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ABSTRACT. In this article, we study a quantitative form of Landis’ conjecture in the plane for so-
lutions to second-order elliptic equations with variable coefficients and singular lower order terms.
Precisely, let A be real-valued, bounded and elliptic, but not necessary symmetric or continuous.
Assume that V and W; are real-valued, satisfy some sign relations, and belong to L” and L%, re-
spectively, for some p € (1,00] and g; € (2,o0] with i = 1,2. We consider real-valued solutions to
equations of the form —div(AVu+Wiu) +W, - Vu+Vu =0 in R2. If u is bounded and normal-

ized in the sense that |u (z)| < exp (co |2|P ) and u (0) = 1, then for any R sufficiently large and any
arbitrarily small € > 0,
inf - > ex (—CRNHE) lo R)7
\zg\:RHuHL (B (z0)) = €XP g
where f = max {1 — %, 11— q%, 1-— % } The integrability assumptions on V and W; are nearly op-
timal in view of the scaling argument. We use the theory of elliptic boundary value problems to
establish the existence of positive multipliers associated to the elliptic equation. Then the proofs

rely on transforming the equations to Beltrami systems and applying a generalization of Hadamard’s
three-circle theorem.

1. INTRODUCTION

In this paper, we establish a quantitative version of Landis’ conjecture for real-valued solutions
to second-order, uniformly elliptic equations with singular lower order terms. Over an open, con-
nected Q C R?, define the second-order divergence-form operator

L:=—div(AV),

2 ) ) ) .
where we assume that A = (ai j) is real-valued, measurable, and is not necessarily symmetric.

i,j=1

We also assume that A is uniformly elliptic and bounded, i.e., there exist A € (0, 1], A > 0 so that
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for every z € Q,

aij (z) E'E7 > A |E|* forall & € R?, (1)

jaij ()] < A 2

We assume that the lower order terms are real-valued and belong to appropriate Lebesgue spaces:
Vell(Q) forsomep € (1,00 )

W; € L9 (Q) for some g; € (2,00] fori=1,2. 4

In lieu of the non-negativity condition on V that has appeared in previous works (see for example
[14]], [6]), we impose the following sign conditions on the lower order terms,

V>0 ae. )
/Wi-V(p >0 forevery ¢ € Whi(Q) suchthatg >0 fori=1,2, (6)

where we use the prime notation to denote the Holder conjugate exponent.
We study the unique continuation properties of real-valued solutions to the following second-
order elliptic equation in the plane:

—div(AVu+Wiu) +W, - Vu+Vu =0. (7)
The main theorem of this article is the following.
Theorem 1. Assume that conditions () - (6) are satisfied with Q = R?, where ||V||,, (2) < Ay,

||W1||Lq,(R2) < A| and ||W2||Lq2(R2) < Ap. Set = max{l — 1%, 1— q—zl, 1— q—i} Let u be a real-
valued solution to (7) in R? for which

u(2)| <exp (Colal?) ®)
u(0)[ = 1. ©)
Then for any € > 0 and any R sufficiently large, we have
: _rpB(l+e)
it el ) 2 exp (~CRPHlogR) (10)

where C depends on A, A, p, q1, q, Ao, A1, As, Cp, and €.

Remark. If W; = 0, then we may replace conditions (5)) — (6] with the following pair of conditions:
There exists ¥ > 0 so that

/AVu-Vu+W2u-Vu—|—V|u|22y/ IVul*  for every u € W, (Q) (11)
Q Q

/ Wy-Vo+V >0 forevery g € W (Q)NLF (Q) such that ¢ > 0. (12)
Q

The first assumption ensures that we may construct a positive multiplier associated to the solu-
tion, while the second condition enables us to use the maximum principle to derive appropriate

pointwise bounds.
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Remark. In the extreme case where all lower order terms are essentially bounded (belong to
L™) and at least one of the first order terms is trivial, if we assume that the coefficients of A
are continuous, then we may take € = 0. Moreover, we only need to impose the first positivity
condition, (5)). For the details of this proof, we refer to [6].

We point out now that the estimate in Theorem|I]is almost sharp in an exterior domain. Consider
u(r) =exp(—r?®) for some o € (0,1) to be determined. A computation gives
Vu(r)=—ar®! (f, X)
u(r) r o )u (r)
Au(r) = o221 (1 - r_a) u(r).

If we define
v %az o) (1 - )
e (22)
Wy = —%aro‘l (1—r%) (;%) ;
then

div(Vu+Wiu) =Vu =W, -Vu.
If p,g; = oo for i = 1,2, set & = 1 and note that V,W;,W, € L* (R*\ By). If p € (1,o), for any
o0e(0,p—1),letax=1 —% and we have

« C
P 2(148), 5. -
||V||LP(R2\BI) §C/1 r rdr = 5 < oo,

Similarly, if ¢; € (2,0), then for any 6 € (0,¢; —2),leta =1 — 27;—1,25 and we see that for i = 1,2,

. « C
H l|Lqi(R2\Bl)—C/] r rdr 26 < o0,

It follows that Theorem is almost sharp in R?2 \ By with an arbitrarily small error. Moreover, since
V > 0 and each W, is differentiable with

1
—divw; = Eoczr‘”—2 > (),

then (5) and (6)) are satisfied.

To prove Theorem [I} we first establish an order of vanishing estimate for a scaled version of
equation (7). Then, using the scaling argument first developed in [4], we prove Theorem [, We
use the notation B, (z) to denote the ball of radius r centered at zy € R?. Often, we abbreviate
this notation and simply write B, when the centre is understood from the context. For the order
of vanishing estimate, we consider solutions to in B;, where d is a constant to be specified
below (see (16). The constant b will also be specified later on (see (57))), once we have introduced
quasi-balls. Quasi-balls are sets associated with the levels sets of fundamental solutions, and are
therefore appropriate generalizations of standard balls to the variable coefficient setting.

To prove Theorem [I] we establish the following order of vanishing estimate.
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Theorem 2. Assume that conditions (1)) - (€)) are satisfied with Q = By, and that ||V|| ., < M,
||W1|]Lq,(3d) < K, and ||W2||Lq2(3d) < K, where either K} > 1, Kb > 1, or M > 1. Let u be a
real-valued solution to (7)) in B, that satisfies

] (3, < exp [ Co (VM + K+ (13)
el =gy 2 1 (14
Then for any € > 0 and any r sufficiently small,
I+¢&
1] 5, > rCOAERIHR) T (15)

where C depends on A, A, p, q1, g2, Co, and €.
Remark. When W; = 0, then we may replace conditions (3)) and (6)) with and (12).

Remark. Again, in the extreme case where p = g; = oo, W; = 0 for j # i, and A is assumed to be
continuous, the theorem above holds with € = 0, see [6]. In this setting, (6) is not required.

Since we are working with real-valued solutions and equations in the plane, the best approach
to proving these theorems is to the use the relationship between our solutions and the solutions to
first order equations in the complex plane, Beltrami systems. Therefore, we will closely follow
the proof ideas that were first developed in [14], with further generalizations in [6]]. Since we are
no longer working with bounded lower order terms, but rather with singular potentials, we also
borrow some of the ideas that were presented in [15] where the authors considered drift equations
with singular potentials.

Our results generalize those previously established in [14], [15], and [6] in three ways. First,
our leading operator is no longer assumed to be Lipschitz continuous and symmetric as in [6]. (In
[14] and [[15]], the leading operator is the Laplacian.) Here, we only assume that A is bounded and
uniformly elliptic. Second, we allow all of the lower order terms to be unbounded. In [14] and
[6], the two lower order terms, V and W, are assumed to be bounded; whereas in [15]], one lower
order term, W, can be unbounded, but V has to be zero. Third, we consider very general elliptic
equations that can have two non-trivial first order terms. In [14], [[15], and [6], it is always assumed
that either W; = 0 or W, = 0. To deal with equations that have two non-trivial first-order terms,
we follow Alessandrini in [1]] and use two positive multipliers, instead of just one, to transform the
PDE for u into a divergence-free equation.

As our lower order terms are not assumed to be bounded, our approach to the construction
of the positive multipliers is completely new in this article. We use the existence of solutions
to Dirichlet boundary value problems in combination with the maximum principle to argue that
positive multipliers with appropriate pointwise bounds exist. We remark that our methods do not
apply to the scale-invariant case of V € L! (Rz) or W; € L? (Rz). This is not surprising since
the counterexample of Kenig and Nadirashvili in [[16] implies that weak unique continuation can
fail for the operator A +V with V € L'. And for drift equations of the form Au+W -Vu = 0 in
Q C R2, the counterexamples due to Mandache [[19] and Koch and Tataru [18]] show that weak
unique continuation can fail for W € L>  and Lgv ak> TESpectively.

We point out that a similar problem was investigated by the first-named author and Zhu in [7/]]
and [8]. In these papers, the authors studied the quantitative unique continuation properties of
solutions to equations of the form under the assumption that L = —A, W| = 0, and the other

lower order terms belong to some admissible Lebesgue spaces. Since the proof techniques are
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based on certain L” — L9 Carleman estimates, the results apply to complex-valued solutions and
equations in any dimension n > 2. Consequently, the estimates derived in [/] and [8] are not as
sharp as those that we prove in the current paper. For a broader survey of related works, we refer
the reader to [14] and the references therein.

The organization of this article is as follows. In Section[2] we discuss quasi-balls. Quasi-balls are
a natural generalization of standard balls and they are associated to a uniformly elliptic divergence-
form operator. Section [3| deals with the positive multipliers. In particular, we construct a very
general positive multiplier, prove that it has appropriate pointwise bounds, satisfies generalized
Caccioppoli-type inequalities, and then show that its logarithm also has good bounds in some L'
spaces. The Beltrami operators are introduced in Section[d Much of this section resembles work
that was previously done in [6], and we therefore omit some of the proofs. In Section [5] we use
the tools that have been developed to prove Theorem [2| The proof of Theorem [1|is presented in
Section[6l

In addition to the main content of this paper, we rely on some theory regarding elliptic boundary
value problems, and this content has been relegated to the appendices. In Appendix [A] we prove
a pair of maximum principles. Appendix [B| presents a collection of results regarding the Green’s
functions for general elliptic operators in open, bounded, connected subsets of R2. This work is
based on the constructions that appear in [11]], [13]], and [5]. We include this section for com-
pleteness since the specific representation that we sought was not available in the literature. The
results of the appendices are used in Section [2| where we argue that the positive multipliers satisfy
appropriate pointwise bounds.

Acknowledgement. Part of this research was carried out while the first author was visiting the
National Center for Theoretical Sciences (NCTS) at National Taiwan University. The first author
wishes to the thank the NCTS for their financial support and their kind hospitality during her visit
to Taiwan.

2. QUASI-BALLS

Since we are working with variable-coefficient operators instead of the Laplacian, we will at
times need to work with sets that are not classical balls. Therefore, we introduce the notion of
quasi-balls.

Let .2 (A,A) denote the set of all second-order elliptic operators acting on R? that satisfy the
ellipticity and boundedness conditions described by (I) and (2). Throughout this section, assume
that L € £ (A,A). We start by discussing the fundamental solutions of L. These results are based
on the Appendix of [17].

Definition 1. A function G is called a fundamental solution for L with pole at the origin if
e Ge Hlloc2 (Rz \{0}), G e H'P (Rz) for all p <2, and for every ¢ € Cy (]Rz)

loc

[ @i@DG @ Dje)dz=9(0).
e |G(z)| <Cloglz|, for some C >0, |z| > C.

Lemma 1 (Theorem A-2, [17]). There exists a unique fundamental solution G for L, with pole
at the origin and with the property that lim G (z) — g(z) = 0, where g is a solution to Lg =0 in

|z] oo
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|z| > 1 with g =0 on |z| = 1. Moreover, there are constants C1,Cp,C3,Cq,R| < 1 < Ry, that depend

on A and A, such that

1 1

Clog (ﬂ) < —G(z) <G log (ﬂ) for |z] <Ry
z F4

Csloglz] < G(z) < C4loglz| for |z| > Ry.

The level sets of G will be important to us.
Definition 2. Define a function £ : R?> — (0,0) as follows: £(z) = s iff G (z) = Ins. Then set
Zy={zeR*:G(z) =Ins} = {z€R?: £(z) = s} .

We refer to these level sets of G as quasi-circles. That is, Zs is the quasi-circle of radius s. We also
define (closed) quasi-balls as

Qs:{zeRzzﬁ(z)Ss}.

Open quasi-balls are defined analogously. We may also use the notation Q% and ZF to remind
ourselves of the underlying operator.

The following lemma follows from the bounds given in Lemma|I] The details of the proof may
be found in [6]].

Lemma 2. There are constants cy,ca,c3,C4,C5,C6,81 < 1 < Sy, that depend on A and A, such that
if z € Zs, then

s <z] <52 fors < S

c5st < |z < ces™ forS1<s< S

59 <z| < 5% fors>S,.

Thus, the quasi-circle Z is contained in an annulus whose inner and outer radii depend on s, A,
and A. For future reference, it will be helpful to have a notation for the bounds on these inner and
outer radii.

Definition 3. Define

o (s;A,A)=supsr>0:B, C ﬂ ot
LeZ(A.A)

p(s;A,A)=infSr>0: |J ok cB,
LeZ(A.A)

Remark. These functions are defined so that for any operator L in £ (A,A), Bos(s:a.n) C oL ¢

Bp(s:a.n)-
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The quasi-balls and quasi-circles just defined above are centered at the origin since G is a funda-
mental solution with a pole at the origin. As a reminder, we may sometimes use the notation Z; (0)
and Q, (0). If we follow the same process for any point zo € R?, we may discuss the fundamental
solutions with pole at zp, and we may similarly define the quasi-circles and quasi-balls associated
to these functions. We denote the quasi-circle and quasi-ball of radius s centred at zg by Z; (z0) and
Os (z0), respectively. Although Q; (zp) is not necessarily a translation of Q; (0) for zg # 0, both sets
are contained in annuli that are translations.

3. POSITIVE MULTIPLIERS

In [14] and [6], the first step in the proofs of the order of vanishing estimates is to establish that a
positive multiplier associated to the operator (or its adjoint) exists and has suitable bounds. Unlike
the settings in those papers, since our lower order terms are unbounded, we cannot simply construct
positive super- and subsolutions in B, then argue that a positive solution exists. Therefore, our
approach here is more involved. Instead, we use solutions to the Dirichlet boundary value problem
for appropriately chosen boundary data and rely on the maximum principle to give us desirable
bounds.

From now on, we set

d=p(7/5)+2/5, (16)
where p (s) = p (s;4,A) is as defined in the previous section. Throughout this section, assume

that A satisfies (T)) and (2)), while V, W; and W5 satisfy (3) and (@). Note that AT also satisfies ()
and (2)). Associated to an operator of the type —div (AV +W;) +W, -V +V is the bilinear form

B: Wol’2 (Q) x Wol’2 () — R given by
B[u,v]:/AVu-Vv+W1u-Vv+W2-Vuv+Vuv. (17)
Q

In every case, we take Q = By.
Since we need the existence of solutions to various elliptic equations, the following lemma
serves as a useful tool.

Lemma 3. Let g € C! (B_d) Assume that the bilinear form given by is bounded and coercive
in WO1 )2 (Bg). That is, there exist constants ¢ and C so that for any u,v € WO1 )2 (By)

|Blu,vl| < Cllullyi2g, IVIwias,

2
Blv,v] > CHVHWLZ(B(,) :
Then there exists a weak solution ¢ € W' (By) to

{ —div(AVo +W19)+W,-Vo+Vo =0 in By

o=g on dB; (18)

Proof. To establish that a solution to (I8)) exists, we prove that there exists a y € Wol’2 (By) for
which

—div(AVY+Wiy) +Ws - Vy +Vy = —divG+ f in By, (19)
where G € L?(B,) and f € L? (B;) for some g € (2,o0] and p € (1,00]. With y = ¢ — g, we have
G=—AVg—Wgand f = —W,-Vg— Vg, and this gives the claimed result since g € C' (B,) and

B, is bounded.
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To show that (19) is solvable, we need to show that for any v € WO1 2 (By), there exists a ¥ €
W, (B4) for which

B[l//,v]:/ G-Vv+fv. (20)
By
For any v € WOI’2 (By), consider the linear functional

Vi G-Vv+ fv 21
By

If p > 2, then

1_1 1

1 i
| G- Vvt P < Glawy) VY2 1Bal* % 1o o) V]2, 1Bal* 7
d

<=

On the other hand, if p < 2, then p’ > 2 and

1_1
[ G-V PVl < 1Glawy MV 2wy 1Bal* + 1 lloes) M s,
d

1

1
< (IGlza(a, 1Bal* ™% + Co 1 Flluoia) ) 119Vl 2s,

where the last line follows from an application of the Sobolev inequality with 2* = p’ € (2,).
Hereafter, we use the notation 2* to denote the Sobolev exponent of 2, and it will be chosen in
(2,00). In either case,

[ G-Vv sl <Clbllnan,
d

so the functional defined by is bounded on WOl 2 (By).
By assumption, B|[-,-] is a bounded, coercive form on WO] 2 (Bg). Therefore, we may apply

the Lax-Milgram theorem to conclude that there exists a unique Y € WO1 2 (By) that satisfies (20).
Consequently, has a unique solution, and therefore, is solvable. O

Using the lemma above, we now prove that a general positive multipliers exists. With an appro-
priate choice of boundary data, the maximum principle implies that this positive multiplier has the
required pointwise bounds from above and below.

Lemma 4. Assume that ||V||p5,) <M, [[Willpa 5, < K1,
Then there exists a weak solution ¢ € W' (By) to

—div (ATV + W) + W, - Vo +Vd =0 inBy (22)

Wallpa2(g,) < K2, and (5), (€) hold.

with the property that
e—c(VM+Ki+Ks) <(z) < e (VMHK K ) fora.e. 7 € By, (23)
where c is some positive constant.

Proof of Lemmad, Let g € C! (B_d) be a positive function for which

ke C(VMIKIHK) < o (7) < o (VMHKIHK)  for all 7 € 9By,
8



where the constant k will be specified below. Let ¢ € W!?(B,;) be the weak solution to the
following Dirichlet boundary value problem

—div(ATVY+Wo9) +W;- Vo +V¢o =0 inBy,
=g ondBy,.
To establish that a solution to exists, we need to check that the associated bilinear form is
bounded above and below, then we may apply Lemma [3| (with A being replaced by AT and the
roles of W; and W, interchanged). For any u,v € WOI’2 (By4), (@) and Holder’s inequality imply that

(24)

|B[u,v]|:/ ATVU-Vv4+Wou-Vv+W;-Vuv+Vuy
By

< A||V“||L2(Bd) ||Vv||L2(Bd) +[[Wil] (By) ||Vu||L2(Bd) VIl 20y
LN~ (By)

HIWallo g, VY] 25 Ul 200 -HmeMWW%w WH@W

L9272 (By) d Lr=1(Bg

< <A+Cq1 Wil a1 (8,) + Ca HW2||L‘12(B,1)+CP||VHU’(Bd)> Vull 25, VY28,

where we have used the Sobolev inequality three times with 2* = qf—z"z € (2,00) for i = 1,2 and

2* = 1% € (2,00) to reach the last line. Therefore,

[Blusv]| < Cllallwras,) [VIlwr2s,) -
From (T)), (§)), (6), it follows that

B[v,V] :/ ATVY- Vo4 (W) +Wa) - Vov+ VP >4 [ V).
By By

The Poincaré inequality immediately implies that for any v € WO1 2 (By),
2
B [V, V] Z C ‘ ’V’ lwl,2(Bd) .

In conclusion, B[, -] is a bounded, coercive form on WOI’2 (By). It follows from Lemmathat 24)
is solvable.
It remains to show that ¢ satisfies the stated pointwise bounds a.e. Since (3) and (6) for i =2

imply (T2), then by Theorem [4/in Appendix [A]and that g = g™,

sup ¢ (2) < sup g* (z) = sup g(g) < e (VMHKIHKa),

z2€By ZE0By z€0By
proving the upper bound. To show that ¢ satisfies the stated lower bound a.e., define an auxiliary
function v € W12 (B,) that weakly solves the related boundary value problem,

{ —div(ATVv) +W;-Vv=0 inBy

v=g ondB; (25)

Since the associated bilinear form is bounded (by an argument similar to the one above) and co-
ercive (by ellipticity in combination with assumption () for i = 1), such a v exists. With
w=¢—-ve WOI’2 (Bg), we see that
—div(ATVw) +W;-Vw =div(W2¢)—V¢ inBy
. (26)
w =0 on dBy
9



Let I'(z,&) denote the Green’s function for the operator —div (AV + W) in By, and let I'*(z,{)
denote the Green’s function for the operator —div (A”V) +W; -V in B,. Note that I'*({,z) =
['(z,&). The assumption (6)) for W ensures that such a Green’s function exists (see Appendix .
According to Theorem [5in Appendix [B|(see also Definition H), implies that

w(z) = — /B DT (. 8) - Wa (O +T (@ OV (£)] 6 (£)dC.
Therefore
V(@) =0 () + / DT (0. 8) - Wa (O +T (@ OV (£)] 6 (£)dL
so that

supv(z [1—1—/ |DCF z,8) HWz |dC+/ T'(z,0) ||V(C)’d4 ||¢’HL°° (Bg) "

z€By

By Holder’s inequality, we have

1 1
Y

/\rz, V(¢ \dc<(/ reopac) (/ V(¢ rpdc)l<M\|r<z,>HLp .

196 O (€014 < KD 6.V g, o,
Since p > 1, then p’ € [1,), so it follows from (B |i 7) in Theoremthat 1T (2, )1, (Bag()By) =
Cp. Similarly, since g > 2, then ¢} € [1,2) and (B.I8) implies that || DI"(z, - )Hqu OB Cy,-
d

We set k = 1+ Cy, K> +Cp,M. Combining the observations above with Corollary we have

ke C(VMHKI+K2) < inf o (7) <v(z) < K11l L=(8,)

ZEaBd

(VMHKK) < ]

and we conclude that e~ (BJ)" Since ¢ is assumed to be real-valued and must

be continuous, then either ¢ (z) > ¢ C(VMIKI+K) for a6 7 e By, or ¢ (z) < _e (VM+K1+K2) fop
a.e. z € B;. However, we know that ¢ = g along dB,, where g is a positive function. Therefore,

0(z) > e C(VMHK+K) for p e 7 € B, proving the lemma. U

In addition to the pointwise bounds for ¢ that were established in the previous lemmas, we also
prove gradient estimates for all solutions to (7). A similar argument shows that analogous bounds
hold for ¢, and hence for all solutions to equations of the form (22). The following estimates
follow from a standard integration by parts argument (a Caccioppoli estimate) in combination with
Theorem 2 from [20]].

Lemma 5. For any r > 0 and o > 1 for which ar < 2, let v be a weak solution to (/) in By,
Assume that ||V ||y, ) < ) < Ky, and |[Wa||pr p,,,) < Ko. Then for any t € [2, 7],

1
V) < (147 M+ AT K AR K o
V| <Crt FP M A 1+’" 28 ||V‘|L°°(Bar)’ @7)

10



where C depends on A, A, p, q1, q2, &, and t, where

) 2p
min o, —— if 1<p<2,
o= {611 q2 2_p} if p (28)

min{q1,q2} if p=>2.

Proof. We start with a Caccioppoli estimate, i.e. withz =2. Let 1 € C° (Bg,) be such that ) = 1
in B, and |Vn| < <7 ) Take vn? to be the test function. Then

/(AVv+W1v) -V (vnz) + (W -V +Vv)in? =0

so that with the use of (I)), Holder and Cauchy inequalities, we have
A / IVv[*n? < /AVv-an2
= —2/AVV-VT[VT[ —/W1 -Vvvn2—2/W1 -Vn \v|2n —/(Wz-Vv+Vv)vn2

szA/ervm\v\nH/\WI\rvmrv|2n+/<|wl|+|wz|>|v|Wv|n2+/|V|v2 :

A 4A2
<5 [wene | (o +3) [19np+ [ ,L/ 213+ W) 2] 111,

A AN A\ a+1 2 24
§§/|VV|2”2+CK 7 +2)—1+M(ar)2 P+AK1 (ar)? ‘11+IK2(Ocr) z}uvuimww).

After simplifying, we reach with t = 2.
Let B = 1 (a+1). Since div (AVv) = —div(W;v) + W> - Vv+ Vv, then an application of Theo-
rem 2 from [20] shows that for 7y given in (28)

V© )" < (7 I19vlgagy )+ Il
()" se( )

2_ 02
+C ro 1’ HVVHLP( )+HW1VHLTO(BL;,)+’”TO o HW2.VV||L422?2(3)
Br

2 9 1-2 2-2 -
< Cr@ [<1+r 42[{2) ||Vv||L2(Bﬁr)+ <1+r rM+r q1K1> ||V||L°°(Bw)}

2 _ 2 _4 _4
< Crw 1<1+r2_5M—|—r2 a1 K12_|_r2 q2K22> HVHL""(BW)’

where we have used Holder’s inequality, the bounds on V, W; and W,, and the result above for
t = 2. Holder’s inequality leads to the conclusion for general ¢ € (2, 1p). U

For the positive function ¢ given in Lemma] define ® = log¢. From Lemma4] it is clear that
|®(2)| < ¢ (VM +K| +K>) forae. z € By. Since div (ATV@) =W, -V + V¢ —div(W2¢) weakly
in B;, then

div (ATVCID) +(Wo —Wy)- VO +ATVO . VO =V — divW,  weakly in By. 29)

The following estimates for V@ will be crucial to our proofs. We begin with an L?-estimate for
Vo.
11



Lemma 6. Let ® =log @, where ¢ is the positive multiplier given in Lemma 4| Then

IVl 2(n,, (\/_+K1+K2>

(1/5)+ 1/5)
where C (A, A, p,q1,q2).

Proof. Recall that d = p (7/5)+2/5. Let 6 € Cj (By) be a cutoff function for which 8 =1 in
By (7/5)+1/5- Multiply (29) by 62, then integrate by parts to get
A/]VCI)| 6% < /ATch otk

:/V92+2/W2-0V6+2/ATVCI>9V0—/(W2—W1)-VCI>92

A 4A?
S/V92+2/W2~9V6+Z/|VCI>|292+T/|V9|2
A 202, 1 W 2a2
—I—Z ‘V(D’ 0 +I |W2 W]| 0-.

Rearranging and repeatedly applying the Holder inequality, we see that

4A2
+ 1V6l[72(3,)

/\chy 0 <M|[6%]],1 5, + 221V,

2

2
+ IKZ H62| ‘L<(12/2>/(Bd) T IKI H92| ‘L(‘Il/z)/(Bd)

Since either K; > 1, K, > 1, or M > 1, then

/ IVO|* <C(M+K}+K3),
(7/5)+1/5

where C depends on A, A, p, g1 and g5, as required. 0
Now we prove that V® belongs to L for some 7y > 2.

Lemma 7. Let ® = log @, where ¢ is the positive multiplier given in Lemma 4, Then there exists

s3-2 . 2 4 4
to > 2 such that HVCI)||L’0(BP(7/5)) <C (\/A_4+K1 —|—K2) u ( t()), where |1 :mln{Z— 5,2 — q—1,2 ~ %
and C depends on A, A, p, q1, q2 and t.

Proof. We rescale equation (29). Set ¢ = m for some C > 0. Then (29) is equivalent
1 2

to
ediv (ATV(p +W2) +ATVg. Vo = (Wl . Wz) Vo4V, (30)
S U 77N |/ S P v — v )
where € = (VMK TK)’ W; VMK 1K) fori=1,2,and V CZ(\/M+K1+K2)2' We’ll choose
C sufficiently large so that

Py =t (1
L (By)

where the last bound is possible because of Lemma [6]
12
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Claim 1. Let ¢ > 0 be such that for any z € By(7/s), Bac/s5(2) C Bp(7/5)+1/5- For any z € By(7)s)
and € <r < c/5, we have
| ver<am
B(z)

— mi _ 29 49 4
where,u_mm{Z p,2 q1,2 qz}.

Proof of Claim[l] 1t suffices to take z = 0. Let ) € Ci (B2,) be a cutoff function such that n =1
in B,. By the divergence theorem,

0= s/div [(ATV¢+W2) nz]
= e/div <ATV(p-|—V~V2> n2+2e/nVn (ATV ) +2£/17Vn W (32)
We now estimate each of the three terms. By (30) and (31),
s/div (ATV(p +ﬁ/2> n?

——/ATV<p-V<pn2+/\7n2+/(Vvl—vaz) -Von?
< i 7, (1)

N T -
(990 [y (L) 15y (L)

4 4
<——/|V<p\2n rcr 12’—1—%(;’2414—;"242). (33)

By Cauchy-Schwarz and Young’s inequality,

1/2 1/2
2e [nvn. (A%)' <2eA [ 11Vn]|Vg| < 2eA ( / |V<p|2) ( / n2|Vn|2)

CA2 A 5
<N A g,
ST +200 ’ ¢|

(34)

Similarly, by Holder and Young’s inequality,

92 @2 1—2 ) 24
192(By) / [Vn[e! <2Cer %2 <Ce +Cr ©. (35)
d BZr\Br

28/11Vn W

<2¢] it

Combining (32))-(35)) gives

_2 4 1 1
Vol <Ce?+C (747 4 qz)+—/ VoP<crit— | VoI, (36)
5 100 100 /3,

sinceu:min{2—%,2—%,2—%} <2ande<r<sz<l.
13



If r* > then by the last estimate of (31)), the inequality above implies that

/ IVo|*> < Crt.
B,

100’

Otherwise, if r# < ﬁ, choose k € N so that

2¢
<ok <2
SZ4rs 3

n 2
Since r* > (%) > <L> — ( c? ) >C (ﬁ)k, then it follows from repeatedly applying (36)
that

1 k
Vo> <Ccr*+C (—) / Vo[> < CrH,
B, 1 O sz,
proving the claim. 0

We now use Claim to give an L' bound for V¢ in B, (7/5)- Define

1 2 2 :
‘Ps(Z)=E<P(€“Z), As(Z)ZA(é‘“Z), L =divAlv.
Then
2 2
Ve (z) =€ Vo (8%)
% L T 2 2

Loge(z) =€k div (A <euz> Vo (sm)).

It follows from that

Lige (2)+ ALV, Vo — i 2 [Sdi" (AT <E%Z> Vo (8%2» +A <€%Z> Vo (E%Z> Vo (8%2)]

Ve (@) + (Wie () = Wae () - Ve (2) — div e (2),
where

Ve(s) = en 2V N( %)
~ 2 15 %

Wie(z):=¢€+ W(e z) for i=1,2.

)

With 6 = 8% < w, note that

M:(/B o) = ([
i (/BI)V %)

Y
dz)

<7

7 (et

(o)

=

<1
LP(Bs)




and fori=1,2,

Wie (2)

I

2

L‘H(B]) - (/Bl

1 4 — i 7 .
—et i) ([ (e[ a(eha) ) < ], <
B L4 (Bg)
Moreover,
2_ 2|2 1 1 2\ M
voi < & 0/‘V¢@W§‘ﬂ:—z Vol < 5 (2e%) =c,
By B> £ Bys )

where we have used Claim[I] It follows from Theorem 2.3 and Proposition 2.1 in Chapter V of [9]
that there exists 3 > 2 such that

IV @e|l 1o (5,) < C. (37)
Recalling the definition of ¢, we see that

2
eH

C(VM+K +K,)

4
1 f

2_y_ 4
C>|IVoellpog) =€*  *0 [Vl py =

VP[0 (55 -

Since € = ol 1 , then we conclude that

VM+K +K,)

2 2
IV®|085) <C (\/A_/1+K1 +K2) H04) :

Since this derivation works for any z € B, (7/5)and we may cover By, (7/5) with N balls of radius 0,
where N ~ 82 =g 4/H ~ (\/A_4—|— K+ K2)4/”, then the result follows. O

Using an interpolation argument in combination with the estimates just proved, we establish L'
bounds for V.

Lemma 8. Let ® = log @, where ¢ is the positive multiplier given in Lemma 4} Let to > O be the
exponent provided in Lemma @ Foranyt € [2,1o),

2(3_2)_q|lo(1=2
HVCI)HLt(Bp(7/5)) SC(\/IVIJFK] —I—K2> H_[“ <3 ’0) 1} ! (’0* >,

where the constant C depends on A, A, p, q1, q2, to, and t.

so that t = 2y+1(1—7),i.e. Y= %=L Then by the Holder inequality along with Lemmas [6| and

tp—2"

Proof. Take t € (2,1) since the endpoint estimates are given in Lemmas [6|and[7} Choose y € Ié_IO, 1)
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7

||V(I)HU(B

Since

as required.

L2(Bp(rys))

< [C (WHQ +K2)]

2 N I VA
:C(\/A_/I+K1+K2>'y+”(3 8" .

1

i Y
(o mermere) < (o) (1, 7o)
By(1/5) By(1/5) By(1/5)

fo(1-7
Vo !
IVl (Bo(r/s))

2y
T

1p(1-7)

c (VM +K, +K2>Z<3_%)] |

2 1p(1-7)

<3 — %) > 1, then simplifying the exponent gives

N =

1—y

O

Corollary 1. Let @ = log®, where ¢ is the positive multiplier given in Lemma 4}, Then for any
€ > 0, there existst > 2, depending on €, p, q1, q2, and ty, such that

1Vl

1+¢
5) SC(VMAKI+K)
p(7/5)

where C depends on A, A, p, q1, g2, ty, and t.

4. THE BELTRAMI OPERATORS

(38)

We define a Beltrami operator that allows us to the reduce the second-order equation to a first
order system. For a complex-valued function f = u + iv, define

where

Df=0f+n(z)df+V(z)df,

(2) = ail —an ; app +asg
det(A+1) det(A+1)
detA — 1 .ax1 —aln

v(z) = )

) =deasn Vaeasn

Lemma 9. For 1,V defined above, there exists K < 1 so that

The following proof is purely computational and relies on the assumption (I).

N ()| +|v(z)] <K.

16
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Proof. We have

\/(011 —ap)? + (a1 +an)? B \/trA2 —4ayjaxn + (ajy +an )

= det(A+1) detA +trA + 1
’ ’ \/(detA — 1)2 + (a21 — a12)2 \/(detA + 1)2 —4dayaxn + (a21 —|—a12)2
V| = —

det(A+1) detA +trA+ 1

Note that it follows from (T)) that
1
ayjan —(an +an)® > A%

Therefore, we see that

VAT =472+ [ (detA+ 1) — 422 .
< =K.
m@I+IvEl= A 1 detA + 1

Let f = u+iv. A computation shows that
(ar) +detA) +ian; ayy +i(ax +detA) (a1 +1)+iap . ay+i(apn+1),
Df = Uy Uy Vy ivy.
det(A+1) det(A+1) det(A+1) det(A+1)
This presentation will be useful in subsequent sections.

In addition to the operator D, we will also make use of an operator that is related to D through
some function w. For a given function w, set

Mw(z) = { n(Z)—FV(z)% for dw # 0
’ N@+v() " otherwise

where 1 and v are as defined in and (@T), respectively. By Lemma[9] it follows that |1,,| < K.
Define

Dyf =9f+nw(z)df. (42)
If N (z) = o4, (z) +iByw (2), then

D= 5 e i3y + (0 +iB) (30,

4o +iBy B ti(l— o)
= oy +
2 2
Bertrami operators of this form will be used in the proofs of the main theorems.
At times, the dependence on w will not be important to our arguments, so we define

A1 ] (1 —
P +i+£¢+ﬁ+ﬁ o)

where o, B are assumed to be functions of z such that o + [32 < K < 1. Associated to D is the
symmetric second-order elliptic operator L = div (AV) with

dy (43)

9y, (44)

(1+a)*+B2 2B PR
i | T mpT Tma2—pr | _ | 4n an
A= 2B (1—a)’+p2 | — [ dp axn } ' 4)

1-a?—fB2 1—a2—B2
17



A computation shows that

(1+a)+p2| [(1—a)’+p*| 1] 28 2 12
1—oa?— B2 1—o?— 32 Z{l_az—ﬁz—f—l—az_ﬁz}

N (1—0521—[32)2 [(1_a2>2+2[32 (1+a2)+/34_4[32]

1222+ at-2(1-a?) 2+ B _1

a (1_a2_B2)2 = 1.

Therefore, A satisfies the same ellipticity and boundedness given in and with possibly
different constants A, A.

Remark. Note that if D is given as in (39) and Df = 0, then D,,f = 0 with w = f, where D,, is
defined in (42)).

4.1. A Hadamard three-quasi-circle theorem. Within this subsection, we present the Hadamard
three-quasi-circle theorem. We originally proved this result in [6, Theorem 4.5], but include the
proof here for completeness. The related lemmas are all presented, but we refer the reader to [0]
for their computational proofs.

The following lemmas show that D relates to L in some of the same ways that d relates to A.
These properties will allow us to prove the Hadamard three-quasi-circle theorem.

Lemma 10. [6, Lemma 4.2] If Df = 0, where f (x,y) = u(x,y) +iv(x,y) for real-valued u and v,
then

Tu=0=1Lv.

We find another parallel with the Laplace equation. As in the case of L. = A, the logarithm of the
norm of f is a subsolution to the second-order equation whenever D f = 0. To see this, it suffices
to prove that

Lemma 11. [6, Lemma 4.3]1 If Df = 0 and f # 0, then L[log|f (z)|] = 0.

Using the fundamental solution G for the operator L, we can now prove the following Hadamard
three-quasi-ball inequality. We would like to mention that similar theorems were proved by
Alessandrini and Escauriaza in [2]], see Propositions 1, 2, using quasi-regular mappings.

Theorem 3. Let f be a function for which Df =0 in Oy, Set
M (s) = max{|f (z)| : z € Z} .
Then for any 0 < 51 < s < 53 < 50,

log (zﬁ) logM (s2) < log (iﬁ) logM (s1) +log <j—2) logM (s3). (46)
1 2 1

Proof. Let o, 53 = {z:51 <Ll(z) <53} = Oy, \ Qs,, Where ¢ is associated to G, the fundamen-
tal solution of L. By Lemma [2} this set is contained in an annulus with inner and outer radius

depending on sy, s3, A, and A. In particular, it is bounded and does not contain the origin.
18



Therefore, G (z) is bounded on %, 5,. Let zo be in the interior of %, ;,. If f(z9) = 0, then
aG (z0) +1log| f (z0)| = —oo for any a € R. On the other hand, if £ (z9) # 0, then Lemmaimplies
that L [aG (z) +1log|f (z)|] = 0 for z near zo. By the maximum principle, zo cannot be an extremal

point. Therefore, aG (z) +log|f (z)| takes it maximum value on the boundary of <%, ,. We will
choose the constant a € R so that

max {aG (z) +1og|f (z)| : z € Z;, } = max {aG (z) +log|f (z)| : 2 € Z, } ,
or rather
log (s7M (s1)) = log (s5M (s3)) .-
It follows that for any z € <%, s,
aG (z) +log|f (z)| < log(s¢M (s;)) fori=1,3.
Furthermore, for any s, € (s1,53),
max {aG (z) +log|f ()| : 2 € Z, } <log(s{M (s;)) fori=1,3,
or
log (s5M (s7)) <log(siM(s;)) fori=1,3.

Consequently,
SSM (s2) < siM (s;) fori=1,3,
so that for any 7 € (0, 1), since s{M (s1) = s4M (s3), then

$3M (52) < [sTM (51)]" [s§M (s3)]'°

M) < [(j_;)”msl)] el K ) } (1-0)log (2

We choose 7 so that Tlog (i—f) log < ) Then (1 —1) (i > ( 2) and
) [ a0 N
— — = exp |alog log +alog log| = )| =1
52 52 S1 S2
Therefore,

53

53 53 2
M (52)°2 () < a1 (517 (3) g (532 ().
Taking logarithms completes the proof. 0
Corollary 2. Let f satisfy Df = 0 in Qy,. Then for 0 < sy < s < 53 < 50

Fll-or) < (IMl0,))” (Ullimgary)

_ log(s3/s2)
log(s3/s1)’
Remark. From Remark 4} we know that if Df = 0, then Dy f = 0. Hence Corollary [2] applies to
such f.

where
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4.2. The similarity principle. This subsection is similar to Section 4.4 of [6]. As usual, we
include it here for the sake of completeness. The approach here is based on the work of Bojarksi,
as presented in [3]. Define the operators

To(z) = —%/Q%dg

1
So(z) = —— /Q (?Ei))zdg.

We use the of the following results, collected from [3].

Lemma 12. Suppose that g € L' for some t > 2. Then Tg exists everywhere as an absolutely
convergent integral and Sg exists almost everywhere as a Cauchy principal limit. The following
relations hold:

d( g
J(Tg)=Sg
Tg ()] <cillglly

ISellz: < Gellgll
lim G = 1.

t—27F

Tg)
Tg)

Lemma 13 (see Theorems 4.1, 4.3 [3]). Let w be a generalized solution (possibly admitting iso-
lated singularities) to

ow+q1(2)ow+qa(z)dw=A(2)w+B(z)Ww

in a bounded domain © C R?. Assume that |q, (z)| + |q2 (z)| < 0 < 1 in , and A, B belong to
L' (Q) for somet > 2. Then w(z) is given by

w(z) = f(2)e?®,
where f is a solution to

df+qo(z)df =0

and
¢(z) =Tw(z)
Here, qq is defined by B
_ ) q (z)+q2(z)a—x for dow #0
() { q1(2)+q2(2) ? otherwise , 47)

and @ solves
O +qgoSw=h (48)
with )
hz) = A(2)+B(z)% forw(z) #0andw(z) # oo
Y714 (z)+B(z) otherwise .

The proof ideas are available in [3] and detailed arguments can be found in [6]].
20



Corollary 3. Let w be a generalized solution (possibly admitting isolated singularities) to
Iw+q1(2)dw+qa(2) dw =A(R)w+B(2) W

in a bounded domain Q C R?. Assume that |q1 (z)| +|q2 (2)| < o < 1 in Q, and A, B belong to
L' (Q) for somet > 2. Then w(z) is given by

where f is a solution to
df +qo(z)df =0
and

exp [~C (1Al o) + 1Bl ) | < 18] < exp [€ (1Al + 1Bl )|

Proof. From the previous lemma, we have that g (z) = exp (T @ (z)), where @ is the unique solution
to (@8). Since C;ap < 1, then a fixed point argument implies that |||, < C||A||;. It follows from
the third fact in Lemma [12] that

Tw @) <Clilly <C [I1All @)+ 1Bl

where C depends on Q. The conclusion follows. U

5. THE ORDER OF VANISHING ESTIMATES

Here we present the proof of the order of vanishing estimate, that of Theorem [2 One of the
novelties with this proof is that instead of using one positive multiplier to transform the equation
for u into a divergence-free equation, we rely upon two positive multipliers. This idea was inspired
by the methods in [1].

Let u be a solution to (7) in B; C R2. That is,

—div(AVu+Wiu)+W,-Vu+Vu=0 in B,.

Assumptions (I)), (5 and (6) imply that Lemma]is applicable, and therefore there exists a function
¢ satisfying (23] that weakly solves

—div(ATVY +Wo9) +W;-Vo+Vo =0 in B,
Similarly, Lemma 4 shows that there exists a function y that weakly solves
—div(AVy)+W,-Vy+Vy =0 in By.
Bounds analogous to (23)) hold for y.

Remark. If either W; = 0 or W, = 0, then the second positive multiplier, y, is not required, and
we set Y = ¢ in all arguments below. If W; = 0, then only conditions (TI]) and (I2) are required

for the application of Lemma []
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With v = vif ®=logd, ¥ = log v, and b = AV — ATV® + W) — Wa, we have

div[py (AVv+bv)]

= div [¢ (AVu—uAT VD + uW; — uWs)]

= div (pAVu —uAT VY + udpW) — upWs)

=V¢-AVu+ ¢ div(AVu) — Vu-ATVY —udiv (AT V) + div (upW — upW»)

=@ [Vu+W,y-Vu—div(Wu)]| —u[Ve +W; -V —div(Wr0)] + div (ud¢W; — u¢Ww,)
=0.

Therefore, the PDE for u can be transformed into a divergence-free equation. Let ¥ be the stream
function associated to the vector ¢ y (AVv + bv) with ¥(0,0) = 0. That is, for every (x,y) € By,

1
V(x,y)Z/O [— oW (a21vy +azvy +bov) (tx,ty) X+ QW (a11vy +arpvy +byv) (tx,ty) yldt.  (49)

To verify the validity of (@9), we let P = (P}, P,) = ¢ w (AVv+bv), then

1 1
ﬁ(x,y):—/o P2(tx,ty)xdt+/0 Py (tx,ty)ydt.

So we have

1
Uy (x,y) = / o1 P (tx ty)txdt—/ P, (tx,ty dt+/ 01 P (tx,ty)tydt
0

1
- / o1 P (tx,ty)txdt — / P, (tx,ty)dt — / P (tx,ty)tydt
0 0

1
= / [0: P (tx,ty)t + Ps (tx,1y)] / 0; [Ps (tx,ty)t]dt = —Ps (x,y)
0
and
1
vy (x,y) / P (tx,ty txdt—l—/ AP (tx ty)tde—/ Py (tx,ty)dt
1
= / O1 P (tx,ty)txdt + / P (tx,ty)tydt + / Py (tx,ty)dt
0 0 0
1 1
= / [0:Py (tx,ty)t + Py (tx,ty)]dt = / o; [Py (tx,ty)t]dt = Py (x,y).
0 0
That is,

{ \7y :¢1//(a11vx+a12vy+b1v) (50)

—Vy = (Z)I//(azwx +axvy+ bzv) .

Lemma 14. For any r and k > 1 such that kr < d, there is a constant c, depending on A, A, and
a constant C, depending on A, A, K, for which

S Crec(W—i—lﬁ—O—IQ) ‘

1911 8,) lull2(8,,) -
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Proof. As above, we use the notation

1 1
ﬁ(x,y):—/o Pg(tx,ty)xdt+/0 Py (tx,ty) ydt.

1 1
||\7||L1(Br):/B —/0 Pz(z‘x,ty)de—/0 P (tx,ty)ydt

/ / |P> (tx ty)x]dtdz—f—/ / |Py (tx,ty)y|dtdz

/ / |P> (tx,ty |dtdz+r/ / |Py (tx,ty)|dtdz.
A computation shows that

Pi = (anux+anuy) ¢ —u(andc+axi@dy) +u(Wi 1 —Wap) ¢
Py = (ax1ux +anuy) ¢ —u(andc+andy) +u(Win—Ws) o,

where we use the notation W; = (W, 1, W;,) fori=1,2. By Lemmaapplied to u and ¢, along with
the assumption that each W; € LY, it follows that each P; € L% for some g € (2, 7p]. Interchanging
the order of integration, applying Holder’s inequality, then simplifying, we see that

1 1 1 L
1 1 q 1
// Py (tx,ty)ldtdzz/ —2/ Py (x,y)ldzdté/ —2(/ Py (x,y)lquZ) " |B,,|' 0 dr
B, Jo o “JB, 0! B,

o2 1 _2 )2 L2
=Cr qo/ P a0,y 1 P0dt <Cr @0 HPIHqu(B,)/ tfdt.
0 0

It follows that

dz

2

1 1 )
Since go > 2, then / t %dt converges and / |Py (tx,ty)|dtdz < ) P[40 5, - A sim-
0 B, JO
1
ilar estimate holds for / / |P, (tx,1y)|* didz, so we conclude that
B, JO

- 3-2
19l s,y < €7 (P, + 1Pl logs,))

Let B = %(K—i— 1). Therefore, for i = 1,2, with an application of (2)) and Lemma we see that
||P||qu <A<||V”||qu(3,)||¢||L°°(B,)+||”||L°°(B. ||V¢||quB )
11
+ (HWlﬂ'Hqu(Br) |Br‘qo n +HW2,iHU12 ’B |q0 q2> HMHL"" (Br) H‘PHL"" (Br)
2_ _2 4 4
<crin (1427 M 0K+ 2 K3 ) lall e, ) 19111,
2_2 2_2
; (Kquo i 4 Ko ) il 1613,

2 _ 2 _4 _4
< Cri ](1+r2_ﬂM—|—r2 WK+ 1 qug)HuHLm(Bﬁ)eC(W“ﬂ“@),
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where we have used the pointwise bounds on ¢ from Lemmafd] It follows that
2 _ 4 4
191115,y < Cr? (1 F M A K K22> [ (VMK +K)
< Cr||u||L2(BK,) ec(m+K1 +K2)’

where the last inequality follows from an application of interior estimates for elliptic equations,
which can be derived by De Giorgi’s method (for example, see the proof of [S, Lemma 5.1] for
related arguments). U

With w = ¢ yv +iV and D as defined in (39), we see that in By 3 Bj(7/s),

Dw =D¢yv+ ¢Dyv+ ¢ yDv+ D(iv)
= [D(log¢) + D (logy)] ¢ v
(a1 +detA) +iay; ayp +i(ax +detA)
+¢"’{ det(A+D) det(Ar)
((111—|-1)—|—i(112.~ 6121—|-l'((122—|—1),~
iy ivy
det(A+1) det(A+1)

L oanti(an+1) . (an+1)+iap
= |D(l D1 b —ib
{ (log¢)+D(logy) +ib1 =g rop— — =g | ¢
+oy (ary +detA) +iaxy  —iap (a1 +1)+apar | iaxa;; —ap (axn+1)
det(A+1) det (A+1) det (A+1) *
+¢l// au—l-i(dzz—l—d@tA) —ia (a11 + 1) +ajppax iapaz —ain (a22—|- 1)
det (A+1) det (A+1) det (A+1) Y
=(a+p1—B)(w+w), (51)

where, recalling that we set & =log ¢ and ¥ = log v,

OH'ﬁl_ﬁZ:EDCIH-—D‘IH— 2012 1 (axp + 1)+ ibraz) —iby (a1 + )

> 2det (A +1)
That is,
o 2a11 (1+ax) — (a2 +az)arn+il(ain +az ) +an (012—021)]¢
Adet(A+1) ’
+ (a12+ax) —ax(aix —az ) +i[2axn (14+ar) — (“12+a21)a21]¢
4det(A+1) ’
N 2a1; (1 —|—a22) — (6112 —|—a21)a12+i[(a12+6121) +aj (a12 _a21)]\P
Adet(A+1) '
N (a12+a21) —axn (a1 —az1) +i[2ax (1 +a11) — (a1 +az21) az| w, (52)
4det(A+1)
—Wii(an+1)+Wjra12—iW,o (a1 + 1) +iW; 1a21 ;
_ W : : 7 for j=1,2. 53
Bi 2det(A+1) e Y
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It follows from the boundedness of A described by (2) in combination with Corollary [T} that for
any € > 0, there exists ¢ > 2 such that

1+
, <c(VM+Ki+K) .
1]l (8,5 —C<\/—+ A2
The boundedness of A along with the assumptions on W; and W, implies that
<
Hﬁ“Lq(Bp(7/5>) > C(Kl +K2) ’

where ¢ = min{q;,q>}. We now apply the similarity principle given in Lemma |13|and Corollary
to conclude that any solution to (51) in B, (7/s) is a function of the form

w(z)=f(2)8(2),
with
Dyf =0 in Bp/s),
and for a.e. z € By(7/5)

P [_C <||a||U(Bp<7/s>) + HﬁHL"(Bp(?/S)))] < lg(2)l < exp [C<||a||L’(Bp<7/s>) * ”ﬁ||”(3p<7/s>)>] '
That is,

1+€ I+e
exp {—c (x/M+K1+Kz> } <|g(2)| <exp [C (\/1‘_4+K1+K2> } in Bp(ss), (54

where we have used the bounds on o and B from above. By Corollary [2, the Hadamard three-
quasi-circle theorem, applied to the operator D,,,,

ll-o) < (1Ml0,0) (1li=(o) -

where s < 51 < 55 < % and

B log (Sz / Sl)

~ log(4sy/s)’
Letr/4 = p(s/4) and r, = p (s2) so that Q)4 C B, 4 and Qs, C By,,. We choose r3 € (r2,p (7/5))
so that r3 —rp ~ 1 and p (7/5) — r3 ~ 1. Since f is a solution to an elliptic equation (see Lemma
[10), then standard interior estimates for elliptic equations (see, for example, [12, Theorem 4.1])
imply that

0 1-6
-2
1m0,y € (2 WA ls,) (I.sy)) - (55)
where C is an absolute constant. Substituting f = wg~! into (53) and applying (54), we see that

\/_ I+e 5 0 1-6
Wi,y Sexp |C(VM4Ki+K2) | (72wl ,)) (IWla@,y) - 56
Since w = ¢ yv + iV = Qu + iV, then

|Qul < [w| < [gul+[7].
An application of (23) and Lemma [I4] with k¥ = 2 shows that

Wl s, ) < 10Ul s, ) + 117115y < 0xp [ (VM + Ky 4+ K2 ) | 1l 2,
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We similarly conclude that
HWHLI(B,3) < exp [c (\/]\7I+K1 —|—K2>} ||ullz2(5,) < exp [C (\/1\71—1—1(1 —I—Kzﬂ :

where we have applied in the second inequality. Upon setting s; = 1 in (56) and using the
bounds established above, we have

1+¢e 0
lull g, < exp {c (VM+ K +K) ] (72 lull2qs, )
Now we define
b=o(1) (57)
so that B, C Q1. Since |[u[;=(g,) = |[u[;=p,) = 1 by (I4), after rearranging we have

C(VM+K +Ky) ' ™*

0

[lull 25, > r*exp

It follows from the definition of 0 that

> rc(\/M+K1+K2)'+€

Y

leellz2(5,)

and the conclusion of Theorem 2] follows.

6. UNIQUE CONTINUATION AT INFINITY ESTIMATES

We follow the approach of Bourgain and Kenig from [4] and show how Theorem |I|follows from
Theorem 21

Let u be a solution to (7) in R2. Recall that b= o (1) and d = p (7/5) + 2. Choose zo € R? and
set |zo| = bR. Define ug(z) = u(zo+Rz), Ar (z) =A (20 + Rz), Wi r (z) = RW;(z0+Rz) fori = 1,2,
and Vi (z) = R?V (z0 + Rz). Notice that for any r > 0,

1 1
p p
||VR||L[7(Br(0)) = (/B © |VR (Z)|pdz> = (/B o |R2V(Z0 +RZ)‘de>

1
22 p g 22
=R /(O)|V(Zo+RZ)’ d(Rz) | =R 7 ||VlLr(8,p(z0))

and
1

1-2 . 9 1-2
Wi =83 ([ o a0 ) = Wil

2 2
It follows that ||Vz||,»5 (0 < AoR* 7 and [IWirll 190860 < AR % fori=1,2. Moreover,
(Ba(0)) (B4(0))

—div[Ag (z) Vug (z) + Wi g (2) ur (2)] + War (2) - Vur (2) + Vr (2) ur (2)
= R*{—div[A (z0 + Rz) Vu (20 + Rz) + W (20 + Rz) u (20 + Rz)]}

+R%[Ws (z0 +Rz) - Vi (z0 + Rz) +V (20 + Rz) u (20 + Rz)] = 0.
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Hence, ug satisfies a scaled version of (7)) in B;. By assumption (8],
ikl =) = 1l 1)) < eXP [ Co (b +)P RP].
Since B = max {1 — %, 1— q%, 1-— %} if we choose sufficiently large ¢ depending on Cy, b, d, B3,

A . _2
and A, A| or Ay, we have that either C (b—i—d)BRﬁ < C\/AORF%, Co (b—i—d)ﬁRB < CA1R1 ar
N _2
or Cy (b—i—d)ﬁ RP < CAZR1 %2 . Therefore,

A _1 _2 _2
||MRHL°°(Bd) < exp [C(\/AORI P —|—A1R1 a1 +A2R1 qzﬂ .

- Z
Note that for zg := _EO’

20| = b and |ug(20)| = |u(0)| = 1 by (9), so that ||ug|[;~,) > 1. Thus,

2 _2
if R is sufficiently large, then we may apply Theorem [2|to ug with M = AORZ_E, K = A,~R1 4 for
i=1,2,and Cy = C to get

1l 2281 (20)) = 14| = (8, 0))

1,l l—l l—l 1+¢
VAR TP +AIR' T +ALR 42)

(
>(1/R)
1_1 -2 -2 1+
—exp —C(x/AOR P + AR T + AR qz) logR)| .
i - _1qy_21_2
Smceﬁ—max{l p,l ql’l qz},then

HM‘ |L00(B] (XO)) Z exp |:—CRﬁ(l+8) IOgR] .
As |xp| = DR, the conclusion of the theorem follows.

APPENDIX A. MAXIMUM PRINCIPLES

Here we prove the maximum principles that are used in the proof of Lemma] In particular,
we generalize some of the standard theorems from Chapter 8 of [[10] to extend to elliptic opera-
tors with singular lower order terms. To this end, we employ roughly the same techniques, but
with applications of Holder and Sobolev inequalities to accommodate for the unbounded potential
functions.

We assume that Q C R? is open, connected and bounded with a C' boundary. Assume that A
satisfies (1) and (2)), while V, Wy, and W, satisfy (3) — (d). Define

L% = —div (ATV+Wa) +W; -V + V.

Theorem 4 (cf. Theorem 8.1 in [10]). Let u € W2 (Q) weakly satisfy £*u < 0 in Q. Assume that
(12)) holds. Then
supu < supu™.
Q 2Q

Proof. Letv € WO1 2 (Q) be a non-negative function for which uv > 0 in Q. Since % > 2, then

2 /
the Sobolev inequality implies that u,v € L (Q). The Holder inequality gives that uv € LP (Q).
2ql-
-2

As qf—Z"l > 2 for each i, the Sobolev inequality implies that u,v € L%~2 (Q) and we may similarly
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conclude that uv € L% (Q). Note that D (uv) = Duv +uDv. Another application of the Holder
inequality in combination with the boundary information implies uv € WO1 Q)N WO1 Q)N
L’ (Q), so we may use it as a test function. Since .Z*u < 0, it follows from the definition that

/ATVu-Vv+W2u-Vv+W1-Vuv+Vuv§O.
Q
Rearranging and using (12)), we see that
/ATVu-Vv+(W1—W2)-Vuv§—/Vuv+W2-V(uv)§0.
Q

Q
Therefore,

|~

2 , 7
/ATVM.VVS/(WQ—WI).Vuv§Z||W,~||Lq,-(Q) (/ |Vuv|q,->q.
Q Q i Q

i=1

In the case where |[W1 |41 (o) =0 and [[Wa| 4y () =0, set ! = supu" and define v=max {u — 1,0} =
aQ

(u— l)+. The conclusion is then immediate. Otherwise, choose k so that [ < k < supu and set
Q

v=(u—k)"*. (If no such k exists, then we are finished.) We have that v € WO1 2(Q) and

Du u>k
DV_{O u<k.

It follows from the last line of inequalities that

2 1
ATVy.Vy < Will;ai </ vaqg) "
/Q Y Wil ([, 1001

where I' = suppDv C suppv. The ellipticity condition in combination with a Holder inequality
then gives that

2
1DVII72(0) < A7 1DV 20y Y Wil iy IV 24
(@) (@) LWillaiay M1 2o,

or

2
1DVI20) < A7HY Wil ey V] 2
i) SAT L IWillaay IV s,

Now we apply the Sobolev inequality with some 2* > max { qquz, qiqu} > 2 and the Holder in-

equality to see that

1

= 921
Clvll 2 @y < 11DVl 12i0) < A7 IVl 2 @y X [1Willai @) [supp D] 2 27
i=1

4212
In particular, with Q > 0 chosen so that max { |suppDv| 2 7 } = |suppDv|?,

i=1

CA e
|supp Dv| > .
||Wl | |L‘11 (Q) + ||W2| |L42(Q)
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Since this inequality is independent of k, it also holds as k tends to supu. This means that the
Q
function u must attain its supremum in Q on a set of positive measure, where at the same time

Du = 0. This contradiction implies that supu < [, as required. 0
Q

Corollary 4. Let u € W' (Q) weakly satisfy — div (ATVM) +W;-Vu=0in Q. Then for a.e.
7€,

infu < < supu.

infu < u(z) < ag};u
Note that here Wy does not need to satisfy the sign condition.

To prove this corollary, we follow the same approach from above and set v = max {u —supu, 0}
aQ

and v = max {gg u—u, 0}. In this case, we don’t require a sign condition on the test functions.

APPENDIX B. GREEN’S FUNCTIONS

The purpose of this appendix is to establish a representation formula for solutions to non-
homogeneous uniformly elliptic equations with vanishing Dirichlet boundary data. To this end,
we mimic the main technique presented in [Sl], which is based on the ideas in [13] and [11]]. Since
we only require such results for reasonably nice, bounded domains (balls), we assume throughout
that Q C R? is open, bounded, and connected. Finally, we point out that the bounds given for
the Green’s functions are not sharp. As is well known, pointwise logarithmic bounds for Green’s
functions in the plane are the best possible. However, since we work using the methods of [11],
[13]], and [5], and seek integrability properties for the Green’s function instead of sharp pointwise
bounds, our estimates will have power bounds.

We consider second-order, uniformly elliptic, bounded operators of divergence form with one
first order term. We use coercivity, the Caccioppoli inequality, and De Giorgi-Nash-Moser theory
to establish existence, uniqueness, and a priori estimates for the Dirichlet Green’s functions.

Notation and properties of solutions. Let Q@ C R? be open, bounded, and connected. In contrast
to the main body of the article where we use the notation z = (x,y) to denote a point in R?, here
we let x, y, etc. denote points in R.

For any x € Q, r > 0, we define Q,(x) := QN B,(x) and £, (x) := dQN B, (x). Let CI” (Q) denote
the set of all infinitely differentiable functions with compact support in €.

For future reference, we mention that for Q, U C R? open and connected, the assumption

uewWh?(Q), u=00onUNoQ,
is always meant in the weak sense of
ueW'2(Q) and ué € Wy *(Q) for any & € C(U). (B.1)

This definition of (weakly) vanishing on the boundary is independent of the choice of U. Indeed,
suppose V is another open and connected subset of R? such that VN adQ = UNJQ and let & €
CZ (V). Choose y € C (UNV ) such that 0 < w < 1 and y = 1 on the support of & in some neigh-
borhood of the boundary. Then & (1 — ) |q € C (), so that ué (1 — w) € W, (Q). Additionally,
EyeCr(U), soby (B.I), uy € WOI’2 (Q). Therefore, u§ = uEy+ué (1—y) € WOI’2 (Q), as
desired.

29



LetA = (ai j)z‘zjzl be bounded, measurable coefficients defined on Q. We assume that A satisfies

an ellipticity condition described by (I)) and the boundedness assumption given in (2). Choose W
so that (@) and (6) hold with g; = ¢q. The non-homogeneous second-order operator is

L=—div(AV)+W.V (B.2)
and the adjoint operator to Lis given by
= —div(ATV+W). (B.3)

All operators are understood in the sense of distributions on Q. Specifically, for every u € W2 (Q)
and v € C° (Q), we use the naturally associated bilinear form and write the action of the functional

Luonv as
(Lu,v) = Bu,V] :/AVu-Vv+W-Vuv. (B.4)
Q

It is not hard to check that for such u,v and for the coefficients as described above, the bilinear
form above is well-defined and finite. Similarly, B* [-, -] denotes the bilinear operator associated to

L*, given by
(L*u,v) = B [u,v] = /ATVu-Vv—I—Wu-Vv. (B.5)
Clearly,
B[v,u] = B*[u,v]. (B.6)

For any distribution F = (f,G) on Q and u as above, we always understand Lu=F on Q in the
weak sense, that is, as B[u,v] = F(v) for all v € C°(Q). Typically f and G will be elements of

some L”(Q) spaces, so the action of F on v is then simply | fv+ G- Dv. The identity L'u=Fis
interpreted similarly.

Remark. Assumptions (2) and (4) in combination with Holder and Sobolev inequalities imply that
there exists A > 0 so that for every u,v € WO1 2 (Q),

[Bluvl| < Allullwiag) [Vliwizo)- (B.7)

Since (6)) holds, then (I]) and the Poincaré inequality implies that there exists y > 0 so that for every
uew,”(Q)

Bluu) > l[ul[j12q) - (B.8)

Now we describe the important properties of solutions to either Lu=0 or Lu = F that will
be employed in the constructions below. We will use the following version of Moser (boundary)
boundedness.

Lemma 15. [5, Lemma 5.1] Let Q C R? be open and connected. Let u € W2 (Qor) satisfy u =0
along Yog. Let f € L' (Qg) for some £ € (1,], G € L™ (QR)for some m € (2,00| and assume that

Lu<— —divG + f in Qg weakly in the sense that for any @ € W (QR) such that @ > 0 in Qg, we
have

B[u,w]s/G-V<p+f<p-
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Then u™ € L3, (Qg) and for any r <R, s >0,

C
supu’ < :
Q (R—r)*

R R'% |G B.9
() TCs 1 1lze ) TR T Gl | » (B.9)

where C =C (q,s,ﬁ,m, Y, A, ||W] |Lq(QR)> and cg depends only on s. Note that all of the constants
are independent of R.

Remark. Because of assumption (6)), the conclusion of Lemma also holds for the operator L*.
The following Caccioppoli inequality will be used in our constructions.

Lemma 16. [5, Lemma 4.1] If u € Wol’2 (Q) is a weak solution to Lu = 0 in Q and { € C*(R?),
then

/ﬁmﬁ?sc/wﬁwa% (B.10)

Wl La(q), but C is independent of the sets on which

where C is a constant that depends on vy, A, q,
§ and D are supported.

We also rely on a lemma regarding the Holder continuity of solutions.

Lemma 17. [5, Lemma 6.6] Let u € W'? (Byg,) be a solution in the sense that B[u, 9] = 0 for any
(XS WOL2 (BR,)- Then there exists 1 € (0, 1), such that for any R < Ry, if x,y € Bg/>

Iu(x)—u(y)\SCR()(‘x;ﬂ)n(]iR\uF*)ZI*. (B.11)

Green’s functions. This subsection resembles the work done in [13] and [S)]. We use the prop-
erties of our operator as well as the properties of solutions to Lu =F or L*u = F described above
to establish existence, uniqueness, and a collection of a priori estimates for the Dirichlet Green’s
function associated to Q C R?. We follow closely the arguments in [[13] and [5], adapting to n = 2.
As previously mentioned, our estimates are not sharp since we do not obtain logarithmic bounds
for the Green’s functions.

First, we clarify the meaning of the Green’s function.

Definition 4. Let Q be an open, connected, bounded subset of R>. We say that the function T (x,y)
defined on the set {(x,y) € Q x Q:x # y} is the Green’s function of L if it satisfies the following
properties:
1) T'(-,y) is locally integrable and LF -, y) = Oyl for all y € Q in the sense that for every
¢ € C7(Q),
B[F('7y)7¢]:¢(y)' (B.12)
2) Forally € Qandr>0,T(-,y) € Wh2(Q\ Q,(y)). In addition, T'(-,y) vanishes on 9 in
the sense that for every § € C° (Q) satisfying { = 1 on B,(y) for some r > 0, we have

(1= 0T (,y) € Wy 2 (@\ (). (B.13)

3) For some Ly € (1,%0] and mg € (2,00], and any f € L (Q), G € L™ (Q), the function u
given by

/[r %.3) £ (x) + DiT (x,y) - G (x)] dx (B.14)



belongs to WO1 )2 (Q) and satisfies Lu= f—divG in the sense that for every ¢ € C° (Q),

Blu, 9] = /Qf¢+G-D¢. (B.15)

We say that the function T (x,y) is the continuous Green’s function if it satisfies the conditions
above and is also continuous.

We show here that there is at most one Green’s function. In general, we mean uniqueness in the
sense of Lebesgue, i.e. almost everywhere uniqueness. However, when we refer to the continuous
Green’s function, we mean true pointwise equivalence.

Assume that I and I are Green’s functions satisfying Definition @ Then, for all f € L™ (Q), the
functions u and u given by

MﬂzLF®WN@W,ﬁ®=4f@wf@W

satisfy

L'(u—1)=0 inQ
andu—u € WOl ’Z(Q). By uniqueness of solutions ensured by the Lax-Milgram lemma, u —u = 0.
Thus, for a.e. x € Q,

/[F(x,y)—f(x,y)]f(x)dx:o, VfeL”(Q).
Q

Therefore, I' =T a.e. in {x#y}. If we further assume that I" and I are continuous Green’s
functions, then we conclude that ' =T in {x # y}.

Theorem 5. Let Q be an open, connected, bounded subset of R%. Then there exists a unique con-
tinuous Green’s function T'(x,y), defined in {x,y € Q,x # y}, that satisfies Definition 4| We have
[(x,y) = I (y,x), where T* is the unique continuous Green’s function associated to L*. Further-
more, T(x,y) satisfies the following estimates:

TG w2,y + 11T ) lwiz@uo,e) <Cr ¢ Vr>0, (B.16)
TG s, ) F 1T G ) s, ) < Coret5,  Wr>0, Vsel[l,eo), (B.17)
DL (3, oy + IPT (6 s oy S Cor 7575, Wr>0, Wse[12), (BS)
{xeQ:|C(xy)| >+ {yeQ: [C(xy)| >t} <Ct ¢,  Vr>0, (B.19)
{xeQ: D, (x,y)| >t} +|{y€Q: DT (x,y)| >t} <Cr T,  V¥r>0, (B20)
IT(x,y)| <Clx—y|~° Vx #y, (B.21)

where in each case, € > 0 is some arbitrarily small number that may vary from line to line. More-
over, each constant depends on 7y, A, € and the constants from and (B.10), and each Cy
depends additionally on s. Moreover, for any 0 < R < Ry,

. x — 2] L —¢
T () =T () < Cr,C | R¢, (B.22)
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whenever |x—z| < % and

_ n
T () ~T(x.2) SCROC<|y RZ|> R, (B.23)
whenever [y —z| < %, where Cg, and 1 = 1(Ro) are the same as in (B-T1).
Proof of Theorem|5| Letu € WO1 2 (Q). Fix y € Q, p > 0, and consider the linear functional

U u.
By(y)

By the Holder inequality and Sobolev embedding with 2% € (2,00),

/ u|s; |u|swp<y>!‘f*(/\»42*)21*gc\Bp@)\‘zl*(/rDuF)é
B,y |~ |Bp )] /B,y o Q

< Cp 7 [Jully12(q) - (B.24)

Therefore, the functional is bounded on WO1 2 (Q), and by the Lax-Milgram theorem there exists a
unique I'P =T =T (-,y) € WOI’2 (Q) satisfying
1
B[Fp,u] :][ Uu— —— u, \V/MEWOI’Z (Q) (B25)
B |BpO)| /By

By the coercivity of A given by (B.8) along with (B.24), we obtain,
f™
By »)

For some /g € (1,00] and mg € (2,0], let f € L0 (Q) and G € L' (Q). For any ¢ € (1,4y] and
any m € (1,my), it is clear that that f € L’ (Q) and G € L™ (Q) since Q is bounded. Consider the
linear functionals

2 _2
Y|’Fp||W172(Q) < B[Fpal—‘p] = < CP > ||Fprl,2(Q)

so that for any € € (0,1),

The first functional is bounded on WOl 2 () since for every w € WO1 2 (Q) and every ¢ € (1,4),

RS

where we have again used Sobolev embedding with some 2* € (2,e0). Similarly, we see that the
second functional is also bounded on WO1 2 (Q) since for every m € (2,my)

11 11
<l W12y Isupp 1277 < e[ flleqy Isupp 1727 [|Dwl| 20y, (B.27)

1_1
60| < Gl suppGIE S 1Dl (B.28)
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Once again, by Lax-Milgram, we obtain u;,u, € Wl’2 (Q) such that

B [uy,w / fw, YweW,?(Q) (B.29)
and
B [up,w] = / G-Dw, YweW,?(Q). (B.30)
Q
Set w = uy in (B.29) and use the coercivity assumption, (B.8)), for B* along with (B.27)) to get
_1_1
1Dut]]2(0) < ClIf (@ Isuppfll 2T (B.31)
With w = u in (B.30), we similarly obtaln from (B.28)) that
11
||Dus||12 () < CI|Gl|n(q) [supp GI2 . (B.32)
Also, if we take w =T in (B.29) and (]_.SU[), we get
[T =B P =B ) = (B.33)
Q Bp(y)
and
/ G‘Dl—‘p :B*[uz,rp] :B[Fp,uz] :][ up. (B.34)
Q Bp(y)

In particular, with u := u; +uy, we see that

/pr+G-DFp :][ u. (B.35)
Q Bp()’)

Now assume that f and G are supported in Q,(y), for some r > 0. Let uj,u; be as in (B.29),
(B.30)), respectively. Since uy,us € WOI’2 (Q), then uy,uy € WH? (Qy,) and uy,uy = 0 on X, so that
Lemma [15]is applicable. Then, by with some s = 2* € (2,0)

2 - 2 4-4 01 412
ety < € (7 il 2 )+ 7~ 11,
and \ \
2 4 2 2-4 0 2
ol ) < € (77 Ml g+ 1GEmee ) -
By Sobolev embedding and (B.3T)) with supp f C Q, (y),

2
5%

||“1Hi2*(gr(y)) < H”lHiz*(Q) < C||D“1||i2(g) < CHfH%@(Q) 1Q, ()’)| S

I

< | fll2a
Combining the previous two inequalities for u1, we see that
2 -2\ 4-14 2
haall3oq, o) <€ (14775 ) #1111

For any ¢ € (1,/p], choose 2* € (2,0) so that 2% < 1— 1. Since Q is bounded, then so too is r, and
we have

HUIHLw(Q,/Q(y)) <crmite ||f‘|L4 crity 1 112e@,0)) - (B.36)
Mimicking the argument with u,, G and (B.32)), we see that

2 —&\ 2-2 2
me%%wwgc@+rz)rmuamm
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Now for any m € (2,my), choose 2* € (2 o) so that # < 1 — Z and we conclude that
sl (g, ) < CP 5 F 1 Gllimiay = 5% 16l (B.37)
By (B.33) and (B.36)), if p < r/2, we have that for every ¢ € (1, /o],

/Qr(y) )= ‘/erp

By duality, since we can take ¢ = o, this implies that for » > 0,

_2_4
S]ﬁ ( )\le < lnll=s, ) < Netll =@, p) < €72 1@ -
p Y

T 1)) < €75, forallpgg, Vs € [1,). (B.38)
We similarly conclude that
DT 50,0 < Cri 178, forall p < % Vs € [1,2). (B.39)
Note that in both cases, € € (0, 1) is chosen so that the power on r is positive.

Fix x # y and set r := %|x—y|. For p < r/2, I'? is a weak solution to LI® = 0 in Q,/4(x).

Moreover, since I'? € WOl 2(Q), then TP € W2 (&, /2 (x)) and I = 0 on X, 5 (x), so we may use
Lemma 15| Thus, applying (B.9) and (B.38) with s = 1, we get for a.e. x € Q as above,

]Fp(x)| S Cr_2|\Fp|]L1(Qr/4(x)) S Cr_z Hr‘pHLl(Qr(y)) S CI”_E ~ |x—y|_8. (B40)

Now, for any r > 0 and p < r/2, let { be a cut-off function such that
eC™(R"), 0<¢<1, {=loutsideB,(y), {=0inB,;(y), and |D{|<C/r. (B.41)
Then the Caccioppoli inequality of Lemma [[6]implies that

| eorr<c [ pepirr <ot | P ovp<l B4
Q o Q\Q,2 () 2
Combining (B.42)) and (B.40), we have for all r > 0 and { as above,
[y <2 [ giorep 2 [ pgRiep
¢ ¢ ¢ . (B.43)
< Cr‘z/ PP <Cr, wp<-.
(\2/20) 2
It follows from Sobolev embedding with arbitrary 2* € (2,00) and (B.43)) that for r > 0,
2*
* * 2 *
/ o< LierE <e( [Iperor) <ere vp<y
Q\Q,(y Q 2
On the other hand, 1f p > 7, then (B.26) implies that
2*
* * 7 *
/ I g/ I gc(/ |DFP|2) <cr?e,
Q\Q,(y) Q Q
Therefore, combining the previous two results, we have that for any € € (0, 1)
/ P12 <cr ¢, Vrp>o0. (B.44)
Q\Q/()
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2*
Forany € € (0,1),2* € (2,00), fix 7> 0. Let A, ={x € Q: |I?| > 7} and set r = ©~ 2+2%. Then,
using (B.44), we see that if p > 0,
2*%2

ANQO) <7 / . )|rp|2* B S . -
A\Q(y

Since [A;NQ,(y)| < |Q,()| < Cr? = CT_ﬁTg‘S, we have
{xeQ:|P(x)| > 1} <Cr 7% ¥p >0 (B.45)
Fix r > 0 and let ¢ be as in (B.41). Then gives

/ DIPP<Cr, Vr>0, Vp<
Q\Q,(y)

N~

Now, if p > 5, we have from (B.26)) that

/ IDIP|* < / IDTP|* < Cp~ 2 < Cr 2.
Q\Q,(y) Q
Combining the previous two results yields

/ IDIP|> < Cr %, Vrp>0. (B.46)
Q\Q,(y)

Fix > 0. Let A; = {x € Q: |[DI'?| > 7} and set r = T T4, Then, using (B.46), we see that if
p >0,

2

A\ Q)] < 772 / DIPP < Cr22% — cr .
AN\Q(y)

Since |[A;NQ,(y)| < Cr? = Ct T, then

[{xeQ:|DIP(x)| > T} <Cr e Vp >0, (B.47)
For any o > 0 and s > 0, we have
/ IDIP|* < cS|Qr(y)|+/ IDTP|".
Q(y) {Ipre|>o}

/{W }|DFP|S:/O o1 [{|DI?| > max {z, 6 }} | de
>0

2 [ ® 2 s 2
<(Co T+ st dt+C ST redt=C|1— 3 o’ Tte.
0 o S— 15

Therefore, taking ¢ = r_(HS), we conclude that

/ IDIP) < Cr*HOF2 0 wrp >0, Vse (0,12). (B.48)
Qr()’)
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Now we repeat the process for I'P, using in place of (B.47). For any ¢ > 0 and s > 0, we

have
/ TP < 0° 10, (v)] + / rep.
Q,(y) {lrP|>c}

By (B.45)), for s € ( ,2+2* )andp>0
/ |FP|S:/ st H{|TP| > max {7,0}}|dT
{irP>0} 0

v B A ® o2
< Co 277 s dTt+C ST 2427 dT
0 o

Ky 2%2
=C|[1=-——— | 0% 2927,
22
242%¢
242%¢

Taking 0 =r 2~ , we conclude that

/ ( )\rf’ys <Cor 2 Wrp >0, Vse (0,%) . (B.49)
Q(y

Fix s € [1,2) and § € [1,o0). There exists € € (0, 1) and 2* € (2, ) so that s < m and § < 2122*
It follows from (B.48)) and (B.49) that for any r > 0

||FPHW1-S(Q,(y)) <C(r) and HFP||Ls w) <C(r)  uniformly inp. (B.50)

Therefore, (using diagonalization) we can show that there exists a sequence { Pu }::1 tending to 0
and a function I' =T'y, =T"(-,y) such that

IPr ~T inW"(Q,(y)) and in L* (Q, (v)), for all > 0. (B.51)
Furthermore, for fixed ry < r, (B.44) and (B.46) and that Q is bounded imply uniform bounds

on I'Pv in W2 (Q\ Qj, (v)) for small p,. Thus, there exists a subsequence of {p, } (which we
will not rename) and a function I' =Ty, = I'(-,y) such that

Pe =T in W2 (Q\Q, ().

Since =T on , () \ Q,, (v), we can extend I' to the entire Q by setting ' =T on Q\ Q, (y). For
ease of notation, we call the extended function I'. Applying the diagonalization process again, we
conclude that there exists a sequence p;, — 0 and a function I" on Q such that for every s € [1,2)
and § € [1,00),
P ~T in W (Q,(y)) and in LS (Q, (v)), (B.52)
and
Pe =T in W' (Q\Q,(y), (B.53)
forall 0 <rg <r.
Let ¢ € CZ(Q) and r > 0. Choose 11 € C (B, (y)) to be a cutoff function so that 1 = 1 in
B,/ (y). We write ¢ =n¢ + (1 —1n)¢. By (B.25) and the definition of B,

lim — lim B[T?*,n¢] = lim / AVIEE .y +W -V ne.
Jim, Bpﬂ(y)mp aim BIDS,ng] = lim | AVIVE-V(n9) y e
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Note that ¢ and D (n¢) belong to C:° (Q, (v)). From this and the boundedness of A given by
(2), it follows that there exists a s’ > 2 such that each g;;D; (n¢) belongs to L¥ (Q,(y)). Since
W € L1(Q) for some g € (2,00], then Wn¢ € L7 (Q,(y)). Therefore, by (B.52),

lim )nd):/QAVFy-V(WHW-VFyWZB[Fy,mP]- (B.54)
y

pee BP[L(

Another application of shows that

lim 1-n)¢ = lim [ AVIV*-V[(1-n)¢]+W- VIV (1-1)¢.

Jim Bp#(y)( mé = lim | AVLS-VI(1=m)¢] v (1=m)¢
Since ¢ € C° () and € C7 (B, (y)), then (1 —n) ¢ and D[(1 —n) ¢] belong to CZ°(Q\ B,/ (¥))
In combination with (2), this implies that each a;;D; [(1 — 1) ¢] belongs to L* (Q\ B, (y)). Holder’s

inequality and that Q is bounded implies that W (1 —1) ¢ belongs to L? (Q\B,/z (y)) as well.
Therefore, it follows from (B.53]) that

lim (1—n>¢=/AVFy-V[(1—n)¢]+W-VFy(1—n>¢=B[Fy,(1—n>¢]- (B.55)
p=ee Bpp()’) Q

Upon combining (B.54) and (B.55)), we see that for any ¢ € C:° (Q),

60)=lim £ o=lim{ no+lim{ (1-n)

K=o J By, (v) B J By, (v) 1= ) By, (v)
= B[y, n¢] + B[y, (1 —n) ¢] = BILy, ¢].
That is, for any ¢ € C° (Q),
B[Iy, 9] =9 (y)

and I satisfies property in the definition of the Green’s function.

As before, for £y € (1,00] and mg € (2,00], we take f € L (Q), G € L (Q) and let uj,up €
WO1 2 (Q) be the unique weak solutions to Lu; = f and L*up = —divG. That is, u; and uy €
WO1 2 (Q) satisfy (B.29) and (B.30), respectively, so that with u := uj + uy,

B*[u,w]=/wf+Dw~G, VWGWOI’Z(Q).
Q
Then for a.e. y € Q,

u(y) = lim = lim B [rf“,u} — lim B* [u,rﬁﬂ] — lim [ TP f+DIP%.G (B.56)
15 Jp ) B e u==Ja

where we have used - (B.35).
Let 1 € C7 (B, (y)) be as defined in the previous paragraph. Then nf € L (B, (y)). Since Q

is bounded, then f € L' (Q) for some ¢ € (1,2) and it follows that (1—7)f € L (Q\Br/z ).
Equation in combination with a Sobolev inequality implies that for all 0 < ro < r,

[P =T in L7 (Q\ Qy, (7)),
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where ¢/ € (2,0) denotes the Holder conjugate to ¢. Consequently, using the property above and

(B.52) with § = £{, shows that

lim [ TP« f= lim TPun £+ lim P (1—n)f
Hree Q Hree Br(y) pree Q\Br/2y

)
[ rg+ [ ra-ms= 1y
B;(y) Q\B,2(y) Q

Since mg > 2, then m{; € (1,2) and then according to we can pair NG with DI'* in B, (y)
and take the limit. As Q is bounded, then G € L*(Q) so that (1 —1)G € L* (Q\ B, 5 (y)). With
the aid of (B.52) with s = m(, and (B.53), we see that

lim [ DI'P*.G = lim DI'P*.nG+ lim DIPe.(1-n)G
u==Jo i I, ) 1= o\, »(0)

:/ Dr‘-nG+/ DF-(I—n)G:/DF-G.
r(¥) Q\B,/(y) Q

Combining the last two equations with gives (B.14). Property (B.13)) follows as well.
The first part of each of the estimates (B.12)—(B.16) follow almost directly by passage to the
limit and recalling that we use the notation I' =TI'y, = I'(-,y). Indeed, for any r > 0 and any

geL”(Qr(y)), implies that for any s € [1,00)

I'g| = lim [Pu
[re| = im | [ rove

where € > 0 is arbitrarily small and s’ is the Holder conjugate exponent of s. By duality, we obtain
that for every s € [1,00) and r > 0,

_eq2
< Cor &5 HgHLS’(Qr(y))’

el
ITCM s, )y < Csr &,

that is, the first part of (B.17)) holds. A similar argument using (B.48)), (B.44) and (B.46)) yields the
first parts of (B.18) and (B.16), respectively. Now, as in the proofs of (B.43)) and (B.47), the first

part of (B.16) gives the first parts of (B.19) and (B.20).
Passing to the proof of (B.21)), fix x # y. For a.e. x € Q, the Lebesgue differentiation theorem

implies that

1
['(x)= lim I'=1lm — [T
(x) §—0* Jas(x) 50+ |§25|/ X5 (x)>

where ) denotes an indicator function. Assuming as we may that 28 < min {dy, |x — y|}, it follows
that Yo, (x) = XBs(x) € L¥ (Q\ Qs (y)) for any 2* € (2,00), where d, = dist(x,dQ). Therefore,
(B.52)) implies that

X hm— [Pu 5 = lim [Pe,
B | T = fim g [ ™ = fm f,

If py < % lx—y|, pu < d,, then (B.40) implies that for a.e. z € Bs (x)

TP (2)| < Clz—y| ¢,
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where C is independent of py,. Since [z—y| > 4 [x—y| for every z € Bs (x) C By_y| /> (x), then
[ITP4 ]|y ) < Clx=y7°

By combining with the observations above, we see that for a.e. x € Q,

1
I X, = lim — T = lim lim r‘Pu < lim lim Clx — € —Clx— —57
) 607 |QS|/ X050 e e ) 50+ oo b =yI" X =yl
which is (B.21).

Now we have to prove that I'(-,y) = 0 on dQ in the sense that for all { € C;° (Q) satisfying { = 1
on B,(y) for some r > 0, equation holds. By Mazur’s lemma, WO1 2(Q) is weakly closed
in W12 (Q). Therefore, since (1 — §)[Pr =TPu — {TPr € Wol’2 () for all p, > 0, it suffices for

to show that
(1-0)rPe —~ (1-4)r inwh(Q). (B.57)

Since (1 — &) =0 on B,(y), the result (B.57) follows from (B.53)). Indeed,

/( y)¢ = / )(1-¢ —hm/Fpﬂ (1=C)¢

= lim [ (1= (.3)9, ¥p€L*(@), and
—eJO

[ 1= 0Ty = [ Teo)DE v [ DrCy)-(1-Ow
Q Q Q

=—1lim [ TP(. y)D{ -w+ lim [ DIP(-y)- (1 -8y

H—=o0 O U= Jo
= lim | D[(1-{)TP(-,))]-y, VyeLl*(Q)?,
U= J o

so that holds. Since I'(x,y) satisfies — (B.13), it is the unique Green’s function
associated to L.

Fix x,y € Q and 0 < R < Ry < |x—y|. Then LT'(-,y) = 0 on Bg, (x). Therefore, by Hélder
continuity of solutions described by (B.T1)) and the pointwise bound (B.2T)), whenever |x —z| < §
we have

! x—z\" _
|F<x’y)_r(z’y>’§CR0( ) CHF('J)HL“(BR(x))SCROC(| R |> R%.

This is the Holder continuity of I'(-,y) described by (B.22)).

Using the pointwise bound on I'? in place of those for I', a similar statement holds for I'? with
p < %|x — |, and it follows that for any compact set K € Q\ {y}, the sequence {I"P* (-,y)};_,
is equicontinuous on K. Furthermore, for any such K € Q\ {y}, there are constants Cx < e and
px > 0 such that for all p < pk,

x —z]

TP (o) =) < Cik-
Passing to a subsequence if necessary, we have that for any such compact K € Q\ {y},
P (y) = T(,y) (B.58)

uniformly on K.
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We now aim to show
L(ey) =T"(yx),
where I'* is the Green’s function associated to L*. Let ['° =T? =T (x,-) denote the averaged

function associated to L* at the point x € Q. That is, we follow the procedure from above that was
used to construct Fﬁ , except that we work with the adjoint operator L* and consider the function in
terms of the variable y centred at the point x € Q. The resulting function is Ie.

By the same arguments used for I', we obtain a sequence {0y },_,, 6y — 0, such that [ (-,x)=
I'% converges to I'* (-,x) uniformly on compact subsets of Q\ {x}, where I'* (-,x) is a Green’s

function for L* that satisfies the properties analogous to those for I'(-,y). In particular, I* (-, x) is
Holder continuous.

By (B.23)), for p, and oy sufficiently small,

][ [ (,x) = B [T9, T | = B* [T, 1] =f TP (). (B.59)
Bpy () Boy (x)

gl-iV::][ f‘o'v (.’X):f pr (;y)
Bp,u())) Bgy (x)

By continuity of I'P (-, y), it follows that for any x # y € Q,

Define

lim guy = lim I (-, x) = TP (x,y),
Ve oMY T U Bp, )
so that by (B.38),
. . — . pp' —
Jim Lim g,y = lim I (x,y) = I'(x,5).
But by weak convergence in W' (B, (y)), i.e., (B:32),
lim g,y = lim rov (+,x) :][ " (-,x),
Vo V7% B, (v) Bp, (»)

and it follows then by continuity of I'™* (-, x) that

lim lim g,y = lim T (-, x) = T* (y,x).
e v%wguv i B ) ( ) (y )
Therefore, for all x # y,
I(xy) =17 (3x). (B.60)
Consequently, all the estimates which hold for I"(+,y) hold analogously for I"(x, -) and the proof is
complete. U

Remark. We have seen that there is a subsequence {pﬂ}::p pu — 0, such that TP« (x,y) —
I'(x,y) for all x € Q\ {y}. In fact, a stronger result can be proved. By (B.59),

I* (x,y) = lim I (-,y) = lim o (-,x) :][ I*(-,x).
Bp(Y)

V7% JBgy (x) V7 By (y)
By (B.60)), this gives
P (x,y)z][ [ (x,z)dz.
Bp(y)
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By continuity, for all x # y,
lim I (x,y) = T(x,5).
p—0
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