈ Ls1(K) with s1 ≥ p′, and
the ellipticity (1.2) holds for x ∈ K. Then there exists an ε > 0, depending
on c, K, and p, such that if ‖µ‖W 1,2(K) ≤ ε, then u ≡ constant.

Corollary 1.3 implies the uniqueness of the Cauchy problem for the Lamé
system (1.1). As far as we know, this is the first uniqueness result in the
Cauchy problem for (1.1) having the least regularity assumptions on the
Lamé coefficients.

Corollary 1.4 Let Ω be a bounded and connected domain in R2 with bound-
ary ∂Ω. Let Γ be an open segment of ∂Ω with Γ ∈ C1,1. Assume that
λ ∈ Ls1(Ω) and ‖µ‖W 1,2(Ω) < ε with the same ε as given in Corollary 1.3,
and that λ, µ satisfy the ellipticity condition (1.2). Moreover, suppose that
µ ∈ W 1,∞(Ωδ) and λ ∈ L∞(Ωδ), where Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ} with
any fixed small δ. If u ∈ W 1,p(Ω) satisfies

div
(
µ
[
∇u+ (∇u)T

])
+∇(λdivu) = 0 in Ω

and
u|Γ = 0, [µ(∇u+ (∇u)T ) + λdivu]ν|Γ = 0,

where ν is the unit outer normal of Γ, then u ≡ 0 in Ω.

As mentioned above, our study is also motivated by the unique continu-
ation property for (1.1). For u ∈ W 1,q

loc (Ω), where Ω is a connected domain of
Rn, we say that u is flat at 0 if∫

|x|<r
|u|q = O(rN)
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for any N ∈ N. We are interested in determining whether u ∈ W 1,q
loc (Ω)

satisfying (1.1) is identically zero in Ω when u is flat at 0. This is the so-
called strong unique continuation property (SUCP). Our main focus here is
on the regularity assumption of the parameters. There are a lot of results
concerning this problem, and we mention the article [8] for the best possible
regularity assumption so far. In that article, the authors showed the SUCP
holds when µ ∈ W 1,∞(Ω) and λ ∈ L∞(Ω) for dimension n ≥ 2. Based
on the qualitative SUCP of [8], quantitative SUCP (doubling inequalities)
was recently derived in [7]. To give perspective to put our study, we recall
that the unique continuation property may fail for a second order elliptic
equation in n ≥ 3 if the leading coefficients are only Hölder continuous (see
counterexamples in [9] and [10]). On the other hand, for a scalar second-order
elliptic equation in divergence or non-divergence form with n = 2, the SUCP
holds even when the leading coefficients are essentially bounded, [1], [3], [4],
and [11]. We also would like to point out that the SUCP for (1.1) may not
hold when µ is essentially bounded or even continuous, see [5] and [6]. On the
positive side, it was proved in [6] that if ‖µ − 1‖L∞(R2) + ‖λ + 1‖L∞(R2) < ε
for some small ε and u is a Lipschitz function that vanishes in the lower
half space, then u is trivial. An interesting open question here is to prove or
disprove the strong unique continuation property or even unique continuation
property for (1.1) with n = 2 when (µ, λ) ∈ (W 1,p(Ω), L∞(Ω)) for p < ∞.
Any attempt to derive an Lp−Lq Carleman estimate for our system has not
yet worked.

Our strategy in proving Theorem 1.1 is to derive a reduced system from
(1.1). The derivation uses the idea in [8] and [7]. We then apply the Liouville
theorem for holomorphic functions and the mapping property of the Cauchy
transform to finish the proof. We want to emphasize that the proof does not
rely on a Carleman estimate.
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2 Reduced system

Here we derive a useful reduced system from (1.1). We rewrite (1.1) as

div

[
2µ∂1u1 µ(∂1u2 + ∂2u1)

µ(∂1u2 + ∂2u1) 2µ∂2u2

]
+

[
∂1(λ(∂1u1 + ∂2u2))
∂2(λ(∂1u1 + ∂2u2))

]
=

[
∂1(2µ∂1u1) + ∂2(µ(∂1u2 + ∂2u1))
∂1(µ(∂1u2 + ∂2u1)) + ∂2(2µ∂2u2)

]
+

[
∂1(λ(∂1u1 + ∂2u2))
∂2(λ(∂1u1 + ∂2u2))

]
=

[
∂1((2µ+ λ)∂1u1 + λ∂2u2) + ∂2(µ(∂1u2 + ∂2u1))
∂1(µ(∂1u2 + ∂2u1)) + ∂2(λ∂1u1 + (2µ+ λ)∂2u2)

]
= 0. (2.1)

Defining

v =
λ+ 2µ

µ
div u and rotu = w = ∂2u1 − ∂1u2,

we compute

(∂1 − i∂2)(µv + iµw)

={∂1(µv) + ∂2(µw)}+ i{∂1(µw)− ∂2(µv)}
=∂1{(λ+ 2µ)(∂1u1 + ∂2u2)}+ ∂2{µ(∂2u1 − ∂1u2)}

+ i{∂1[µ(∂2u1 − ∂1u2)]− ∂2[(λ+ 2µ)(∂1u1 + ∂2u2)]}.

(2.2)

Using (2.1), we calculate the real and imaginary parts on the right hand side
of (2.2) explicitly,

∂1{(λ+ 2µ)(∂1u1 + ∂2u2)}+ ∂2{µ(∂2u1 − ∂1u2)}
=∂1[(2µ+ λ)∂1u1 + λ∂2u2)] + ∂1(2µ∂2u2)

+ ∂2[µ(∂2u1 + ∂1u2)]− ∂2(2µ∂1u2)

=2∂1(µ∂2u2)− 2∂2(µ∂1u2)

=2∂1µ∂2u2 − 2∂2µ∂1u2

and

∂1[µ(∂2u1 − ∂1u2)]− ∂2[(λ+ 2µ)(∂1u1 + ∂2u2)]

=∂1[µ(∂2u1 − ∂1u2)]− ∂2[λ∂1u1 + (2µ+ λ)∂2u2]− ∂2(2µ∂1u1)

=∂1[µ(∂2u1 − ∂1u2)] + ∂1[µ(∂1u2 + ∂2u1)]− ∂2(2µ∂1u1)

=2∂1(µ∂2u1)− 2∂2(µ∂1u1)

=2∂1µ∂2u1 − 2∂2µ∂1u1.
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In other words, (2.2) is equivalent to

∂̄(µv − iµw) = g1 − ig2 := g, (2.3)

where ∂̄ = (∂1 + i∂2)/2 and

g1 = ∂1µ∂2u2 − ∂2µ∂1u2,

g2 = ∂1µ∂2u1 − ∂2µ∂1u1.

In view of Theorem 1.1, we can assume that ‖∇µ‖L2(R2) is finite. Thus, we
have that g ∈ L2p/(p+2)(C). From now on, we identify R2 := C. Note that
1 < 2p/(p+ 2) < 2 since p > 2. Equation (2.3) is a neat ∂̄ equation to which
we can find explicit solutions via the Cauchy transform.

3 The Cauchy transform

Any solution of (2.3) is explicitly given by

(µv − iµw)(z) = h(z) + Cg(z), (3.1)

where h is holomorphic and

Cg(z) = − 1

π

∫
C

g(ξ)

ξ − z
dξ

is the Cauchy transform of g. We write (3.1) as

(µv − iµw)− Cg = h(z).

Note that µv− iµw = (λ+ 2µ)divu− iµ rotu. By the boundedness assump-
tions of Tλ and Tµ given in (1.3), we have (µv − iµw) ∈ Lr1(C) + Lr2(C).
Recall the mapping property of C:

‖Cf‖L2q/(2−q)(C) ≤ Cq‖f‖Lq(C) (3.2)

for 1 < q < 2 (see [2, Theorem 4.3.8]). Applying (3.2) with q = 2p/(p + 2)
to g implies that

‖Cg‖Lp(C) ≤ Cp‖g‖L2p/(p+2)(C). (3.3)

Liouville’s theorem for the holomorphic function gives h ≡ 0 and thus

(µv − iµw) = Cg. (3.4)
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Combining (3.3) and (3.4), we can estimate

c‖(divu, rotu)‖Lp(C) ≤ ‖(µv − iµw)‖Lp(C) = ‖Cg‖Lp(C)

≤ Cp‖g‖L2p/(p+2)(C) ≤ Cp‖∇µ‖L2(C)‖∇u‖Lp(C)

≤ Cpε‖∇u‖Lp(C).

(3.5)

We now show that ‖∇u‖Lp(C) can be bounded by ‖(divu, rotu)‖Lp(C). This
fact is well-known when p = 2. For p > 2, we can proceed as follows. Note
that

∆u = ∇divu+ rot⊥rotu,

where rot⊥f = (∂2f,−∂1f)T for any scalar function f . Observing that
∇(−∆)−1div is a Calderón-Zygmund operator, we obtain that

‖∇u‖Lp(C) ≤ C̃p‖(divu, rotu)‖Lp(C) (3.6)

with another p-dependent constant C̃p. Combining (3.5) and (3.6) shows

that if ε < c/
(
CpC̃p

)
, then ‖(divu, rotu)‖Lp(C) = 0. It follows from (3.6)

that ‖∇u‖Lp(C) = 0 as well, and then we may conclude that u is constant,
finishing the proof of Theorem 1.1. 2

Finally, we would like to prove Corollaries 1.3 and 1.4.

Proof of Corollary 1.3. In view of the fact ∇u ≡ 0 in C \K, any extensions
of λ and µ to R2 \K will satisfy (1.3) for all Lp functions supported in K.
Theorem 1.1 implies that if ε is sufficiently small, then ∇u also vanishes in
K. 2

Proof of Corollary 1.4. Let x0 ∈ Γ and B(x0) be a ball centered at x0 with
radius chosen so that B(x0) ∩ ∂Ω ⊂ Γ. Define Ω̃ = Ω ∪B(x0) and

ũ =

{
u x ∈ Ω

0 Ω̃ \ Ω.

Let λ̃ and µ̃ be extensions of λ and µ to Ω̃ such that λ̃|Ω̃\Ω is bounded and

µ̃ ∈ W 1,∞(Ωδ ∪ (Ω̃ \ Ω)). Then ũ ∈ W 1,p(Ω̃) is a weak solution to (1.1) in Ω̃
with the coefficients λ̃, µ̃. By the unique continuation property [8], we obtain
that u is zero in Ωδ. We now can extend u to R2 by setting u = 0 in R2 \Ω.
By the weak unique continuation property, Corollary 1.3, the extended u is
trivial in R2. In other words, u ≡ 0 in Ω. 2
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