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1. Introduction

This paper serves as a survey of enclosure-type methods used to determine
the obstacles or inclusions embedded in the background medium from the
near-field measurements of propagating waves. A type of complex geometric
optics waves that exhibits exponential decay with distance from some critical
level surfaces (hyperplanes, spheres or other types of level sets of phase
functions) are sent to probe the medium. One can easily manipulate the
speed of decay such that the waves can only detect the material feature that
is close enough to the level surfaces. As a result of sending such waves with
level surfaces moving along each direction, one should be able to pick out
those that enclose the inclusion.

The problem that Calderón proposed in 80’s [3] was whether one can
determine the electrical conductivity by making voltage and current mea-
surements at the boundary of the medium. Such electrical methods are also
known as Electrical Impedance Tomography (EIT) and have broad applica-
tions in medical imaging, geophysics and so on. A breakthrough in solving
the problem was due to Sylvester and Uhlmann. In [26], they constructed
the complex geometric optics (CGO) solutions to the conductivity equation
and proved the unique determination of C∞ isotropic conductivity from the
boundary measurements in three and higher dimensional spaces. The result
has been extended to conductivities with 3/2 derivatives in three dimensions
and L∞ conductivities in two dimensions.

The inverse problem in this paper concerns reconstructing an obstacle or
a jump-type inclusion embedded in a known background medium, which is
not included in the previous results when considering electrostatics. Several
methods are proposed to solve the problem based on utilizing, generally
speaking, two special types of solutions. The Green’s type solutions were
considered first by Isakov [13], and several sampling methods [4, 14, 1, 2]
and probing methods [10, 24] were developed. On the other hand, with the
CGO solutions at disposal, the enclosure method was introduced by Ikehata
[8, 9] with the idea as described in the first paragraph. Another method
worth mentioning uses the oscillating-decaying type of solutions and was
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proved valid for elasticity systems [20]. It is the enclosure type of methods
that is of the presenting paper’s interest.

Here we aim to discuss the enclosure method for the Helmholtz type
equations. For the enclosure method in the static equations, we refer to
[8], [9], [12], [29], [27] for the conductivity equation, to [28], [30] for the
isotropic elasticity. The major difference between the static equations and
the Helmholtz type ones is the loss of positivity in the latter equations.
It turns out we have to analyze the effect of the reflected solution due to
the existence of lower order term in the Helmholtz type equation. For the
acoustic equation outside of a cavity having C2 boundary, i.e., impenetrable
obstacle. one can overcome the difficulty by the Sobolev embedding theorem,
see [21] (also see [11] for similar idea). Such result can be generalized for
Maxwell’s equations to determine impenetrable electromagnetic obstacles
[33]. However, in the inclusion case, i.e., penetrable obstacle, the coefficient
is merely piecewise smooth. The Sobolev embedding theorem does not work
because the solution is not smooth enough. To tackle the problem, a Hölder
type estimate for the second order elliptic equation with coefficients having
jump discontinuity based on the result of Li-Vogelius [17] was developed by
Nagayasu, Uhlmann, and the first author in [19]. Later, the result of [19] was
improved by Sini and Yoshida [25] using Lp estimate for the second order
elliptic equation in divergence form developed by Meyers [18]. Recently,
Kuan [16] extended Sini-Yoshida’s method to the elastic wave equations.

The paper is organized as follows. In Section 2, we discuss the enclosure
method for the acoustic and electromagnetic equations with cavity (impene-
trable obstacle). In Section 3, we would like to survey results in the inclusion
case (penetrable obstacle) for the acoustic and elastic waves. We will list
some open problems in Section 4.

2. Enclosing obstacles using acoustic and electromagnetic
waves

In this section, we give more precise descriptions of the enclosure methods
to identify impenetrable obstacles of acoustic or electromagnetic character-
istics. In particular, we are interested in the results in [8] and [21] for both
convex and non-convex sound hard obstacles using complex geometrical op-
tics (CGO) solutions for the Helmholtz equations and the result in [33] for
perfect magnetic conducting obstacles using CGO solutions for Maxwell’s
equations.

2.1. Non-convex sound hard obstacles. In [8] and [21], the authors
consider the inverse scattering problem of identifying a sound hard obstacle
D ⊂ Rn, n ≥ 2 in a homogeneous medium from the far field pattern. It can
be reformulated as an equivalent inverse boundary value problem with near-
field measurements described as follows. Given a bounded domain Ω ⊂ Rn
such that D ⊂ Ω and Ω\D is connected, the underlying boundary value
problem for acoustic wave propagation in the known homogeneous medium
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in Ω\D with no source is given by

(2.1)


(∆ + k2)u = 0 in Ω\D,

u
∣∣
∂Ω

= f,

∂νu
∣∣
∂D

= 0

where k > 0 is the wave number and ν denotes the unit outer normal of
∂D. At this point, we assume that ∂D is C2. Suppose k is not a Dirichlet
eigenvalue of Laplacian. Given each prescribed boundary sound pressure
f ∈ H1/2(∂Ω), there exists a unique solution u(x) ∈ H1(Ω\D) to (2.1). The
inverse boundary value problem is then to reconstruct the obstacle D from
the full boundary data that can be encoded as the Dirichlet to Neumann
(DN) map

ΛD : H1/2(∂Ω) → H−1/2(∂Ω)

f 7→ ∂νu
∣∣
∂Ω
.

(2.2)

In particular, the enclosure method utilizes the measurements (DN map)
for those f taking the traces of CGO solutions to (∆ + k2)u = 0 in the
background domain Ω

(2.3) u0 = eτ(ϕ(x)−t)+iψ(τ ;x)) (a(x) + r(x; τ))

where r(x; τ) and its first derivatives are uniformly bounded in τ . As τ →∞,
u0 evolves vertical slope at the level set {x| ϕ(x) = t} for t ∈ R. Physically
speaking, such evanescent waves couldn’t detect the change of the material,
namely the presence of D in Ω, happening relatively far from the level set.
Hence, there is little gap between the associated energies of domains with
and without D. On the other hand, if D ever intersects the level set, the
energy gap is going to be significant for large τ . This implies that the
geometric relation between D and the level set {x| ϕ(x) = t} can be read
from the following indicator function describing the energy gap associated
to the input f = u0|∂Ω

(2.4) I(τ, t) :=

∫
∂Ω

(
ΛD − Λ∅

)
(u0|∂Ω) u0|∂Ω dS

where Λ∅ represents the DN map associated to the background domain Ω
without D, hence Λ∅(u0|∂Ω) = ∂νu0|∂Ω. When the linear phase ϕ(x) = x ·ω,
ω ∈ Sn−1 is used, the CGO solution (2.3) is the exponential function

u0(x) = eτ(x·ω−t)+i
√
τ2+k2x·ω⊥

where ω⊥ ∈ Sn−1 satisfies ω · ω⊥ = 0. The physical discussion above is
verified in the following result by Ikehata to enclose the convex hull of D by
reconstructing the support function

hD(ω) := sup
x∈D

x · ω.
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Theorem 2.1. [8] Assume that the set {x ∈ Rn | x · ω = hD(ω)}
⋂
∂D

consists of one point and the Gaussian curvature of ∂D is not vanishing
at that point. Then the support function hD(ω) can be reconstructed by the
formula

(2.5) hD(ω) = inf{t ∈ R | lim
τ→∞

I(τ, t) = 0}.

This result shows that a strictly convex obstacle can be identified by an
envelope surface of planes. Geometrically, this appears as the planes are
enclosing the obstacle from every direction, justifying the name ”enclosure
method”.

It is natural to expect the method can be generalized to recover some non-
convex part of the shape of D by using CGO solutions with non-linear phase.
Based on a Carleman estimate approach, such solutions were constructed in
[15] (or see [7]) for the Schrödinger operator (or the conductivity operator)
in R3, with ϕ being one of a few limiting Carleman weights

ϕ(x) = ln |x− x0|, x0 ∈ R3\Ω,
which bears spherical level sets, and therefore were called complex spherical
waves (CSW). Then such CSW were used into the enclosure method in [12]
to identify non-convex inclusions in a conductive medium. In R2, there are
more candidates for the limiting carleman weights than in R3: all of the
harmonic functions. Then the similar reconstruction scheme is available in
[29] for more generalized two dimensional systems by using level curves of
harmonic polynomials.

Here we present the result in [21] that adopts the CSW described in the
following proposition to enclose a non-convex sound hard obstacle.

Proposition 2.2. [7] Choose x0 ∈ Rn\Ω and let ω0 ∈ Sn−1 be a vector such
that

{x ∈ Rn | x− x0 = mω0, m ∈ R}
⋂
∂Ω = ∅.

Then there exists a solution to the Helmholtz equation in Ω of the form

(2.6) u0(x; τ, t, x0, ω0) = eτ(t−ln |x−x0|)−iτψ(x)
(
a(x) + r(x; τ, t, x0, ω0)

)
where τ > 0 and t ∈ R are parameters, a(x) is a smooth function on Ω and
ψ(x) is a function defined by

ψ(x) := dSn−1

(
x− x0

|x− x0|
, ω0

)
with the metric function dSn−1(·, ·) on Sn−1. Moreover, the remainder func-
tion r ∈ H1(Ω) and satisfies

‖r‖H1(Ω) = O(τ−1), as τ →∞.

The corresponding support function is given by

hD(x0) = inf
x∈D

ln |x− x0|, x0 ∈ Rn\Ω

and can be reconstructed based on the following result.
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Theorem 2.3. [21] Let x0 ∈ Rn\Ω. Assume that the set {x ∈ Rn | |x−x0| =
ehD(x0)}

⋂
∂D consists of finite points and the relative curvatures of ∂D at

these points are positive. Then there are two characterizations of hD(x0):

(2.7) hD(x0) = sup{t ∈ R | lim inf
τ→∞

|I(τ, t)| = 0},

and

(2.8) t− hD(x0) = lim
τ→∞

ln |I(τ, t)|
2τ

where I(τ, t) is defined by (2.4) with u0 by (2.6).

Remark 2.1. The relative curvature in the theorem refers to the Gaussian
curvature after the change of coordinates that stretches the sphere into flat.
For a more rigorous definition, we refer to [21].

For completeness, we provide briefly the steps of the proof. The proof of
(2.7) involves showing the following statements:

(2.9) lim
τ→∞

|I(τ, t)| = 0 when t < hD(x0),

that is, when the level sphere St,x0 := {x ∈ Rn
∣∣ |x − x0| = et} has no

intersection with D;

(2.10) lim inf
τ→∞

|I(τ, t)| > C > 0 when t ≥ hD(x0),

namely, when St,x0 intersects D. These two statements can be shown by
establishing proper upper and lower bounds of I(τ, t) from the following key
equality
(2.11)

− I(τ, t) =

∫
Ω\D
|∇w|2 dx+

∫
D
|∇u0|2 dx−k2

∫
Ω\D
|w|2 dx−k2

∫
D
|u0|2 dx

where w := u − u0 is the reflected solution and u is the solution to (2.1)
with f = u0|∂Ω. Since w is a solution to

(2.12)


(∆ + k2)w = 0 in Ω\D,

w|∂Ω = 0,

∂νw|∂D = −∂νu0|∂D,
and by (2.11), one has the upper bound

|I(τ, t)| ≤ C‖u0‖2H1(D)

for some constant C > 0 (through out the whole article we use the same C
to denote the general constant). As a consequence of plugging in the CGO
solution (2.6), the first statement (2.9) is obtained since

|I(τ, t)| ≤ Cτ2

∫
D
e2τ(t−ln |x−x0|) dx (τ � 1).

On the other hand, difficulty arises in dealing with the second statement
(2.10). Due to the loss of positivity for the associated bilinear form, two
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negative terms present in (2.11), which implies that to find a non-vanishing
(as τ →∞) lower bound for I(τ, t) is not as easy as the case of conductivity
equation, where I(τ, t) ≥ C

∫
D |∇u0|2 dx is close at hand. As a remedy, one

needs to show that the two negative terms can be absorbed by the positive
terms for τ large. To be more specific, first it is not hard to see

(2.13) I(τ, t) = e2τ(t−hD(x0))I(τ, hD(x0)).

This implies that it is sufficient to show (2.10) for t = hD(x0), which in
turn can be derived from (2.11) and the following two inequalities when
t = hD(x0):

(2.14) lim inf
τ→∞

∫
D
|∇u0|2 dx > C > 0

and

(2.15)
k2
∫

Ω\D |w|
2 dx+ k2

∫
D |u0|2 dx∫

D |∇u0|2 dx
< δ < 1 (τ � 1).

(2.14) is true since∫
D
|∇u0|2 dx ≥ Cτ2

∫
D
e−2τ(ln |x−x0|−hD(x0)) dx

≥
{
O(τ1/2) n = 2
O(1) n = 3

(τ � 1)

(2.16)

given the geometric assumption of the positive relative curvature of ∂D.
As for (2.15), the actually difficult part is to show

(2.17) lim inf
τ→∞

k2
∫

Ω\D |w|
2 dx∫

D |∇u0|2 dx
= 0

since the property of CGO solutions gives

k2
∫
D |u0|2 dx∫

D |∇u0|2 dx
= O(τ−2) (τ � 1).

In both [8] and [21], (2.17) is proved by establishing the following estimate.

Lemma 2.4. Let ShD(x0),x0

⋂
∂D = {x1, . . . , xN} and define for α ∈ (0, 1)

Ixj ,α :=

∫
∂D
|∂νu0| |x− xj |α dS, j = 1, . . . , N.

Then

(2.18) ‖w‖2
L2(Ω\D)

≤ C

 N∑
j=1

I2
xj ,α + ‖u0‖2L2(D)

 , α ∈ (0, 1)
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Remark 2.2. The proof of Lemma 2.4 is based on the H2-regularity theory
and the Sobolev embedding theorem for an auxiliary boundary value problem

(∆ + k2)p = w in Ω\D,
p|∂Ω = 0,

∂νp|∂D = 0.

Such estimates of the term ‖w‖L2(Ω\D) for the impenetrable obstacle case and

‖w‖L2(Ω) for the penetrable inclusion case which will be reviewed in the next
section, are usually crucial for the justification of the enclosure methods.
Therefore, several improvements of the result and removing geometric as-
sumptions are basically due to the development of different estimates, which
we will see shortly.

In particular, choosing α = 1/2 for n = 3 and α = 3/4 when n = 2, one
can show

I2
xj ,α ≤

{ √
ε O(τ1/2) n = 2,

O(τ−1/2) n = 3.

for arbitrary small ε, again by the assumption that the relative curvature is
positive. Combined with (2.16), one immediately obtains (2.15).

At last, the formula (2.8) is directly derived from (2.13) and the fact

|I(τ, hD(x0))| ≤ Cτ2, (τ � 1).

Remark 2.3. The result can be easily extended to the case with inhomo-
geneous background medium in Ω\D, where the CSW in proposition 2.2 is
available.

2.2. Electromagnetic PMC obstacles. This part will be contributed to
reviewing the enclosure method for the Maxwell’s equations [33] to identify
perfect magnetic conducting (PMC) obstacles. The same reconstruction
scheme works for identifying perfect electric conducting (PEC) obstacles
and more generalized impenetrable obstacles described with impedance con-
ditions.

In a bounded domain Ω ⊂ R3 with an obstacle D such that D ⊂ Ω with
∂D being C2 and Ω\D connected, the electric-magnetic field (E,H) satisfies
the Maxwell’s equations

∇× E = ikµH, ∇×H = −ikεE, in Ω\D,
ν × E|∂Ω = f,

ν ×H|∂D = 0 (PMC condition)

(2.19)

where k is the frequency and µ(x) and ε(x) describe the isotropic (inho-
mogeneous) background electromagnetic medium and satisfy the following
assumptions: there are positive constants εm, εM , µm, µM , εc and µc such
that for all x ∈ Ω

εm ≤ ε(x) ≤ εM , µm ≤ µ(x) ≤ εM , σ(x) = 0
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and ε − εc, µ − µc ∈ C3
0 (Ω). Given that k is not a resonant frequency, we

have a well defined boundary impedance map

ΛD : TH1/2(∂Ω) → TH1/2(∂Ω)

f = ν × E|∂Ω 7→ ν ×H|∂Ω.

To show that D can be determined by the impedance map ΛD using the
enclosure method, we first notice an analogue of the identity (2.11) for the
Maxwell’s equations:

iω

∫
∂Ω

(ν × E0) ·
[
(ΛD − Λ∅)(ν × E0)× ν

]
dS

=

∫
Ω\D

µ|H̃|2 − ω2ε|Ẽ|2dx+

∫
D
µ|H0|2 − ω2ε|E0|2dx.

(2.20)

where (Ẽ, H̃) := (E−E0, H −H0) denotes the reflected solutions, (E,H) is
the solution to (2.19), (E0, H0) is the solution to the Maxwell’s equations

(2.21) ∇× E0 = ikµH0, ∇×H0 = −ikεE0 in Ω,

and ν × E|∂Ω = ν × E0|∂Ω.
One would encounter the same difficulty as that for the Helmholtz equa-

tions due to the loss of positivity of the system. We recall that this was
actually overcome by the property that the CGO solution u0 shares differ-
ent asymptotic speed (τ2 slower) from∇u0. More specifically, this is because
of the H1 boundedness of the remainder r(x; τ) w.r.t τ in (2.3). The natu-
ral question to ask is then whether this key ingredient: such CGO type of
solutions, can be constructed for the background Maxwell’s system.

The construction of CGO solutions for the Maxwell’s equations has been
extensively studied in [22, 23] and [6]. The work in [33] adopts the construc-
tion approach in [23] by reducing the Maxwell’s equations into a matrix
Schrödinger equation. Finally, to guarantee that the CGO solution for the
reduced matrix Schrödinger operator derives the CGO solution (E0, H0) for
the Maxwell’s equations and at the same time that the electric field E0 and
H0 share different asymptotical speed as τ → ∞, the incoming constant
field corresponding to a(x) in (2.3) has to be chosen very carefully. To
summarize, one has

Proposition 2.5. Let ω, ω⊥ ∈ S2 with ω · ω⊥ = 0. Denote ζ = −iτω +√
τ2 + k2ω⊥ where k1 = k(ε0µ0)1/2. Choose a ∈ R3 such that

a ⊥ ω, a ⊥ ω⊥ and b =
1√
2

(−iω + ω⊥).

Then given

θ :=
1

|ζ|
(
−(ζ · a)ζ − k1ζ × b+ k2

1a
)
, η :=

1

|ζ|
(
k1ζ × a− (ζ · b)ζ + k2

1b
)
,

for t ∈ R and τ > 0 large enough, there exists a unique complex geometric

optics solution (E0, H0) ∈ H1(Ω)
3 ×H1(Ω)

3
of Maxwell’s equations (2.21)
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of the form

E0 = ε(x)−1/2eτ(x·ω−t)+i
√
τ2+k2x·ω⊥(η +R(x))

H0 = µ(x)−1/2eτ(x·ω−t)+i
√
τ2+k2x·ω⊥(θ +Q(x)).

Moreover, we have

η = O(1), θ = O(τ) for τ � 1,

and R(x) and Q(x) are bounded in (L2(Ω))3 for τ � 1.

Plugging in (E0, H0) into the indicator function defined by

I(τ, t) := iω

∫
∂Ω

(ν × E0) ·
[
(ΛD − Λ∅)(ν × E0)× ν

]
dS,

a similar argument as for the Helmholtz equations follows using identity
(2.20) and we have

Theorem 2.6. [33] There is a subset Σ ⊂ S2 of measure zero such that
when ω ∈ S2 \ Σ, the support function

hD(ω) := sup
x∈D

x · ω

can be recovered by

hD(ω) = inf{t ∈ R | lim
τ→∞

I(τ, t) = 0}.

Moreover, if D is strictly convex, one can reconstruct D.

On the other hand, the construction of a proper CGO solution with non-
linear weight for the Maxwell’s equations has not been successful using the
Carleman estimate. An alternative approach to reconstruct non-convex part
of the shape of D would be introducing some transformation that is coordi-
nate invariant. For example, one can utilize the Kelvin transformation

Tx0,R : x 7→ R2 x− x0

|x− x0|2
+ x0 := y,

which is the inversion transformation with respect to the sphere S(x0, R)
for R > 0 and x0 ∈ R3\Ω. Tx0,R maps generalized spheres (spheres and
planes) into generalized spheres. Geometrically, fixing a reference circle
S(x0, R), enclosing D with spheres passing through x0 corresponds to en-

closing D̂x0,R = Tx0,R(D) with planes, where the reconstruction scheme
in Theorem 2.6 applies. A rigorous proof consists of showing that the
Maxwell’s equations are invariant under the transformation and comput-
ing the impedance map Î(τ, t) associated to the image domain. It is worth
mentioning the byproduct of this method is the complex spherical wave

Ê(y) = Êjdy
j =

(
(DT−1

x0,R
)kj (y)Ek(T

−1
x0,R

(y))
)
dyj , y = Tx0,R(x)

with nonlinear limiting Carleman weight

ϕ(x) =

(
R2 x− x0

|x− x0|2
+ x0

)
· ω, ω ∈ S2.
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Therefore, the corresponding support function is given by

ĥD(x0, R, ω) = sup
x∈D

{
R2

(
x− x0

|x− x0|2

)
· ω + x0 · ρ

}
Theorem 2.7. [33] Given x0 ∈ R3\Ω and R > 0 such that Ω ⊂ B(x0, R),
there is a zero measure subset Σ of S2, s.t., when ω ∈ S2\Σ, we have

ĥD(x0, R, ω) = inf{t ∈ R | lim
τ→∞

Î(τ, t) = 0}.

3. Enclosing inclusions using acoustic and elastic waves

In this section we will consider the enclosure method for the case where
the unknown domain is an inclusion by using acoustic and elastic waves. In
other words, the obstacle is a penetrable one. In this situation, the reflected
solution will satisfy the elliptic equation with discontinuous coefficients. Un-
like the case of impenetrable obstacle, the Sobolev embedding theorem is not
sufficient to provide us estimates of the reflected solution we need. When
the background is an acoustic wave, the difficulty was overcome in [19] using
estimates obtained by Li and Vogelius in [17]. We only consider n = 2 in
[19] and the extension to n = 3 was done by Yoshida in [32]. Later, Sini and
Yoshida improved the result in [19] with the help of Meyers’ Lp estimate and
the sharp Freidrichs inequality [25]. Kuan [16] then extended Sini-Yoshida’s
result to elastic waves.

3.1. Acoustic penetrable obstacle. Here we will review the result in [19]
for n = 2. For n = 3, one simply replaces CGO solutions in n = 2 by complex
spherical waves [32]. We assume D b Ω ⊂ R2. For technical simplicity, we
suppose that both D and Ω have C2 boundaries. Let γD ∈ C2(D) satisfy
γD ≥ cγ for some positive constant cγ and dnote γ̃ := 1 + γDχD, where χD
is the characteristic function of D. Let k > 0 and consider the steady state
acoustic wave equation in Ω with Dirichlet condition{

∇ · (γ̃∇v) + k2v = 0 in Ω,

v = f on ∂Ω.
(3.1)

We assume that k2 is not a Dirichlet eigenvalue of the operator −∇· (γ̃∇•).
Let ΛD : H1/2(∂Ω) → H−1/2(∂Ω) be the associated Dirichlet-to-Neumann
map. As before, our aim is to reconstruct the shape of D by ΛD. The key
in the enclosure method is the CGO solutions. For the two dimensional
case, we have a lot of choices of phases in the CGO solutions. When the
background medium is homogeneous, we make use of the CGO solutions to
the Helmholtz equation. To construct the CGO solutions to the Helmholtz
equation for n = 2, we begin with the CGO solutions with polynomial
phases to the Laplacian operator. We then obtain the CGO solutions to the
Helmholtz equation by way of the Vekua transform [31, Page 58].

More precisely, let us define η(x) := c∗
(
(x1− x∗,1) + i(x2− x∗,2)

)N
as the

phase function, where c∗ ∈ C satisfies |c∗| = 1, N is a positive integer, and
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x∗ = (x∗,1, x∗,2) ∈ R2 \ Ω. Without loss of generality we may assume that
x∗ = 0 using an appropriate translation. Denote ηR(x) := Re η(x) and note
that

ηR(x) = rN cosN(θ − θ∗) for x = r(cos θ, sin θ) ∈ R2.

It is readily seen that ηR(x) > 0 for all x ∈ Γ, where

Γ :=
{
r(cos θ, sin θ) : |θ − θ∗| <

π

2N

}
,

i.e., a cone with opening angle π/N .
Given any h > 0, V̌τ (x) := exp

(
τη(x)

)
is a harmonic function. Following

Vekua [31], we define a map Tk on any harmonic function V̌ (x) by

TkV̌ (x) := V̌ (x)−
∫ 1

0
V̌ (tx)

∂

∂t

{
J0

(
k|x|
√

1− t
)}
dt

= V̌ (x)− k|x|
∫ 1

0
V̌
(
(1− s2)x

)
J1

(
k|x|s

)
ds

where Jm is the Bessel function of the first kind of order m. We now set
V ]
τ (x) := TkV̌τ (x). Then V ]

τ (x) satisfies the Helmholtz equation ∆V ]
τ +

k2V ]
τ = 0 in R2. One can show that V ]

τ satisfies the following estimate in Γ

Lemma 3.1. [19] We have

(3.2) V ]
τ (x) = exp (τη(x))

(
1 +R0(x)

)
in Γ,

where R0(x) = R0(x; τ) satisfies

|R0(x)| ≤ 1

τ

k2|x|2

4ηR(x)
,

∣∣∣∣∂R0

∂xj
(x)

∣∣∣∣ ≤ Nk2|x|N+1

4ηR(x)
+

1

τ

k2|xj |
2ηR(x)

in Γ.

Notice that here V ]
τ (x) is only defined in Γ ∩Ω. We now extend it to the

whole domain Ω by using an appropriate cut-off. Let ls := {x ∈ Γ : ηR(x) =
1/s} for s > 0. For ε > 0 small enough and t] > 0 large enough, we define
the function φt ∈ C∞(R2) by

φt(x) =


1 for x ∈

⋃
0<s<t+ε/2

ls, t ∈ [0, t]],

0 for x ∈ R2 \
⋃

0<s<t+ε

ls, t ∈ [0, t]]

and

|∂αxφt(x)| ≤ Cφ for |α| ≤ 2, x ∈ Ω, t ∈ [0, t]]

for some positive constant Cφ depending only on Ω, N , t] and ε. Next we
define the function Vt,τ by

Vt,τ (x) := φt(x) exp
(
−τ
t

)
V ]
τ (x) for x ∈ Ω.
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Then we know by Lemma 3.1 that the dominant parts of Vt,τ and its deriva-
tives are as follows:

Vt,τ (x) =



0 for x ∈ Ω \
⋃

0<s<t+ε

ls,

exp

(
τ
(
−1

t
+ η(x)

))(
φt(x) + S0(x)h

)
for x ∈ Ω ∩

⋃
0<s<t+ε

ls,

(3.3)

∇Vt,τ (x) =



0 for x ∈ Ω \
⋃

0<s<t+ε

ls,

τ exp

(
τ
(
−1

t
+ η(x)

))(
φt(x)∇η(x) + S(x)h

)
for x ∈ Ω ∩

⋃
0<s<t+ε

ls

(3.4)

for t ∈ (0, t]] and τ−1 ∈ (0, 1], where S0(x) = S0(x; t, τ) and S(x) =
S(x; t, τ) satisfy

|S0(x)|, |S(x)| ≤ CV for any x ∈ Ω ∩
⋃

0<s<t+ε

ls, t ∈ (0, t]], τ−1 ∈ (0, 1]

with a positive constant CV depending only on Ω, N , t], ε and k. It should
be remarked that the function Vt,τ does not satisfy the Helmholtz equation
in Ω. Nonetheless, if we let v0,t,τ be the solution to the Helmholtz equation
in Ω with boundary value ft,τ := Vt,τ |∂Ω, then the error between Vt,τ and
v0,t,τ is exponentially small.

Lemma 3.2. There exist constants C0, C
′
0 > 0 and a > 0 such that

‖v0,t,τ − Vt,τ‖H2(Ω) ≤ τC ′0e−τat ≤ C0e
−τa

for any τ−1 ∈ (0, 1], where the constants C0 and C ′0 depend only on Ω, k,
N , t] and ε; the constant a depends only on t] and ε; and we set at :=
1/t− 1/(t+ ε/2).

This lemma can be proved in the same way as Lemma 4.1 in [29].
Now we consider the energy gap

I(τ, t) =

∫
∂Ω

(ΛD − Λ∅)ft,τ f t,τ dS.

It can be shown that

I(τ, t) ≤ k2

∫
Ω
|wt,τ |2 dx+

∫
D
γD |∇v0,t,τ |2 dx,(3.5)

I(τ, t) ≥
∫
D

γD
1 + γD

|∇v0,t,τ |2 dx− k2

∫
Ω
|wt,τ |2 dx,(3.6)
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where v0,t,τ satisfies the Helmholtz equation in Ω with Dirichlet condition
v0,t,τ |∂Ω = ft,τ and wt,τ = vt,τ − v0,t,τ is the reflected solution, i.e.,

(3.7)

{
∇ · (γ̃∇wt,τ ) + k2wt,τ = −∇ · ((γ̃ − 1)∇v0,t,τ ) in Ω,

wt,τ = 0 on ∂Ω

(see [19, Lemma 4.1]). It is easy to see that∫
Ω
|wt,τ |2 dx ≤ C

∫
D
|∇v0,t,τ |2 dx.

In other words, in view of (3.5), the upper bound of I(t, τ) solely depends
on
∫
D|∇v0,t,τ |2 dx.

To estimate the lower bound of I(τ, t), we proceed as above and introduce

Ix0,α :=

∫
∂D
|∂νv0,t,τ (x)| |x− x0|α dS

for any x0 ∈ Ω and 0 < α < 1. The following estimate is crucial in deter-
mining the behavior of I(τ, t) when the level curve of ηR intersects D.

Lemma 3.3. [19, Lemma 3.7] For any x0 ∈ Ω, 0 < α < 1 and 2 < q ≤ 4,
we have

(3.8)

∫
Ω
|wt,τ |2 dx ≤ Cq,α

(
I2
x0,α + Ix0,α‖∇v0,t,τ‖Lq(D) + ‖v0,t,τ‖2L2(D)

)
.

It should be noted that wt,τ satisfies an elliptic equation with coefficients
having jump interfaces. To get the desired estimate (3.8), we make use of
Li-Vogelius’ Hölder estimate for the this type of equations [17].

The enclosure method is now based on the following theorem regarding
the behaviors of I(τ, t).

Theorem 3.4. [19, Theorem 4.1] Assume D∩Γ 6= ∅. Suppose that {x ∈ Γ :
ηR(x) = ΘD} ∩ ∂D consists only of one point x0 and the relative curvature
(see [19] for the definition) to ηR(x) = ΘD of ∂D at x0 is not zero. Then
there exist positive constants C1, c1 and τ1 such that for any 0 < t ≤ t] and
τ ≥ τ1 the following holds:

(I) if 1/t > ΘD then

|I(τ, t)| ≤


C1τ

2 exp

(
2τ
(
−1

t
+

1

t+ ε/2

))
if ΘD ≤

1

t+ ε/2
,

C1τ
2 exp

(
2τ
(
−1

t
+ ΘD

))
if

1

t+ ε/2
< ΘD <

1

t
.

(II) if 1/t ≤ ΘD then

I(τ, t) ≥ c1 exp

(
2τ
(
−1

t
+ ΘD

))
τ1/2.

The proof of this theorem relies on estimates we obtained above. More-
over, even though we impose some restriction on the curvature of ∂D at x0,
one can show that the curvature assumption is always satisfied as long as N
is large enough for C2 boundary ∂D.
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3.2. An improvement by Sini and Yoshida. In the enclosure method
discussed above (for impenetrable or penetrable obstacles), two conditions
are assumed, that is, the level curve of real part of the phase function in
CGO solutions touches ∂D at one point and the nonvanishing of the relative
curvature at the touching point. These two assumptions are removed by Sini
and Yoshida in [25]. Roughly speaking, they use following estimates for the
reflected solution w

(3.9) ‖w‖L2(Ω) ≤ Cp‖v‖W 1,p(D) with p < 2

for the penetrable obstacle, and

(3.10) ‖w‖L2(Ω\D̄) ≤ Ct‖v‖H−t+3
2 (D)

with t < 1

for the impenetrable obstacle. Here v satisfies the Helmholtz equation in Ω.
The derivation of (3.9) is based on Meyers’ theorem [18] and the sharp

Freidrichs inequality, while, the proof of (3.10) relies on layer potential tech-
niques on Sobolev spaces and integral estimates of the p-powers of Green’s
function. We refer to [25] for details. Here we would like to see how (3.9)
and (3.10) lead to the characteristic behaviors of the energy gap in the en-
closure method. To illustrate the ideas, we follow [25] and only consider the

CGO solutions with linear phases, i.e., v(x; τ, t) = eτ(x·ω−t)+i
√
τ2+k2x·ω⊥ . It

is clear that v is a solution of the Helmholtz equation. Denote the energy
gap

I(τ, t) =

∫
∂Ω

(ΛD − Λ∅)vv̄dS.

The following behavior of I can be obtained.

Theorem 3.5. [25, Theorem 2.4] Let D b Ω with Lipschitz boundary ∂D.
For both penetrable and impenetrable cases, we have

(i)

lim
τ→∞

I(τ, t) = 0 if t > hD(ω),

lim inf
τ→∞

|I(τ, hD(ω))| =∞ (n = 2), lim inf
τ→∞

|I(τ, hD(ω))| > 0 (n = 3),

lim
τ→∞

|I(τ, t)| =∞ if t < hD(ω).

(ii)

hD(ω)− t = lim
τ→∞

ln |I(τ, t)|
2τ

.

To prove Theorem 3.5, it is enough to estimate the lower bound of I(τ, t)
at t = hD(ω) for n = 3. Let y ∈ ∂D ∩ {x · ω = hD(ω)} := K. Since K is
compact, there exist y1, · · · , yN ∈ K such that

K ⊂ Dδ for δ > 0 sufficiently small,

where

Dδ = ∪Nj=1(D ∩B(yj , δ)).



ENCLOSURE METHODS 15

It is obvious that
∫
D\Dδ |∇

mv|pdx is exponentially small in τ for m = 0, 1.

Therefore, to obtain the behaviors of
∫
D |∇

mv|pdx in τ , it suffices to study
the integrals over Dδ. Using the change of coordinates, it is tedious but not
difficult to show that

(3.11) ‖v‖2L2(D) ≥ Cτ
−2,

‖∇v‖2L2(D)

‖v‖2
L2(D)

≥ Cτ2

and
(3.12)
‖v‖2Lp(D)

‖v‖2
L2(D)

≤ Cτ1−2/p,
‖∇v‖2Lp(D)

‖v‖2
L2(D)

≤ Cτ3−2/p with max{2−ε, 6/5} < p ≤ 2.

(see [25, Page 6-9]). Using (3.9) we get from (3.12) that

(3.13)
‖w‖2Lp(D)

‖v‖2
L2(D)

≤ Cτ3−2/p.

Recall that

I(τ, t) ≥
∫
D

γD
1 + γD

|∇v|2 dx− k2

∫
Ω
|w|2 dx.

Thus, combining (3.11) and (3.13) implies that

I(τ, hD(ω)) ≥ Cτ2‖v‖2L2(D) ≥ C
′ > 0

As for the impenetrable obstacle (sound hard), we recall that

(3.14) − I(τ, t) ≥
∫
D
|∇v|2dx− k2

∫
Ω\D̄
|w|2

(see for example [8, Lemma 4.1]). Let s = 3
2− t, then 1

2 < s ≤ 3
2 if 0 ≤ t < 1.

From (3.10) and (3.14), we have that

−I(τ, t) ≥
∫
D
|∇v|2dx− C‖v‖2Hs(D).

Using the interpolation and Young’s inequalities, one can choose appropriate
parameters such that

−I(τ, t) ≥ C
∫
D
|∇v|2dx− C ′

∫
D
|v|2dx

and thus

−I(τ, hD(ω)) > 0

follows from (3.11).
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3.3. Elastic penetrable obstacles. Recently, Kuan [16] extended the en-
closure method to the reconstruction of a penetrable obstacle using elastic
waves. Her result is in 2 dimensions, but it can be generalized to 3 dimen-
sions without serious difficulties. Consider the elastic waves in Ω ⊂ R2 with
smooth boundary ∂Ω

(3.15) ∇ · (σ(u)) + k2u = 0 in Ω,

where u is the displacement vector and

σ(u) = λ(∇ · u)I2 + 2µε(u)

is the stress tensor. Here ε(u) = 1
2(∇u + (∇u)T ) denotes the infinitesimal

strain tensor. Assume that

λ = λ0 + λDχD and µ = µ0 + µDχD,

where D is an open subset of Ω with D̄ ⊂ Ω and λD, µD belong to L∞(D).
Assume that

λ0 + µ0 > 0, µ0 > 0 in Ω,

λ+ µ > 0, µ > 0 in Ω.

We would like to discuss the reconstruct of the shape of D from boundary
measurements in the spirit of enclosure method.

Assume that −k2 is not a Dirichlet eigenvalue of the Lamé operator ∇ ·
(σ(·)). Define the Dirichlet-to-Neumann (displacement-to-traction) map

ΛD : u|∂Ω → σ(u)ν|∂Ω.

Let v satisfy the Lamé equation with Lamé coefficients λ0, µ0, i.e.,

(3.16) ∇ · (σ(v)) + k2v = 0 in Ω

with

σ(v) = λ0(∇ · v)I2 + 2µ0ε(v).

Likewise, we assume that −k2 is not a Dirichlet eigenvalue of the free Lamé
operator. We then define the corresponding Dirichlet-to-Neumann map

Λ∅ : v|∂Ω → σ(v)ν|∂Ω.

Similar as above, in the enclosure method, we need to construct the CGO
solutions for the Lamé equation (3.16). For simplicity, we assume that both
λ0 and µ0 are constants. To construct the CGO solutions in this case, we
take advantage of the Helmholtz decomposition and consider two Helmholtz
equations

(3.17)

{
∆ϕ+ k2

1ϕ = 0,

∆ψ + k2
2ψ = 0,

where k1 =
(

k2

λ0+2µ0

)1/2
and k2 =

(
k2

µ0

)1/2
. Then v = ∇ϕ + ∇⊥ψ solves

(3.16). Here ∇⊥ψ := (−∂2ψ, ∂1ψ)T . For (3.17), we can construct the CGO
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solutions having linear or polynomial phases, which will give us the CGO
solutions v for (3.16).

We will not repeat the construction of CGO solutions here. We simply
denote v(τ, t) the CGO solution. Similarly, we define the energy gap

I(τ, t) =

∫
∂Ω

(ΛD − Λ∅)fτ,t · f̄τ,tdS,

where fτ,t = v(τ, t)|∂Ω. Let Γ be the domain where the real part of the phase
function of v, denoted by ρ(x), is positive. Let

hD =

{
sup

x∈D∩Γ
ρ(x), if D ∩ Γ 6= ∅,

0, if D ∩ Γ = ∅.

Assume appropriate jump conditions on λD and µD. Then the following
behaviors of I(τ, t) are obtained in [16].

Theorem 3.6.

(i) lim
τ→∞

I(τ, t) = 0 if t > hD.

(ii)If t = hD and ∂D ∈ C0,α, 1/3 < α ≤ 1, then lim inf
τ→∞

|I(τ, hD(ω))| =∞.

(iii)If t < hD and ∂D ∈ C0, then lim
τ→∞

|I(τ, t)| =∞.

The proof of Theorem 3.6 is based on the following inequalities for the
energy gap

I(τ, t) ≤
∫
D

(λD + µD)|∇ · v|2dx

+ 2

∫
D
µD

∣∣∣∣ε(v)− 1

2
(∇ · v)I2

∣∣∣∣2 dx+ k2‖w‖2L2(Ω),

I(τ, t) ≥
∫
D

(λ0 + µ0)(λD + µD)

λ+ µ
|∇ · v|2dx

+ 2

∫
D

µ0µD
µ

∣∣∣∣ε(v)− 1

2
(∇ · v)I2

∣∣∣∣2 dx− k2‖w‖2L2(Ω),

where w is the reflected solution. The remaining arguments of the proof is
similar to that in [25], which relies on the following Lp estimate

Lemma 3.7. [16, Lemma 4.2] There exist constants C > 0 and 1 ≤ p0 < 2
such that for p0 < p ≤ 2,

‖w‖L2(Ω) ≤ C‖∇v‖Lp(D).

Finally, Lemma 3.7 can be proved by adopting Meyers’ arguments [18].
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4. Open problems

The enclosure method in the electromagnetic waves we discussed in Sec-
tion 2.2 is for the case of impenetrable obstacle. Therefore, it is a legitimate
project to study the penetrable case for the electromagnetic waves. How-
ever, the tools used in the acoustic waves, i.e., Li-Vogelius type estimates or
Meyers type Lp estimates, are not available in the electromagnetic waves.
The derivation of these estimates itself is an interesting problem. Another
interesting problem is to extend the enclosure method to the plate or shell
equations. The distinct feature of these equations is the appearance of the
biharmonic operator ∆2.

Finally, it is desirable to design stable and efficient algorithms for the
enclosure method. There are two obvious difficulties. On one hand, the
boundary data involves large parameter which gives rise to highly oscillatory
functions. On the other hand, a reliable way of numerically determining
whether I(τ, t) decays or blows up as τ →∞ is yet to be found.
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