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Abstract

In this paper, we would like to derive a quantitative uniqueness estimate,
the three-region inequality, for the second order elliptic equation with jump
discontinuous coefficients. The derivation of the inequality relies on the Carle-
man estimate proved in our previous work [5]. We then apply the three-region
inequality to study the size estimate problem with one boundary measurement.

1 Introduction

In this work we aim to study the size estimate problem with one measurement when
the background conductivity has jump interfaces. A typical application of this study
is to estimate the size of a cancerous tumor inside an organ by the electric impedance
tomography (EIT). In this case, considering discontinuous medium is typical, for
instance, the conductivities of heart, liver, intestines are 0.70 (S/m), 0.10 (S/m), 0.03
(S/m), respectively. Previous works on this problem assumed that the conductivity
of the studied body is Lipschitz continuous, see, for example, [3, 4]. The first result
on the size estimate problem with a discontinuous background conductivity was given
in [17], where only the two dimensional case was considered. In this paper, we will
study the problem in dimension n ≥ 2.

The main ingredients of our method are quantitative uniqueness estimates for

div(A∇u) = 0 Ω ⊂ Rn. (1.1)

Those estimates are well-known when A is Lipschitz continuous. The derivation of the
estimates is based on the Carleman estimate or the frequency function method. For
n = 2 and A ∈ L∞, quantitative uniqueness estimates are obtained via the connection
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‡Universitá di Firenze, Italy. Email: sergio.vessella@dmd.unifi.it
§National Taiwan University, Taiwan. Email: jnwang@ntu.edu.tw

1



between (1.1) and quasiregular mappings. This is the method used in [17]. For n ≥ 3,
the connection with quasiregular mappings is not true. Hence we return to the old
method – the Carleman estimate, to derive quantitative uniqueness estimates when
A is discontinuous. Precisely, when A has a C1,1 interface and is Lipschitz away from
the interface, a Carleman estimate was obtained in [5] (see [10, 11, 12] for related
results). Here we will derive three-region inequalities using this Carleman estimate.
The three-region inequality provides us a way to propagate ”smallness” across the
interface (see also [11] for similar estimates). Relying on the three-region inequality,
we then derive bounds of the size of an inclusion with one boundary measurement.
For other results on the size estimate, we mention [1] for the isotropic elasticity,
[14, 15, 16] for the isotropic/anisotropic thin plate, [7, 6] for the shallow shell.

2 The Carleman estimate

In this section, we would like to describe the Carleman estimate derived in [5]. We
first denote H± = χRn± where Rn

± = {(x, y) ∈ Rn−1 × R : y ≷ 0} and χRn± is the
characteristic function of Rn

±. Let u± ∈ C∞(Rn) and define

u = H+u+ +H−u− =
∑
±

H±u±,

hereafter,
∑
± a± = a+ + a−, and

L(x, y, ∂)u :=
∑
±

H±divx,y(A±(x, y)∇x,yu±), (2.1)

where
A±(x, y) = {a±ij(x, y)}ni,j=1, x ∈ Rn−1, y ∈ R (2.2)

is a Lipschitz symmetric matrix-valued function satisfying, for given constants λ0 ∈
(0, 1], M0 > 0,

λ0|z|2 ≤ A±(x, y)z · z ≤ λ−1
0 |z|2, ∀(x, y) ∈ Rn, ∀ z ∈ Rn (2.3)

and
|A±(x′, y′)− A±(x, y)| ≤M0(|x′ − x|+ |y′ − y|). (2.4)

We write
h0(x) := u+(x, 0)− u−(x, 0), ∀x ∈ Rn−1, (2.5)

h1(x) := A+(x, 0)∇x,yu+(x, 0) · ν − A−(x, 0)∇x,yu−(x, 0) · ν, ∀x ∈ Rn−1, (2.6)

where ν = −en.
For a function h ∈ L2(Rn), we define

ĥ(ξ, y) =

∫
Rn−1

h(x, y)e−ix·ξ dx, ξ ∈ Rn−1.
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As usual H1/2(Rn−1) denotes the space of the functions f ∈ L2(Rn−1) satisfying∫
Rn−1

|ξ||f̂(ξ)|2dξ <∞,

with the norm

||f ||2H1/2(Rn−1) =

∫
Rn−1

(1 + |ξ|2)1/2|f̂(ξ)|2dξ. (2.7)

Moreover we define

[f ]1/2,Rn−1 =

[∫
Rn−1

∫
Rn−1

|f(x)− f(y)|2

|x− y|n
dydx

]1/2

,

and recall that there is a positive constant C, depending only on n, such that

C−1

∫
Rn−1

|ξ||f̂(ξ)|2dξ ≤ [f ]21/2,Rn−1 ≤ C

∫
Rn−1

|ξ||f̂(ξ)|2dξ,

so that the norm (2.7) is equivalent to the norm ||f ||L2(Rn−1) + [f ]1/2,Rn−1 . From now
on, we use the letters C,C0, C1, · · · to denote constants (depending on λ0,M0, n).
The value of the constants may change from line to line, but it is always greater than
1. We will denote by Br(x) the (n− 1)-ball centered at x ∈ Rn−1 with radius r > 0.
Whenever x = 0 we denote Br = Br(0).

Theorem 2.1 Let u and A±(x, y) satisfy (2.1)-(2.6). There exist L, β, δ0, r0, τ0 pos-
itive constants, with r0 ≤ 1, depending on λ0,M0, n, such that if α+ > Lα−, δ ≤ δ0

and τ ≥ τ0, then∑
±

2∑
|k|=0

τ 3−2|k|
∫
Rn±
|Dku±|2e2τφδ,±(x,y)dxdy +

∑
±

1∑
|k|=0

τ 3−2|k|
∫
Rn−1

|Dku±(x, 0)|2e2φδ(x,0)dx

+
∑
±

τ 2[eτφδ(·,0)u±(·, 0)]21/2,Rn−1 +
∑
±

[D(eτφδ,±u±)(·, 0)]21/2,Rn−1

≤C

(∑
±

∫
Rn±
|L(x, y, ∂)(u±)|2 e2τφδ,±(x,y)dxdy + [eτφδ(·,0)h1]21/2,Rn−1

+[∇x(e
τφδh0)(·, 0)]21/2,Rn−1 + τ 3

∫
Rn−1

|h0|2e2τφδ(x,0)dx+ τ

∫
Rn−1

|h1|2e2τφδ(x,0)dx

)
.

(2.8)
where u = H+u+ + H−u−, u± ∈ C∞(Rn) and suppu ⊂ Bδ/2 × [−δr0, δr0], and
φδ,±(x, y) is given by

φδ,±(x, y) =


α+y

δ
+
βy2

2δ2
− |x|

2

2δ
, y ≥ 0,

α−y

δ
+
βy2

2δ2
− |x|

2

2δ
, y < 0,

(2.9)

and φδ(x, 0) = φδ,+(x, 0) = φδ,−(x, 0).
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Remark 2.2 It is clear that (2.8) remains valid if can add lower order terms∑
±H± (W · ∇x,yu± + V u±), where W,V are bounded functions, to the operator L.

That is, one can substitute

L(x, y, ∂)u =
∑
±

H±divx,y(A±(x, y)∇x,yu±) +
∑
±

H± (W · ∇x,yu± + V u±) (2.10)

in (2.8).

3 Three-region inequalities

Based on the Carleman estimate given in Theorem 2.1, we will derive three-region
inequalities across the interface y = 0. Here we consider u = H+u+ +H−u− satisfying

L(x, y, ∂)u = 0 in Rn,

where L is given in (2.10) and

‖W‖L∞(Rn) + ‖V ‖L∞(Rn) ≤ λ−1
0 .

Fix any δ ≤ δ0, where δ0 is given in Theorem 2.1.

Theorem 3.1 Let u and A±(x, y) satisfy (2.1)-(2.6) with h0 = h1 = 0. Then there
exist C and R, depending only on λ0,M0, n, such that if 0 < R1, R2 ≤ R, then∫

U2

|u|2dx ≤ (eτ0R2 + CR−4
1 )

(∫
U1

|u|2dxdy
) R2

2R1+3R2

(∫
U3

|u|2dxdy
) 2R1+2R2

2R1+3R2

, (3.1)

where τ0 is the constant derived in Theorem 2.1,

U1 = {z ≥ −4R2,
R1

8a
< y <

R1

a
},

U2 = {−R2 ≤ z ≤ R1

2a
, y <

R1

8a
},

U3 = {z ≥ −4R2, y <
R1

a
},

a = α+/δ, and

z(x, y) =
α−y

δ
+
βy2

2δ2
− |x|

2

2δ
. (3.2)

Proof. To apply the estimate (2.8), u needs to satisfy the support condition. Also,
we can choose α+ and α− in Theorem 2.1 such that α+ > α−. We can choose r ≤ r0

satisfying

r ≤ min

{
13α−

8β
,

2δ

19α− + 8β

}
. (3.3)
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Figure 1: U1 and U2 are shown in green and red, respectively. U3 is the region
enclosed by blue boundaries.

Note that the choices of δ, r also depend on λ0,M0, n. We then set

R =
α−r

16
.

It follows from (3.3) that

R ≤
13α2

−

128β
. (3.4)

Given 0 < R1 < R2 ≤ R. Let ϑ1(t) ∈ C∞0 (R) satisfy 0 ≤ ϑ1(t) ≤ 1 and

ϑ1(t) =

{
1, t > −2R2,

0, t ≤ −3R2.

Also, define ϑ2(y) ∈ C∞0 (R) satisfying 0 ≤ ϑ2(y) ≤ 1 and

ϑ2(y) =


0, y ≥ R1

2a
,

1, y <
R1

4a
.

Finally, we define ϑ(x, y) = ϑ1(z(x, y))ϑ2(y), where z is defined by (3.2).
We now check the support condition for ϑ. From its definition, we can see that

suppϑ is contained in 
z(x, y) =

α−y

δ
+
βy2

2δ2
− |x|

2

2δ
> −3R2,

y <
R1

2a
.

(3.5)
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In view of the relation
α+ > α− and a =

α+

δ
,

we have that
R1

2a
<

δ

2α−
·R1 <

δ

α−
· α−r

16
< δr,

i.e., y < δr ≤ δr0. Next, we observe that

−3R2 > −3R = −3α−r

16
>
α−
δ

(−δr) +
β

2δ2
(−δr)2,

which gives −δr < y due to (3.3). Consequently, we verify that |y| < δr. One the
other hand, from the first condition of (3.5) and (3.3), we see that

|x|2

2δ
< 3R2 +

α−y

δ
+
βy2

2δ2
≤ 3α−r

16
+
α−
δ
· δr +

β

2δ2
· δ2r2 ≤ δ

8
,

which gives |x| < δ/2.
Since h0 = 0, we have that

ϑ(x, 0)u+(x, 0)− ϑ(x, 0)u−(x, 0) = 0, ∀ x ∈ Rn−1. (3.6)

Applying (2.8) to ϑu and using (3.6) yields

∑
±

2∑
|k|=0

τ 3−2|k|
∫
Rn
±

|Dk(ϑu±)|2e2τφδ,±(x,y)dxdy

≤C
∑
±

∫
Rn
±

|L(x, y, ∂)(ϑu±)|2 e2τφδ,±(x,y)dxdy

+ Cτ

∫
Rn−1

|A+(x, 0)∇x,y(ϑu+(x, 0)) · ν − A−(x, 0)∇x,y(ϑu−)(x, 0) · ν|2e2τφδ(x,0)dx

+ C[eτφδ(·,0)
(
A+(x, 0)∇x,y(ϑu+)(x, 0) · ν − A−(x, 0)∇x,y(ϑu−)(x, 0) · ν

)
]21/2,Rn−1 .

(3.7)
We now observe that ∇x,yϑ1(z) = ϑ′1(z)∇x,yz = ϑ′1(z)(−x

δ
, α−
δ

+ βy
δ2

) and it is nonzero
only when

−3R2 < z < −2R2.

Therefore, when y = 0, we have

2R2 <
|x|2

2δ
< 3R2.

Thus, we can see that

|∇x,yϑ(x, 0)|2 ≤ CR−2
2

(
6R2

δ
+
α2
−

δ2

)
≤ CR−2

2 . (3.8)
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By h0(x) = h1(x) = 0, (3.8), and the easy estimate of [5, Proposition 4.2], it is not
hard to estimate

τ

∫
Rn−1

|A+(x, 0)∇x,y(ϑu+(x, 0)) · ν − A−(x, 0)∇x,y(ϑu−)(x, 0) · ν|2e2τφδ(x,0)dx

+ [eτφδ(·,0)
(
A+(x, 0)∇x,y(ϑu+)(x, 0) · ν − A−(x, 0)∇x,y(ϑu−)(x, 0) · ν

)
]21/2,Rn−1

≤CR−2
2 e−4τR2

(
τ

∫
{
√

4δR2≤|x|≤
√

6δR2}
|u+(x, 0)|2dx+ [u+(x, 0)]21/2,{

√
4δR2≤|x|≤

√
6δR2}

)
+ Cτ 2R−3

2 e−4τR2

∫
{
√

4δR2≤|x|≤
√

6δR2}
|u+(x, 0)|2dx

≤Cτ 2R−3
2 e−4τR2E,

(3.9)
where

E =

∫
{
√

4δR2≤|x|≤
√

6δR2}
|u+(x, 0)|2dx+ [u+(x, 0)]21/2,{

√
4δR2≤|x|≤

√
6δR2}.

Expanding L(x, y, ∂)(ϑu±) and considering the set where Dϑ 6= 0, we can estimate

∑
±

1∑
|k|=0

τ 3−2|k|
∫
{−2R2≤z≤R1

2a
, y<

R1
4a
}
|Dku±|2e2τφδ,±(x,y)dxdy

≤C
∑
±

1∑
|k|=0

R
2(|k|−2)
2

∫
{−3R2≤z≤−2R2, y<

R1
2a
}
|Dku±|2e2τφδ,±(x,y)dxdy

+ C
1∑
|k|=0

R
2(|k|−2)
1

∫
{−3R2≤z, R1

4a
<y<

R1
2a
}
|Dku+|2e2τφδ,+(x,y)dxdy

+ Cτ 2R−3
2 e−4τR2E

≤C
∑
±

1∑
|k|=0

R
2(|k|−2)
2 e−4τR2e2τ

(α+−α−)

δ
R1
4a

∫
{−3R2≤z≤−2R2, y<

R1
4a
}
|Dku±|2dxdy

+
1∑
|k|=0

R
2(|k|−2)
1 e2τ

α+
δ
R1
2a e2τ β

2δ2
(
R1
2a

)2
∫
{z≥−3R2,

R1
4a
<y<

R1
2a
}
|Dku+|2dxdy

+ Cτ 2R−3
2 e−4τR2E.

(3.10)
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Let us denote U1 = {z ≥ −4R2,
R1

8a
< y < R1

a
}, U2 = {−R2 ≤ z ≤ R1

2a
, y < R1

8a
}.

From (3.10) and interior estimates (Caccioppoli’s type inequality), we can derive that

τ 3e−2τR2

∫
U2

|u|2dxdy

≤ τ 3e−2τR2

∫
{−R2≤z≤R1

2a
, y<

R1
8a
}
|u|2dxdy

≤
∑
±

τ 3

∫
{−2R2≤z≤R1

2a
, y<

R1
4a
}
|u±|2e2τφδ,±(x,y)dxdy

≤C
∑
±

1∑
|k|=0

R
2(|k|−2)
2 e−4τR2e2τ

(α+−α−)

δ
R1
4a

∫
{−3R2≤z≤−2R2, y<

R1
4a
}
|Dku±|2dxdy

+
1∑
|k|=0

R
2(|k|−2)
1 e2τ

α+
δ
R1
2a e2τ β

2δ2
(
R1
2a

)2
∫
{z≥−3R2,

R1
4a
<y<

R1
2a
}
|Dku+|2dxdy

+ Cτ 2R−3
2 e−4τR2E

≤CR−4
1 e−3τR2

∫
{−4R2≤z≤−R2, y<

R1
a
}
|u|2dxdy + Cτ 2R−3

2 e−4τR2E

+ CR−4
1 e

(1+
βR1
4α2−

)τR1

∫
{z≥−4R2,

R1
8a
<y<

R1
a
}
|u|2dxdy

≤CR−4
1

(
e2τR1

∫
U1

|u|2dxdy + τ 2e−3τR2F

)
,

(3.11)

where

F =

∫
{z≥−4R2, y<

R1
a
}
|u|2dxdy

and we used the inequality βR1

4α2
−
< 1 due to (3.4).

Dividing τ 3e−2τR2 on both sides of (3.11) implies that∫
U2

|u|2dxdy ≤ CR−4
1

(
e2τ(R1+R2)

∫
U1

|u|2dxdy + e−τR2F

)
. (3.12)

Now, we consider two cases. If
∫
U1
|u|2dxdy 6= 0 and

e2τ0(R1+R2)

∫
U1

|u|2dxdy < e−τ0R2F,

then we can pick a τ > τ0 such that

e2τ(R1+R2)

∫
U1

|u|2dxdy = e−τR2F.
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Using such τ , we obtain from (3.12) that∫
U2

|u|2dxdy ≤ CR−4
1 e2τ(R1+R2)

∫
U1

|u|2dxdy

= CR−4
1

(∫
U1

|u|2dxdy
) R2

2R1+3R2

(F )
2R1+2R2
2R1+3R2 .

(3.13)

If
∫
U1
|u|2dxdy = 0, then letting τ → ∞ in (3.12) we have

∫
U2
|u|2dxdy = 0 as well.

The three-regions inequality (3.1) obviously holds.
On the other hand, if

e−τ0R2F ≤ e2τ0(R1+R2)

∫
U1

|u|2dxdy,

then we have∫
U2

|u|2dx ≤ (F )
R2

2R1+3R2 (F )
2R1+2R2
2R1+3R2

≤ exp (τ0R2)

(∫
U1

|u|2dxdy
) R2

2R1+3R2

(F )
2R1+2R2
2R1+3R2 .

(3.14)

Putting together (3.13), (3.14), we arrive at∫
U2

|u|2dx ≤ (exp (τ0R2) + CR−4
1 )

(∫
U1

|u|2dxdy
) R2

2R1+3R2

(F )
2R1+2R2
2R1+3R2 . (3.15)

2

4 Size estimate

We will apply the three-region inequality (3.1) to estimate the size of embedded
inclusion in this section. Here we denote Ω a bounded open set in Rn with C1,α

boundary ∂Ω with constants s0, L0, where 0 < α ≤ 1. Assume that Σ is a C2

hypersurface with constants r0, K0 satisfying

dist(Σ, ∂Ω) ≥ d0 (4.1)

for some d0 > 0. We divide Ω into three sets, namely,

Ω = Ω+ ∪ Σ ∪ Ω−

where Ω± are open subsets. Note that Ω− = ∂Ω ∪ Σ and ∂Ω+ = Σ. We also define

Ωh = {x ∈ Ω : dist(x, ∂Ω) > h}.
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Definition 4.1 [C1,α regularity] We say that Σ is C2 with constants r0, K0 if for any
P ∈ Σ there exists a rigid transformation of coordinates under which P = 0 and

Ω± ∩B(0, r0) = {(x, y) ∈ B(0, r0) ⊂ Rn : y ≷ ψ(x)},

where ψ is a C2 function on Br0(0) satisfying ψ(0) = 0 and

‖ψ‖C2(Br0 (0)) ≤ K0.

The definition of C1,α boundary is similar. Note that B(a, r) stands for the n-ball
centered at a with radius r > 0. We remind the reader that Br(a) denotes the
(n− 1)-ball centered at a with radius r > 0.

Assume that A± = {a±ij(x, y)}ni,j=1 satisfy (2.3) and (2.4). Let us define H± = χΩ± ,
A = H+A+ +H−A−, u = H+u+ +H−u−. We now consider the conductivity equation

div(A∇u) = 0 in Ω. (4.2)

It is not hard to check that u satisfies homogeneous transmission conditions (2.5),
(2.6) (with h0 = h1 = 0), where in this case ν is the outer normal of Σ. For
φ ∈ H1/2(∂Ω), let u solve (4.2) and satisfy the boundary value u = φ on ∂Ω.

Next we assume that D is a measurable subset of Ω. Suppose that Â is a sym-
metric n × n matrix with L∞(Ω) entries. In addition, we assume that there exist
η > 0, ζ > 1 such that

(1 + η)A ≤ Â ≤ ζA a.e. in Ω (4.3)

or η > 0, 0 < ζ < 1 such that

ζA ≤ Â ≤ (1− η)A a.e. in Ω. (4.4)

Now let v = H+v+ +H−v− be the solution of{
div((AχΩ\D̄ + ÂχD)∇v) = 0 in Ω,

v = φ on ∂Ω.
(4.5)

The inverse problem considered here is to estimate |D| by the knowledge of {φ,A∇v ·
ν|∂Ω}. In this work we would like to consider the most interesting case where

D̄ ⊆ Ω̄+. (4.6)

In practice, one could think of Ω+ being an organ and D being a tumor. The aim is
to estimate the size of D by measuring one pair of voltage and current on the surface
of the body.

We denote W0 and W the powers required to maintain the voltage φ on ∂Ω when
the inclusion D is absent or present. It is easy to see that

W0 =

∫
∂Ω

φA∇u · ν =

∫
Ω

A∇u · ∇u
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and

W =

∫
∂Ω

φ(AχΩ\D̄ + ÂχD)∇v · ν =

∫
Ω

(AχΩ\D̄ + ÂχD)∇v · ∇v.

The size of D will be estimate by the power gap W −W0. To begin, we recall the
following energy inequalities proved in [4].

Lemma 4.1 [4, Lemma 2.1] Assume that A satisfies the ellipticity condition (2.3).
If either (4.3) or (4.4) holds, then

C1

∫
D

|∇u|2 ≤ |W0 −W | ≤ C2

∫
D

|∇u|2, (4.7)

where C1, C2 are constants depending only on λ, η, and ζ.

The derivation of bounds on |D| will be based on (4.7) and the following Lipschitz
propagation of smallness for u.

Proposition 4.1 (Lipschitz propagation of smallness) Let u ∈ H1(Ω) be the solution
of (4.2) with Dirichlet data φ. For any B(x, ρ) ⊂ Ω+, we have that∫

B(x,ρ)

|∇u|2 ≥ C

∫
Ω

|∇u|2, (4.8)

where C depends on Ω±, d0, λ0, M0, r0, K0, s0, L0, α, α′, ρ, and

‖φ− φ0‖C1,α′ (∂Ω)

‖φ− φ0‖H1/2(∂Ω)

,

for φ0 = |∂Ω|−1
∫
∂Ω
φ. Here α′ satisfies 0 < α′ < α

(α+1)n
.

Before proving Proposition 4.1, we need to adjust the three-region inequality (3.1)
for the C2 interface Σ. Let 0 ∈ Σ and the coordinate transform (x′, y′) = T (x, y) =
(x, y − ψ(x)) for x ∈ Bs0(0). Denote Ũ = T (B(0, s0)) and Ã± = {ã±i,j}ni,j=1 the

coefficients of A± in the new coordinates (x′, y′). It is easy to see that Ã± satisfies
(2.3) and (2.4) with possible different constants λ̃0, M̃0, depending on λ0,M0, r0, K0.
Then there exist C and R̃, depending on λ̃0, M̃0, n, such that for

0 < R1 < R2 ≤ R̃ (4.9)

and U1, U2, U3 defined as in Theorem 3.1, we have that U3 ⊂ Ũ (so U1, U2 are con-
tained in Ũ as well) and (3.1) holds. Now let Ũj = T−1(Uj), j = 1, 2, 3, then (3.1)
becomes∫

Ũ2

|u|2dxdy ≤ C

(∫
Ũ1

|u|2dxdy
) R2

2R1+3R2

(∫
Ũ3

|u|2dxdy
) 2R1+2R2

2R1+3R2

, (4.10)

11



where C depends on λ0,M0, r0, K0, n, R1, R2. Furthermore, by Caccioppoli’s inequal-
ity and generalized Poincaré’s inequality (see (3.8) in [2]), we obtain from (4.10)
that ∫

Ũ2

|∇u|2dxdy ≤ C

(∫
Ũ1

|∇u|2dxdy
) R2

2R1+3R2

(∫
Ũ3

|∇u|2dxdy
) 2R1+2R2

2R1+3R2

(4.11)

with a possibly different constant C.
Since A+ (respectively A−) is Lipschitz in Ω+ (respectively Ω−), the following

three-sphere inequality is well-known. Let u± be a solution to div(A±∇u±) = 0 in
Ω±. Then for B(x0, r̄) ⊂ Ω+ (or B(x0, r̄) ⊂ Ω−) and 0 < r1 < r2 < r3 < r̄, we have
that∫

B(x0,r2)

|∇u±|2dxdy ≤ C

(∫
B(x0,r1)

|∇u±|2dxdy
)θ (∫

B(x0,r3)

|∇u±|2dxdy
)1−θ

,

(4.12)
where 0 < θ < 1 and C depend on λ0,M0, n, r1/r3, r2/r3.

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. It suffices to study the case where ρ is small. Since
Σ ∈ C2, it satisfies both the uniform interior and exterior sphere properties, i.e.,
there exists a0 > 0 such that for all z ∈ Σ, there exist balls B ⊂ Ω+ and B′ ⊂ Ω− of

radius a0 such that B ∩ Σ = B
′ ∩ Σ = {z}. Next let νz be the unit normal at z ∈ Σ

pointing into Ω+ (inwards) and L = {z + tνz ⊂ Rn : t ∈ [ρ0,−3ρ0]}. We then fix
R1, R2 satisfying (4.9) and choose ρ0 > 0 so that

Sz = ∪y∈LB(y, ρ0) ⊂ Ũ2.

Denote κ = R2/(2R1 + 3R2). Note that we move the construction of the three-region
inequality from 0 to z.

Let x ∈ Ω+ and consider B(x, ρ) ⊂ Ω+, where ρ ≤ min{a0, ρ0}. For any y ∈ Ω2ρ,
we discuss three cases.
(i) Let y ∈ Ω+,ρ, then by (4.12) and the chain of balls argument, we have that∫

B(y,ρ)
|∇u|2∫

Ω
|∇u|2

≤ C

(∫
B(x,ρ)

|∇u|2∫
Ω
|∇u|2

)θN1

, (4.13)

where N1 depends on Ω+ and ρ.
(ii) Let y ∈ {y ∈ Ω+ : dist(y,Σ) ≤ ρ}∪{y ∈ Ω− : dist(y,Σ) ≤ 3ρ}, then B(y, ρ) ⊂ Sz
for some z ∈ Σ. Note that Ũ1 ⊂ Ω+,ρ (taking ρ even smaller if necessary). We then
apply (4.13) iteratively to estimate∫

Ũ1
|∇u|2∫

Ω
|∇u|2

≤ C

(∫
B(x,ρ)

|∇u|2∫
Ω
|∇u|2

)θN1

, (4.14)
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where C depends on Ũ1 and ρ. Combining estimates (4.14) and (4.11) yields∫
B(y,ρ)

|∇u|2∫
Ω
|∇u|2

≤ C

(∫
B(x,ρ)

|∇u|2∫
Ω
|∇u|2

)κθN1

. (4.15)

(iii) Finally, we consider the case where y ∈ Ω−∩Ω2ρ and dist(y,Σ) > 3ρ. We observe
that if y∗ = z + (−3ρ)νz, then (4.15) implies∫

B(y∗,ρ)
|∇u|2∫

Ω
|∇u|2

≤ C

(∫
B(x,ρ)

|∇u|2∫
Ω
|∇u|2

)κθN1

. (4.16)

Again using (4.12) and the chain of balls argument (starting with (4.16)), we obtain
that ∫

B(y,ρ)
|∇u|2∫

Ω
|∇u|2

≤ C

(∫
B(x,ρ)

|∇u|2∫
Ω
|∇u|2

)κθN1θN2

. (4.17)

Putting together (4.13), (4.15), and (4.17) gives∫
B(y,ρ)

|∇u|2∫
Ω
|∇u|2

≤ C

(∫
B(x,ρ)

|∇u|2∫
Ω
|∇u|2

)s

(4.18)

for all y ∈ Ω2ρ, where 0 < s < 1 and C depends on λ0,M0, n, r0, K0, ρ,Ω±.
In view of (4.18) and covering Ω3ρ with balls of radius ρ, we have that∫

Ω3ρ
|∇u|2∫

Ω
|∇u|2

≤ C

(∫
B(x,ρ)

|∇u|2∫
Ω
|∇u|2

)s

. (4.19)

Note that u − φ0 is the solution to (4.2) with Dirichlet boundary value φ − φ0. By
Corollary 1.3 in [13], we have that

‖∇u‖2
L∞(Ω) = ‖∇(u− φ0)‖2

L∞(Ω) ≤ C‖φ− φ0‖2
C1,α′ (∂Ω)

with 0 < α′ < α
(α+1)n

, which implies∫
Ω\Ω3ρ

|∇u|2 ≤ C|Ω \ Ω5ρ|‖φ− φ0‖2
C1,α′ (∂Ω)

≤ Cρ‖φ− φ0‖2
C1,α′ (∂Ω)

. (4.20)

Here we have used |Ω\Ω5ρ| . ρ proved in [3]. Using the Poincaré inequality, we have

‖φ− φ0‖2
H1/2(∂Ω) ≤ C‖u− φ0‖2

H1(Ω) ≤ C‖∇u‖2
L2(Ω).

Combining this and (4.20), we see that if ρ is small enough depending on Ω±, d0, λ0,
M0, r0, K0, s0, L0, α, α′, ρ, and ‖φ− φ0‖C1,α′ (∂Ω)/‖φ− φ0‖H1/2(∂Ω), then

‖∇u‖2
L2(Ω3ρ)

‖∇u‖2
L2(Ω)

≥ 1

2
.
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The proposition follows from this and (4.19). 2

We now have enough tools to derive bounds on |D|.

Theorem 4.2 Suppose that the assumptions of this section hold.

(i) If, moreover, there exists h > 0 such that

|Dh| ≥
1

2
|D| (fatness condition). (4.21)

Then there exist constants K1, K2 > 0 depending only on Ω±, d0, h, λ0, M0,
r0, K0, s0, L0, α, α′, and ‖φ− φ0‖C1,α′ (∂Ω)/‖φ− φ0‖H1/2(∂Ω), such that

K1

∣∣∣∣W0 −W
W0

∣∣∣∣ ≤ |D| ≤ K2

∣∣∣∣W0 −W
W0

∣∣∣∣ .
(ii) For a general inclusion D contained strictly in Ω+, we assume that there exists

d1 > 0 such that
dist(D, ∂Ω+) ≥ d1.

Then there exist constants K1, K
′
2, p > 1, depending only on Ω±, d0, d1, h, λ0,

M0, r0, K0, s0, L0, α, α′, and ‖φ− φ0‖C1,α′ (∂Ω)/‖φ− φ0‖H1/2(∂Ω), such that

K1

∣∣∣∣W0 −W
W0

∣∣∣∣ ≤ |D| ≤ K ′2

∣∣∣∣W0 −W
W0

∣∣∣∣ 1p . (4.22)

Proof. The proof follows closely the arguments in [4] and [17]. The lower bound
can be obtained by basic estimates. Let c = 1

|Ωd/4|
∫

Ωd/4
u. By the gradient estimate

of [13, Theorem 1.1], the interior estimate of [9, Theorem 8.17] and the Poincaré
inequality for the domain Ωd/4, we have

‖∇u‖L∞(Ωd/2) ≤ C‖u− c‖L∞(Ωd/3) ≤ C‖u− c‖L2(Ωd/4) ≤ C‖∇u‖L2(Ω).

From this, the trivial estimate ‖∇u‖2
L2(D) ≤ C|D|‖∇u‖2

L∞(Ωd/2) and the second in-

equality of (4.7), the lower bound follows.
Next, we prove the upper bounds.
(i) Let ρ = h

4
and cover Dh with internally nonoverlapping closed squares {Qk}Jk=1

of side length 2ρ. It is clear that Qk ⊂ D, hence∫
D

|∇u|2dx ≥
∫
∪Jk=1Qk

|∇u|2dx ≥ |Dh|
ρ2

min
k

∫
Qk

|∇u|2dx.

≥ C|D|
ρ2

∫
Ω

|∇u|2dx.
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Here we have used Proposition 4.1 and the fatness condition at the last inequality.
The upper bound of |D| follows from this and the first inequality of (4.7).

(ii) To prove the upper bound without the fatness condition, we need the fact that
|∇u|2 is an Ap weight which an easy consequence of the doubling condition for ∇u.
It turns out when D is strictly contained in Ω+ where the coefficient A+ is Lipschitz.
The well-known theorem guarantees that |∇u|2 is an Ap weight in Ω+ (see [8] or [4]),
i.e., for any r̄ > 0, there exists B > 0 and p > 1 such that(

1

|B(a, r)|

∫
B(a,r)

|∇u|2
)(

1

|B(a, r)|

∫
B(a,r)

|∇u|−
2
p−1

)p−1

≤ B

for any ball B(a, r) ⊂ Ω+,r̄, where B and p depends on various constants listed in
Proposition 4.1. To derive the upper bound of (4.22), we choose r̄ = d1/2 and follow
exactly the same lines as in the proof of Theorem 2.2 [4].

2

Remark 4.3 We point out that part (i) of Theorem 4.2 still holds if the assumption
(4.6) is replaced by

dist(D, ∂Ω) ≥ d2 > 0.
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