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Abstract

In this paper we derive quantitative uniqueness estimates at infinity for solutions
to an elliptic equation with unbounded drift in the plane. More precisely, let u be a
real solution to ∆u + W · ∇u = 0 in R2, where W is real vector and ‖W‖Lp(R2) ≤ K
for 2 ≤ p <∞. Assume that ‖u‖L∞(R2) ≤ C0 and satisfies certain a priori assumption
at 0. Then u satisfies the following asymptotic estimates at R� 1

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ exp(−C1R
1−2/p logR) if 2 < p <∞

and
inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ R−C2 if p = 2,

where C1 > 0 depends on p,K,C0, while C2 > 0 depends on K,C0 . Using the scaling
argument in [BK05], these quantitative estimates are easy consequences of estimates
of the maximal vanishing order for solutions of the local problem. The estimate of
the maximal vanishing order is a quantitative form of the strong unique continuation
property.

1 Introduction

In this work we consider the Schrödinger operator with an unbounded drift term

∆u+W · ∇u = 0 in R2, (1.1)

where W = (W1,W2) is a real vector-valued functions with Lp bound for 2 ≤ p < ∞. Here
we are interested in the lower bound of the decay rate for any nontrivial solution u. When
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p = ∞, the problem is related to Landis’ conjecture [KL88]. That is, let u be a solution of
(1.1) with ‖W‖L∞(R2) ≤ 1 and ‖u‖L∞(R2) ≤ C0 and |u(z)| ≤ exp(−C|x|1+) for some C > 0,
then u is trivial. If one applies a suitable Carleman estimate to (1.1) and a scaling devise in
[BK05], the best exponent one can get is 2, namely, under the same conditions stated above
except |u(z)| ≤ exp(−C|x|2+), then u is trivial (see [Da12], [LW13] for quantitative forms of
this result). Moreover, in [Da12], the author constructed a Meshkov type example showing
that the exponent 2 is in fact optimal for complex-valued W and u.

In a recent paper [KLW14], the authors studied Landis’ conjecture for second order elliptic
equations in the plane in the real setting, including (1.1) with real-valued W and u. It was
proved in [KLW14] that if u is a real-valued solution of (1.1) satisfying |u(z)| ≤ exp(C0|z|),
|∇u(0)| = 1, and ‖W‖L∞(R2) ≤ 1, then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ exp(−CR logR) for R� 1 (1.2)

where C depends on C0.
In this paper, we would like to study estimates like (1.2) for 2 ≤ p < ∞. For complex-

valued W satisfying
|W (z)| ≤ C〈z〉−s, s ≥ 0, (1.3)

where 〈z〉 =
√

1 + |z|2, the lower bound of the decay rate for u is exp(−R2−2sf(logR)) for

s < 1/2 and is exp(−Rf̃(logR)) for s ≥ 1/2, where f(logR) and f̃(logR) are functions
of logR which grow slower than any positive power of R (see [Da12], [LW13]). Here our
assumption on W will be an integral bound rather than a pointwise bound as in (1.3).
Precisely, we prove that

Theorem 1.1 Let u ∈ W 2,p
loc (R2) be a real solution of (1.1) with |u(z)| ≤ C0 for some C0 > 0

with 2 ≤ p <∞.

(i) Assume that 2 < p <∞,
‖W‖Lp(R2) ≤ K̃ (1.4)

and |∇u(0)| = 1. Then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ exp(−CR1−2/p logR)

for R� 1, where C depends on p, K̃, and C0.

(ii) For p = 2, if
‖W‖L2(R2) ≤ K (1.5)

and

1 ≤
∫
B1

|∇u|2,
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then
inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ R−C (1.6)

for R� 1, where C > 0 depends on K,C0.

Hereafter, we denote Br(a) the ball of radius r centered at a. When a = 0, we simply denote
Br(a) = Br.

Using the scaling argument in [BK05], Theorem 1.1 is an easy consequence of the estimate
of the maximal vanishing order of the solution v to

∆v + A · ∇v = 0 in B8 (1.7)

with
‖A‖Lp(B8) ≤ K. (1.8)

It suffices to take K ≥ 1. The proof of the maximal vanishing order of v relies on a nice
reduction of (1.7) to a ∂̄ equation. Having the ∂̄ equation, we then derive the vanishing
order by using Hadamard’s three circle theorem. The case p = 2 needs special attention due
to the fact that the Cauchy transform fails to be a bounded map from L2(B8) to L∞(B8).

The estimate of the maximal vanishing order of v provides us a quantitative form of the
strong unique continuation property (SUCP) for (1.7). Note that A ∈ L2 is a scale invariant
drift in R2 in the sense that if v(x) solves (1.7), then vr(x) := v(rx) satisfies ∆vr+Ar∇vr = 0
in B8/r with Ar(x) = rA(rx) and

‖A‖L2(B8) = ‖Ar‖L2(B8/r).

It is clear that v(z) = exp(−|z|−ε) for ε > 0 is an easy counterexample of SUCP for A ∈ Lp
with p < 2. For the dimension n ≥ 3, Kim [Ki89] proved that SUCP holds for (1.7) when A ∈
Lploc with p = (3n−2)/2 and Wolff [Wo90] improved the exponent to p = max{n, (3n−4)/2}.
On the other hand, if n ≥ 5, counterexamples to the SUCP with A ∈ Lnloc were given by Wolff
in [Wo94] (or see [Wo93]). Counterexamples of the unique continuation property (UCP) for
(1.7) with A ∈ Lp, p < 2, or A ∈ L2

weak, weak L2 space, were constructed by Mandache [Ma02]
and Koch-Tataru [KT02], respectively. We also would like to mention that a counterexample
of UCP for the Schrödinger operator ∆u + V u = 0 with V ∈ L1 was constructed by Kenig
and Nadirashvili [KN00] for dimension n ≥ 2. For n = 2 and A ∈ L2, it seems likely that
a variant of the Carleman estimate proved in Kim’s thesis for n ≥ 3 [Ki89, Theorem 3] is
available for n = 2 and the SUCP will follow from it (see the remark in [Wo90, Page 156]).
Here we provide an explicit proof of the SUCP for (1.7) in two dimensions, where A ∈ L2

loc

is a real-valued vector. Using the same method, we also study the SUCP for

∆v +∇ · (Av) = 0, (1.9)

where A is a real-valued vector with bounded L2
loc norm.
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The structure of the paper is as follows. In Section 2, we consider the case where 2 <
p <∞. The case of p = 2 is treated in Section 3. We study the SUCP for (1.9) in Section 4.
Throughout the paper, C stands for an absolute constant whose dependence will be specified
if necessary. Its value may vary from line to line.

2 The case of 2 < p <∞
We consider any solution v ∈ W 2,p

loc (B8) to the equation (1.7) with A = (A1, A2) satisfying
(1.8). Denote g = vx − ivy. It is easy to see that

∂̄g =
1

2
∆v = −1

2
(A1∂xv + A2∂yv) = −1

4
(A1 + iA2)g − 1

4
(A1 − iA2)ḡ, (2.1)

where in the last step we used that v is real. As usual, we denote ∂̄ = (∂x + i∂y)/2. Let us
define

α(z) =

 −
1

4
(A1 + iA2)− 1

4
(A1 − iA2)

ḡ

g
if g 6= 0,

0 if g = 0,

then (2.1) can be written as
∂̄g = αg in B8. (2.2)

Therefore, any solution of (2.2) is represented by

g = exp(w)h in B8, (2.3)

where h is holomorphic in B8 and

w(z) = − 1

π

∫
B8

α(ξ)

ξ − z
dξ, (2.4)

i.e., w is the Cauchy transform of α.
From (1.8) and the definition of α, we have that

‖α‖Lp(B8) ≤ K

with 2 < p. In view of the mapping properties of the Cauchy transform (see for example
[Ve62]), we see that

|w(z)| ≤ CK for z ∈ B8, (2.5)

where C depends on p. Since h is holomorphic in B8, Hadamard’s three circle theorem
implies

‖h‖L∞(B1) ≤ ‖h‖θL∞(Br/4)‖h‖1−θ
L∞(B6),
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where we choose r/4 < 1 and

θ =
log(6)

log(24/r)
.

Standard interior estimates imply that

‖h‖L∞(B1) ≤ C(r−1‖h‖L2(Br/2))
θ‖h‖1−θ

L2(B7). (2.6)

On the other hand, it is not hard to prove that v of (1.7) satisfies the following Caccioppoli’s
inequality∫

Br

|∇v|2 ≤
C‖A‖2

Lp(B8)

(ρ− r)2
‖v‖2

L∞(Bρ) ≤
CK2

(ρ− r)2
‖v‖2

L∞(Bρ), 0 < r < ρ < 8, (2.7)

where C depends on p. The derivation of (2.7) follows from the standard procedure using a
cutoff function. We omit the details here. Combining (2.3), (2.6) and (2.7), we have that

exp(−CK)‖∇v‖L∞(B1) ≤ C(r−1 exp(CK)‖v‖L∞(Br))
θ‖v‖1−θ

L∞(B8). (2.8)

Based on (2.8), we immediately prove

Theorem 2.1 Let v ∈ W 2,p
loc (B8) be a real solution of (1.7) with A satisfying (1.8). Assume

that v satisfies |v(z)| ≤ C0 for all z ∈ B8 and supB1
|∇v(z)| ≥ 1. Then

‖v‖L∞(Br) ≥ rC1+C2K , (2.9)

where C1 depends on C0 and C2 depends on p.

From Theorem 2.1, we can easily derive the following quantitative uniqueness estimate,
which is (i) of Theorem 1.1.

Corollary 2.2 Let u ∈ W 2,p
loc (R2) be a real solution of (1.1) with |u(z)| ≤ C0 and |∇u(0)| =

1. Assume that
‖W‖Lp(R2) ≤ K̃.

Then
inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ exp(−CR1−2/p logR) (2.10)

for R� 1, where C depends on p, K̃ and C0.

Proof We use the scaling argument in [BK05]. Precisely, let |z0| = R with R � 1, and
define uR(z) = u(R(z + z0/R)). Then uR satisfies

∆uR +WR · ∇uR = 0 in B8,
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where WR(z) = RW (R(z + z0/R)). It is clear that(∫
B8

|WR|p
)1/p

≤ R1−2/p

(∫
R2

|W |p
)1/p

≤ K̃R1−2/p.

Also, we observe that
|∇uR(−z0/R)| = R|∇u(0)| = R > 1.

Taking K = K̃R1−2/p and r = R−1, estimate (2.9) yields (2.10). 2

3 The case of p = 2

Likewise, we consider the local problem (1.7). Here we assume that

‖A‖L2(B8) ≤ K. (3.1)

We first establish an estimate of the maximal vanishing order of v to (1.7) under the as-
sumption (3.1).

Theorem 3.1 Let v ∈ W 2,2
loc (B8) be a real solution of (1.7) with A satisfying (3.1). Assume

that v satisfies |v(z)| ≤ C0 for all z ∈ B8 and

‖∇v‖L2(B6/5) ≥ 1.

Then for r small
‖v‖L∞(Br) ≥ rC1+C2K2

, (3.2)

where C1 depends on C0 and C2 is an absolute constant.

The proof of Theorem 3.1 is more involved. Note that the formula (2.2) remains valid,
i.e.,

∂̄g = αg in B8, (3.3)

and
‖α‖L2(B8) ≤ K.

Likewise, let

w(z) =
1

π

∫
B8

α(ξ)

ξ − z
dξ,

then any solution of (3.3) is represented by

g(z) = exp(−w(z))h(z) for z ∈ B8

where h is holomorphic in B8. It is not hard to see that

‖w‖W 1,2(B8) = ‖w‖L2(B8) + ‖∇w‖L2(B8) ≤ CK.
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In the sequel, we need to estimate
∫
Br

exp(2|w|) for r ≤ 2. For this end, we recall the
following Trudinger’s Sobolev embedding theorem in the plane [St72], [Tr67]. Assume that
f ∈ W 1,2(B1) and ‖f‖W 1,2(B1) ≤ 1, then there exist two absolute constants α̃∗ and C̃∗ such
that ∫

B1

exp(α̃∗f
2) ≤ C̃∗.

By Poincaré’s inequality, we immediately obtain that

Corollary 3.2 If f ∈ W 1,2(B1),
∫
B1
f = 0, and ‖∇f‖L2(B1) ≤ 1, then there exist α∗ and C∗

such that ∫
B1

exp(α∗f
2) ≤ C∗.

Our task now is to prove

Lemma 3.3 For q > 0 and 0 < r ≤ 2, we have that

1

|Br|

∫
Br

exp(q|w|) ≤ Cr−qCK exp(qCK + q2CK2). (3.4)

Proof By a scaling argument, we can deduce from Corollary 3.2 that if f ∈ W 1,2(Br),∫
Br
f = 0, and ‖∇f‖L2(Br) ≤ 1, then

1

r2

∫
Br

exp(α∗f
2) ≤ C∗. (3.5)

To verify (3.5), we define fr(x) = f(rx) for x ∈ B1 and observe that∫
B1

|∇fr|2 =

∫
Br

|∇f |2.

Then (3.5) follows directly from Corollary 3.2.
Let us define wr(x) = w(x)−wr, where wr = 1

|Br|

∫
Br
w. We first consider the case when

‖∇wr‖L2(Br) > 0. We can write∫
Br

exp(q|wr|) =

∫
Br

exp

(
q‖∇wr‖L2(Br) ·

∣∣∣∣ wr
‖∇wr‖L2(Br)

∣∣∣∣) =

∫
Br

exp(a|f |), (3.6)

where
a = q‖∇wr‖L2(Br) and f =

wr
‖∇wr‖L2(Br)

.

Note that ‖∇wr‖L2(Br) ≤ CK. It is helpful to study the function eax for x > 0. We first

consider the case when ax ≤ α∗x
2, i.e., x ≥ a/α∗. In this case, it is trivial that eax ≤ eα∗x

2
.

In the case when x ≤ a/α∗, we have eax ≤ ea
2/α∗ . Consequently, we obtain that

eax ≤ eα∗x
2

+ ea
2/α∗ , x > 0.
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Therefore, it follows from (3.5) and (3.6) that∫
Br

exp(q|wr|) ≤
∫
Br

exp(α∗|f |2) +

∫
Br

exp(a2/α∗)

≤ (C∗ + exp(a2/α∗))r
2 ≤ Cr2 exp(q2CK2).

(3.7)

Next we want to estimate |wr|.

Claim 3.4
|wr| ≤ CK log(1/r) + CK.

Proof Note that

|wr − w2r| =
∣∣∣∣ 1

|Br|

∫
Br

w − w2r

∣∣∣∣ ≤ 1

|Br|

∫
Br

|w − w2r|

≤ C

|B2r|

∫
B2r

|w − w2r| ≤ C

(
1

|B2r|

∫
B2r

|w − w2r|2
)1/2

≤ C

(∫
B2r

|∇w|2
)1/2

≤ CK.

It is clear that
|wr| ≤ |wr − w2r|+ |w2r − w4r|+ · · ·+ |w2kr|. (3.8)

We now choose

k = b 1

log 2
log(

1

r
)c+ 1 ≤ C log(

1

r
),

where b·c is the floor function. With the choice of k, we can see that

1 ≤ 2kr ≤ 2.

Each term of (3.8) is bounded by CK. The claim follows immediately. 2

It is clear that Claim 3.4 implies

exp(q|wr|) ≤ exp(qCK)r−qCK . (3.9)

Combining (3.7) and (3.9) yields∫
Br

exp(q|w|) ≤
∫
Br

exp(q|w − wr|) exp(q|wr|) ≤ Cr2−qCK exp(qCK + q2CK2).

Now if ‖∇wr‖L2(Br) = 0, then w(x) ≡ wr in Br. Hence, we have∫
Br

exp(q|w|) =

∫
Br

exp(q|wr|) ≤ Cr2−qCK exp(qCK).
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The derivation of (3.4) is now completed. 2

As above, we will apply Hadamard’s three circle theorem to h = exp(w)g with r2 = 6/5,
r3 = 2, and r1 = r/4 < 6/5, i.e.,

‖ exp(w)g‖L∞(Br2 ) ≤ ‖ exp(w)g‖θL∞(Br1 )‖ exp(w)g‖1−θ
L∞(Br3 ), (3.10)

where

θ =
log(10/6)

log(8/r)
. (3.11)

We will estimate the terms on both sides of (3.10). We begin with the terms on the right
hand side. Note that v here also satisfies Caccioppoli’s estimate (2.7) for p = 2. On the other
hand, using the Poisson kernel of the unit disc, it is easy to see that for any holomorphic
function h

‖h‖L∞(Br/2) ≤ C
1

|Br|

∫
Br

|h|.

Putting all estimates together and in view of g = vx − ivy, we have that

‖ exp(w)g‖L∞(Br/4) = ‖h‖L∞(Br/4) ≤
C

|Br/2|

∫
Br/2

| exp(w)g|

≤ C

(
1

|Br/2|

∫
Br/2

exp(2|w|)

) 1
2
(

1

|Br/2|

∫
Br/2

|∇v|2
) 1

2

≤ Cr−CK exp(CK2)‖∇v‖L2(Br/2)

≤ CKr−CK exp(CK2)‖v‖L∞(Br) ≤ CCK2

r−CK‖v‖L∞(Br),

(3.12)

where we used (3.4) with q = 2 in the third inequality and Caccioppoli’s estimate in the
fourth inequality. Using (3.12) on the right hand side of (3.10) gives

‖ exp(w)g‖θL∞(Br/4)‖ exp(w)g‖1−θ
L∞(B2) ≤ (CCK2

r−CK‖v‖L∞(Br))
θ(CCK2

8−CK‖v‖L∞(B8))
1−θ

≤ C0C
CK2

(CCK2

r−CK‖v‖L∞(Br))
θ.

(3.13)
We now turn to the estimate of ‖ exp(w)g‖L∞(Br2 ) = ‖ exp(w)g‖L∞(B6/5) on the left side

of (3.10). From (3.4) with q = 4 and r = 6/5, it is readily seen that

1 ≤ ‖∇v‖L2(B6/5) = ‖g‖L2(B6/5) = ‖ exp(−w)h‖L2(B6/5)

≤ ‖ exp(|w|)‖L4(B6/5)‖h‖L4(B6/5) ≤ CCK2‖h‖L∞(B6/5).
(3.14)

Combining (3.13), (3.14) and the form of θ (see (3.11)), we immediately arrive at the estimate
(3.2). The proof of Theorem 3.1 is completed.
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Now we can put everything together to prove (ii) of Theorem 1.1.

Proof of (ii) of Theorem 1.1. Let |z0| = R � 1 and v(z) = u(R(z + z0/R)). Then v solves
(1.7) and with A(z) = RW (R(z + z0/R)). Note that

‖A‖L2(B8) ≤ K

since ‖W‖L2(R2) ≤ K. The boundedness assumption on u implies ‖v‖L∞(B8) ≤ C0. On the
other hand, we can see that for z̃0 = −z0/R (|z̃0| = 1)

1 ≤ ‖∇u‖L2(B1) = ‖∇v‖L2(B1/R(z̃0)) ≤ ‖∇v‖L2(B6/5)

provided R is large. Therefore, letting r = 1/R in (3.2), we obtain that

‖u‖L∞(B1(z0)) = ‖v‖L∞(Br(0)) ≥ rC1 = R−C1 ,

where C1 > 0 depends on C0 and K. 2

Note that v(z) − v(0) is also a solution of (1.7). Thus the estimate of vanishing order
(3.2) remains valid for v(z)− v(0). Consequently, we obtain the following (SUCP) result.

Corollary 3.5 Assume that Ω is an open connected domain of R2. Let v ∈ W 2,2
loc (Ω) be any

solution of
∆v + A · ∇v = 0 in Ω,

with real-valued drift A ∈ L2(Ω), then v satisfies (SUCP), namely, if for some z0 ∈ Ω

|v(z)− v(z0)| = O(|z − z0|N) for all N ∈ N, as |z − z0| → 0,

i.e., if for N ∈ N, there exist CN > 0 and rN > 0 such that

|v(z)− v(z0)| ≤ CN |z − z0|N ∀ |z − z0| < rN ,

then v(z) ≡ v(z0) for all z ∈ Ω.

Proof It suffices to consider a real solution v. First assume that z0 = 0 and B8 ⊂ Ω. We can
always assume this by translation and scaling. Note that ‖A‖L2(B8) is finite. If v(z) 6≡ v(0)
in B6/5, then ‖∇v‖L2(B6/5) ≥ C for some C > 0. The estimate (3.2) implies that v(z)− v(0)
cannot vanish at 0 to infinite order. Therefore, we must have v(z) = v(0) for all z ∈ B6/5.
A chain of balls argument then finishes the proof. 2

10



4 SUCP for an equation of divergence form

In this section, we would like to prove the SUCP for solutions of

∆v +∇ · (Av) = 0 in Ω, (4.1)

where Ω ⊂ R2 is an open connected domain and A = (A1, A2) is a real-valued vector
satisfying

‖A‖L2(Ω) ≤ C0. (4.2)

In other words, we will show that

Theorem 4.1 Let v ∈ W 1,2
loc (Ω) be any solution of (4.1). Let z0 ∈ Ω and

|v(z)| = O(|z − z0|N) as |z − z0| → 0

for all N > 0, then v ≡ 0 in Ω.

Proof As before, it suffices to consider a real solution v. We first assume z0 = 0, B8 ⊂ Ω
and consider

∆v +∇ · (Av) = 0 in B8. (4.3)

Since (4.3) is of divergence form, there exists ṽ with ṽ(0) = 0 such that{
∂yṽ = ∂xv + A1v,

−∂xṽ = ∂yv + A2v.
(4.4)

Let f = v + iṽ, then f satisfies

∂̄f =
1

2
(A1 + iA2)v =

1

4
(A1 + iA2)(f + f̄) = αf, (4.5)

where

α =


1

4
(A1 + iA2)(1 +

f̄

f
) if f 6= 0,

0 if f = 0.

It follows from (4.2) that
‖α‖L2(B8) ≤ C0. (4.6)

Any solution of (4.5) in B8 is written as f = exp(−w)h, where h is holomorphic in B8 and

w(z) =
1

π

∫
B8

α(ξ)

ξ − z
dξ.

As before, we have that
‖w‖W 1,2(B8) ≤ C,
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where C depends on C0.
Applying Hadamard’s three circle theorem to h = exp(w)f with r1 = r/4 < 1, r2 = 1,

r3 = 2, we have that

‖ exp(w)f‖L∞(B1) ≤ ‖ exp(w)f‖θL∞(Br/4)‖ exp(w)f‖1−θ
L∞(B2), (4.7)

where

θ = θ(r) =
log 2

log(8/r)
.

As in the estimate (3.14), we can see that

‖v‖L2(B1) ≤ ‖f‖L2(B1) = ‖ exp(−w)h‖L2(B1) ≤ ‖ exp(|w|)‖L4(B1)‖h‖L4(B1) ≤ C‖h‖L∞(B1).
(4.8)

This estimate will give us a lower bound on the right hand side of (4.7).
It is not hard to prove that a Caccioppoli’s type inequality holds for the solution v of

(4.3), i.e., for r < ρ < 8, we have∫
Br

|∇v|2 ≤ C

(ρ− r)2
‖v‖2

L∞(Bρ). (4.9)

As in the derivation of (3.12), we can obtain that

‖ exp(w)f‖L∞(Br/4) = ‖h‖L∞(Br/4) ≤
C

|Br/2|

∫
Br/2

| exp(w)f |

≤ C

(∫
Br/2

exp(2|w|)

) 1
2
(∫

Br/2

|f |2
) 1

2

≤ Cr−C

(∫
Br/2

|f |2
) 1

2

≤ Cr−C(‖v‖L2(Br/2) + ‖ṽ‖L2(Br/2)),

(4.10)

where 0 < r < 8. We now need to estimate ‖ṽ‖L2(Br/2) in (4.10). To this end, we can use
(4.4) and (4.9) to compute
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∫
Br/2

|ṽ(x)|2 =

∫
Br/2

|ṽ(x)− ṽ(0)|2 =

∫
Br/2

|
∫ 1

0

∇ṽ(tx) · xdt|2dx

≤ (r/2)2

∫
Br/2

∫ 1

0

|∇ṽ(tx)|2dtdx

≤ Cr3

∫ r/2

0

{
1

|Bs|

∫
Bs

|∇ṽ(y)|2dy
}
ds

≤ Cr3

∫ r/2

0

{
1

|Bs|

∫
Bs

(|∇v(y)|2 + |Av|2)dy

}
ds

≤ Cr3

∫ r/2

0

{
‖v‖2

L∞(B2s)

s2|Bs|
+
‖v‖2

L∞(Bs)

|Bs|

∫
Bs

|A|2dy

}
ds

≤ Cr3

∫ r/2

0

{
‖v‖2

L∞(B2s)

s2|Bs|
+
‖v‖2

L∞(Bs)

|Bs|

}
ds.

(4.11)

The assumption that v vanishes at 0 to infinite order implies that there exist C4 > 0 and
r4 < 8 such that

|v(z)| ≤ C4|z|4, ∀ |z| < r4.

The estimate (4.11) gives us∫
B4

|ṽ|2 ≤ C

(∫ r4/2

0

+

∫ 8

r4/2

){
‖v‖2

L∞(B2s)

s2|Bs|
+
‖v‖2

L∞(Bs)

|Bs|

}
ds ≤ C. (4.12)

Combining (4.10) and (4.12) yields

‖ exp(w)f‖1−θ
L∞(B2) ≤ C ′ (4.13)

for all 0 < θ < 1, where C ′ > 0. Now if we assume that

‖v‖L2(B1) ≥ e−k (4.14)

for some k > 0, then we obtain from (4.7), (4.8), and (4.13) that

C̃rC̃k ≤ ‖ exp(w)f‖L∞(Br/4),

where C̃ depends on C ′. However, using the fact that v vanishes at 0 to infinite order, (4.10),
(4.11), we have that there exist N0 > C̃k and rN0 so that

‖ exp(w)f‖L∞(Br/4) ≤ CN0r
N0

for all r < rN0 . This leads to a contradiction. In other words, we must have ‖v‖L2(B1) < e−k

for all k > 0 and hence v ≡ 0 in B1.
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Now we consider the general case, i.e., v vanishes at some z0 ∈ Ω to infinite order. We
choose a r0 satisfying B8r0(z0) ⊂ Ω. We define ṽ(z) = v(z0 + r0z) and Ã(z) = r0A(z0 + r0z).
Then

∆ṽ +∇ · (Ãṽ) = 0 in B8

and ∫
B8

|Ã|2dz =

∫
B8r0 (z0)

|A|2dz ≤ C0.

Hence, we have that ṽ(z) = 0 in B1, namely, v = 0 in Br0(z0). Using similar arguments as
in the proof of Corollary 3.5, we then conclude that v is identically zero in Ω. 2
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