Three-region inequalities for the second order
elliptic equation with discontinuous coefficients and
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E. Francini* C.-L. Linf S. Vessella! J.-N. Wang?

Abstract

In this paper, we would like to derive a quantitative uniqueness estimate,
the three-region inequality, for the second order elliptic equation with jump
discontinuous coefficients. The derivation of the inequality relies on the Carle-
man estimate proved in our previous work [5]. We then apply the three-region
inequality to study the size estimate problem with one boundary measurement.

1 Introduction

In this work we aim to study the size estimate problem with one measurement when
the background conductivity has jump interfaces. A typical application of this study
is to estimate the size of a cancerous tumor inside an organ by the electric impedance
tomography (EIT). In this case, considering discontinuous medium is typical, for
instance, the conductivities of heart, liver, intestines are 0.70 (S/m), 0.10 (S/m), 0.03
(S/m), respectively. Previous works on this problem assumed that the conductivity
of the studied body is Lipschitz continuous, see, for example, [3, 4]. The first result
on the size estimate problem with a discontinuous background conductivity was given
in [17], where only the two dimensional case was considered. In this paper, we will
study the problem in dimension n > 2.
The main ingredients of our method are quantitative uniqueness estimates for

div(AVu) =0 Q CR". (1.1)

Those estimates are well-known when A is Lipschitz continuous. The derivation of the
estimates is based on the Carleman estimate or the frequency function method. For
n =2and A € L, quantitative uniqueness estimates are obtained via the connection
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between (1.1) and quasiregular mappings. This is the method used in [17]. For n > 3,
the connection with quasiregular mappings is not true. Hence we return to the old
method — the Carleman estimate, to derive quantitative uniqueness estimates when
A is discontinuous. Precisely, when A has a ! interface and is Lipschitz away from
the interface, a Carleman estimate was obtained in [5] (see [10, 11, 12] for related
results). Here we will derive three-region inequalities using this Carleman estimate.
The three-region inequality provides us a way to propagate ”smallness” across the
interface (see also [11] for similar estimates). Relying on the three-region inequality,
we then derive bounds of the size of an inclusion with one boundary measurement.
For other results on the size estimate, we mention [1] for the isotropic elasticity,
[14, 15, 16] for the isotropic/anisotropic thin plate, [7, 6] for the shallow shell.

2 The Carleman estimate

In this section, we would like to describe the Carleman estimate derived in [5]. We
first denote H: = xgry where R} = {(z,y) € R"' xR : y = 0} and ygy is the
characteristic function of R%. Let uy € C*°(R") and define

hereafter, > ay = a4 +a_, and

L(x,y,0)u = Z Hydiv, (AL (z,y) Ve yus), (2.1)
+

where
Ai(x7y) = {aiij(xv y) ?,j:l? LS Rnila Y €R (22)

is a Lipschitz symmetric matrix-valued function satisfying, for given constants Ay €
(0, 1], My > 0,

Mol#l? < Au(z,g)z -2 < NP2, Vo) € R, ¥z € RY (23)
and
[As(a',y) = Ax(z,y)] < Mo(l2" — 2| + |y — y). (2.4)
We write
ho(x) := uy(7,0) —u_(x,0), Vo € R" 1 (2.5)

hi(z) = Ay (2,0)V,yuy(7,0) - v — A (2,0)V,u_(7,0)-v, Vo € R*L (2.6)
where v = —e,,.
For a function h € L?(R"), we define
W€, y) = / h(z,y)e " dr, £ER".
Rn—1
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As usual H'/2(R"') denotes the space of the functions f € L?(R"™!) satisfying

| telierds < .

with the norm
By = [ (PP P 2.7

Moreover we define

B f(z) — f(y)]? V2

and recall that there is a positive constant C', depending only on n, such that

CAAHKW@W%SW%MASCA €] f(€) e,

n—1

so that the norm (2.7) is equivalent to the norm ||f||p2®n-1) + [f]1/2,zn-1. From now
on, we use the letters C,Cy, (4, -+ to denote constants (depending on Ag, My, n).
The value of the constants may change from line to line, but it is always greater than
1. We will denote by B,(z) the (n — 1)-ball centered at x € R"~! with radius r > 0.
Whenever z = 0 we denote B, = B,.(0).

Theorem 2.1 Let u and Ay (z,y) satisfy (2.1)-(2.6). There exist L, 3, 00,70, To pos-
itive constants, with ro < 1, depending on Ao, My, n, such that if oy > La_, § < dg
and T > 19, then

Z Z 3 2|k|/ by, Pe2ross (e dxdy—I—Z Z 3- 2k/ | DFu (2, 0)[26250) g

£ |k=0 + |k=0 ket
+ ZT [e7osC )3 o mn—1 + Z (e uy)(- O)]%/ZR"*l
= (Z/ (,y,0)(us)? 7=V dady + (70O hy]T ) gus
R™

+Nmmmwmmmw+ﬁ/

Rn—1

|hol2e? 6@ dy + 7 /

Rn—1

‘hl |2€2T¢>5(x,0)dx) .

(2.8)
where w = Hyuy + H_u_, uy € C®(R") and suppu C Bsjy x [—070, 070, and
Gs.+(x,y) is given by

ayy | By 2

+ 2 ) 2 07

G5+ (2, y) = d 252 252 (2.9)
a-y By _ |zl y <0
J 202 20 ’

and ¢5(x,0) = ¢s.+(,0) = ¢5(,0).



Remark 2.2 It is clear that (2.8) remains valid if can add lower order terms
Yo Hy (W -V uy +Vuy), where W,V are bounded functions, to the operator L.
That 1s, one can substitute

L(z,y,0)u="> Hydiv,,(As(z,y)Voyus) + Y He (W-Vyyus + Vug) (2.10)
+ +

in (2.8).

3 Three-region inequalities

Based on the Carleman estimate given in Theorem 2.1, we will derive three-region
inequalities across the interface y = 0. Here we consider v = H,u, + H_u_ satisfying

L(x,y,0)u=0 in R"
where L is given in (2.10) and
W llzoe @y + 1V [l 2oy < Ao
Fix any 0 < dy, where Jy is given in Theorem 2.1.

Theorem 3.1 Let u and Ay (z,y) satisfy (2.1)-(2.6) with hg = hy = 0. Then there
exist C' and R, depending only on Ao, My, n, such that if 0 < Ry, Ry < R, then

Ro 2R1+2Ro
2Ry +3Ry 2R1+3Ro
lul?dz < (e™f2 + CRT*) ( |u|2dmdy> ( |u|2da:dy) , (3.1)
Us U Us
where 1y is the constant derived in Theorem 2.1,
R, Ry
—{2> 4R, 2 e
U, {Z_ RQ, 8a<y< a},
Ry Ry
Uy={-Ry<z<— 1
2 =1 Q_Z_2a’y<8a}’
Ry
U3 = {Z > _4R27 y < _}7
a

a=ay/d, and

ary  Py* |z
dny)=—5"+55m |2<|$ '

(3.2)

Proof. To apply the estimate (2.8), u needs to satisfy the support condition. Also,
we can choose ay and a_ in Theorem 2.1 such that ay > a_. We can choose r < rg
satisfying

Témm{ (3.3)

13a_ 26
83 "19a_+88 )"
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Figure 1: U; and U, are shown in green and red, respectively. Ujs is the region
enclosed by blue boundaries.

Note that the choices of §,r also depend on \g, My, n. We then set

a_r
R=—.
16
It follows from (3.3) that
132
< —. A4
= 1284 (3:4)

Given 0 < Ry < Ry < R. Let 94(t) € C3°(R) satisty 0 < ¥;(¢) <1 and

1, t>—-2R,,
0i(t) = ’
0, t< —3R,.

Also, define ¥5(y) € C3°(R) satistying 0 < J5(y) < 1 and

R
0., y=5
1 < —.
b y 4a

Finally, we define ¥(z,y) = ¥1(2(z, y))V2(y), where z is defined by (3.2).
We now check the support condition for ©J. From its definition, we can see that
supp? is contained in

ay Byt |z

2(z,y) = 5 + 557 " o5 > —3Rs, 35
R .
=94



In view of the relation

ay >a- and a=
we have that R 5 5
L« — R <

a <9
2% " 2a_ o 16 "

ie., y < or <drg. Next, we observe that

_ Bar _a- B 9
—3Ry > —3R=— 16 > 5 ( 57”)+2—62( (57") ,

which gives —dr < y due to (3.3). Consequently, we verify that |y| < dr. One the
other hand, from the first condition of (3.5) and (3.3), we see that

||2 — 592 3a_r B 2 9
3R < LR RO
25 = 2+6+252_16+5 rt

202
which gives |z| < §/2.
Since hg = 0, we have that

0
87

Iz, 0)uy(x,0) —I(z,0)u_(z,0) =0, Vo e R

Applying (2.8) to Ju and using (3.6) yields

Z Z 3= 2|k|/ | D* (Yuy)|%e 2765.+(*9) 1 dy

+ |k|=0

<C’Z/ (z,y,0)(Vuy)|? 25+ @Y dgdy

L or / A (,0)V, , (Juus (2, 0)) - v —
Rn—l

A_(2,0)V,,(u_)(x,0) - v[2e2 @0 gy
+ C[€T¢6(',O) (A+($, O)vr7y(19u+)(x’ 0) ‘v

—A_(2,0)V,y(Yu_)(z,0) - 1/)]%/27Rn_1.
(3.7)

We now observe that V, ,01(z) = 01(2) V.2 = 91 (2)(—%,

only when

ﬁy oy ®
£, % + &) and it is nonzero

—3Ry < 2 < —2R,.
Therefore, when y = 0, we have

2R, < ’$2<3R
2 25 2.

Thus, we can see that

6Ry >
Vo, 0z, 0)]> < CR;? (TQ + 5_5) < CR;2. (3.8)
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By ho(x) = hi(z) = 0, (3.8), and the easy estimate of [5, Proposition 4.2], it is not
hard to estimate

7'/ |A, (2,0)V,y(uy(2,0) - v — A_(2,0)V,, (Yu_)(z,0) - v]2e> @0 gy
Rn—1

+ [67—%(.70) (A_,_(ZL’, O)V:v,y(ﬁu-i-)(xv O) v— A (‘Ta O>Vx,y(19u—)(x7 0) ) V)]%/ZR”‘1

< CORyZe i <7‘/ luy (z,0) 2 dz + [uy (z,0))2 ,  nm ﬁ)
? (VB E<|e|<VEH} " 1/2AVaRa <[l <V6oRa}

+ OT2Ry3e4he / luy (z,0)*dx
{VASRz<|x|<\/63Rz}
<C7T’Ry%e M E,
(3.9)

where
FE = / |'LL+($, O)|2dx + [U+($, 0)]2 " .
(VISR <|a|<\/B5 Rz} VRV slris V0o Tz)

Expanding £(z,y, ) (Yuy ) and considering the set where D # 0, we can estimate

1
Z Z 7_3—2|k|/ 1D kui|2€27¢5,i(xvy)dzdy

+ |k|=0 {—2Ro<2<BL y< 1y
1
< CZ Z Rg(k_Q)/ |DkUi|262T¢6,i($vy)d$dy
+ |k|=0 {73R2SZ§*2R2,y<%}
1
|k|=0 {—3Ra<z, M <y f1y

(3.10)
+ CTQR2—3 —47’R2E

(o a_) 1
<CZ Z RQ (Ik[-2) 74TR2 27— ——— + R / \Dkui\zdxdy

T k=0 {~3Ry<s<—2Rp,y<1}
(|k|—2 0‘+ Ry o, B (Ri1y2
+ E R (k1=2) 2755 32 27552 (22) | D¥u |*dxdy
|]€| 0 {Z> 3R2 41<y< }

+ CT2R2_3€_4TR2E.



Let us denote U; = {z > 4R2,?1<y<R1} Uy = {— R2<z<2,y<§;

From (3.10) and interior estimates (Caccioppoli’s type inequality), we can derive that

e ¥R [ ulPdrdy

Uz

< e 2Rz / ]u\zdxdy
R R
{—Ra<z<3t,y<gt}

< 27-3/ |y | 22790 @Y) dady
+

2R2<z< %a 7y< 4a}

T3 R

ilk\O

(|k|—2 & By 9. B (E1y2
+ E R} (K1=2) gor =5 52 27352 (30) | DFu |*dady
|k|=0 {z>— 3R2,41<y< 11

+ C’TZRQ’B’e"”R?E

/ | DFuy |*dady
{~3R2<2<—2Ry,y< 1}

(3.11)

< CRy e 3T / lu|*dwdy + CT*Ry%e "™ E

{—4Ro<z<—Ra,y< 1}

1+ 28R
+C’Rf4e( toZ 1/ lu|?dxdy
{

R R
2>—4Ry, gt<y<=l}

<CR7Y | ¥t U 2dxdy + 2R ,
! U
1

where

F= / |ul|*dxdy
{z>—4Ry, y< 13

and we used the inequality - By~ 1 due to (3.4).
Dividing 73e~27%2 on both ‘sides of (3.11) implies that

lu|?drvdy < CR;* (eQT(R1+R2) |u|*dzdy + 6_TR2F) . (3.12)

U2 Ul

Now, we consider two cases. If [ |u[*dzdy # 0 and
€2T0(R1+Rz)/ ]u|2dxdy < e*ToRQF’
U1

then we can pick a 7 > 7 such that

e?r(Rat ) \u|?dedy = e" T2 F,
Uy



Using such 7, we obtain from (3.12) that

lu*dzdy < C Ry FrtB) [ 12 dady
U2 Ul

4 9 mff%mg 2R1+2Ro
=CR, (/ |[ul dxdy) (F)2R1+3Ry
Uy

If [ [u[*dzdy = 0, then letting 7 — oo in (3.12) we have [, |ul*drdy = 0 as well,
The three-regions inequality (3.1) obviously holds.
On the other hand, if

(3.13)

e R p < 6270(R1+R2)/ lu*dzdy
U1

then we have

Ry 2R)+2Ry
|u|*dz < (F)?F+R: (F)2R+5
U
2 By (3.14)
2R1+3R2 2R +2Ry
< exp (10 Ry) ( ‘U|2dl‘dy> (F)2Ri+3R;
Uy
Putting together (3.13), (3.14), we arrive at
Ry
2 4 9 2Ry +3R3 2R +2Ry
‘U’ dx < (GXp (TORQ) + CRl ) |U‘ dl‘dy (F) 2R|+3Ry (315)
Uz Uy
U

4 Size estimate

We will apply the three-region inequality (3.1) to estimate the size of embedded
inclusion in this section. Here we denote  a bounded open set in R™ with C1®
boundary 9 with constants sg, Ly, where 0 < o < 1. Assume that ¥ is a C?
hypersurface with constants rqy, K, satisfying

dist(X, 0Q) > dy (4.1)
for some dy > 0. We divide €2 into three sets, namely,
Q=0,UXU_
where Q0. are open subsets. Note that Q_ = QU ¥ and 99, = ¥. We also define
Qp = {z € Q:dist(x,00) > h}.



Definition 4.1 [C1® regularity] We say that X is C? with constants 7, Ky if for any
P € ¥ there exists a rigid transformation of coordinates under which P = 0 and

QL N B(0,10) = {(z,y) € B(0,r9) CR" : y 2 ()},
where 1) is a C? function on B, (0) satisfying ¢(0) = 0 and

[¥llc2 (8., 0) < Ko

The definition of C* boundary is similar. Note that B(a,r) stands for the n-ball
centered at a with radius » > 0. We remind the reader that B,(a) denotes the
(n — 1)-ball centered at a with radius r > 0.

Assume that A = {aiij (z,y)}7 =1 satisfy (2.3) and (2.4). Let us define Hy = xq,,
A=H /A, +H A_,u= H,u,+H u_. We now consider the conductivity equation

div(AVu) =0 in Q. (4.2)

It is not hard to check that u satisfies homogeneous transmission conditions (2.5),
(2.6) (with hg = h; = 0), where in this case v is the outer normal of ¥. For
¢ € HY2(09), let u solve (4.2) and satisfy the boundary value u = ¢ on 0€.

Next we assume that D is a measurable subset of (2. Suppose that A is a sym-
metric n X n matrix with L>(2) entries. In addition, we assume that there exist
n > 0,¢ > 1 such that

(1+nA<A<CA ae in 0 (4.3)
or n > 0,0 < (¢ <1 such that

(A<A<(1-n)A ae in Q. (4.4)
Now let v = H v, + H_v_ be the solution of

{ div((Axag\p + Axp)Vo) =0 in €,

v=¢ on Of. (4.5)

The inverse problem considered here is to estimate | D| by the knowledge of {¢, AVuv-
V|sa}. In this work we would like to consider the most interesting case where

D CQ,. (4.6)

In practice, one could think of 2, being an organ and D being a tumor. The aim is
to estimate the size of D by measuring one pair of voltage and current on the surface
of the body.

We denote Wy and W the powers required to maintain the voltage ¢ on 02 when
the inclusion D is absent or present. It is easy to see that

Wy = ¢AVU-U:/AVu~Vu
o0 Q
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and

W = P(Axop + Axp)Vu v = /(AXQ\D + Axp)Vov - V.
o9 Q

The size of D will be estimate by the power gap W — W,. To begin, we recall the
following energy inequalities proved in [4].

Lemma 4.1 [}, Lemma 2.1] Assume that A satisfies the ellipticity condition (2.3).
If either (4.3) or (4.4) holds, then
01/ Vul? < |[Wy —W| < 02/ |Vul?, (4.7)
D D

where C, Cy are constants depending only on X\, n, and .

The derivation of bounds on |D| will be based on (4.7) and the following Lipschitz
propagation of smallness for u.

Proposition 4.1 (Lipschitz propagation of smallness) Let u € H' () be the solution
of (4.2) with Dirichlet data ¢. For any B(x,p) C ., we have that

/ |Vul? > C/ |Vul?, (4.8)
B(z,p) Q

where C' depends on Q4., do, No, My, 10, Ko, So, Lo, @, &/, p, and

16— ¢oll o107 (00
16 — dollrr200)”

for ¢ = 097" [, . Here o satisfies 0 < o/ < i

Before proving Proposition 4.1, we need to adjust the three-region inequality (3.1)
for the C? interface Y. Let 0 € ¥ and the coordinate transform (2',y') = T'(x,y) =
(x,y — ¥(x)) for © € By, (0). Denote U = T(B(0,s0)) and Ay = {&ij Pi=1 the
coefficients of A in the new coordinates (z',y'). It is easy to see that AL satisfies
(2.3) and (2.4) with possible different constants Ao, My, depending on Ao, My, ro, Ko.

Then there exist C' and R, depending on Ay, My, n, such that for
0<R1<R2§R (49)

and Uy, UQz Us defined as in Theorem 3.1, we hz}ve that Us C U (so Uy, U are con-
tained in U as well) and (3.1) holds. Now let U; = T1(U;), j = 1,2, 3, then (3.1)
becomes

2R{+2Ry

Ty Ty 2R FRs
|u|2dxdy <(C ( |u|2d:vdy> ( |u|2dxdy) , (4.10)
U, U Us

11



where C' depends on \g, My, 1o, Ko, n, Ry, Ry. Furthermore, by Caccioppoli’s inequal-
ity and generalized Poincaré’s inequality (see (3.8) in [2]), we obtain from (4.10)
that

\Vulrdzdy < C ( |Vu|2dxdy> ( |Vu|2dacdy) (4.11)
UQ Ul US
with a possibly different constant C'.

Since A, (respectively A_) is Lipschitz in Q, (respectively Q_), the following
three-sphere inequality is well-known. Let uy be a solution to div(ALVug) = 0 in
Q4. Then for B(xg,7) C Qy (or B(zg,7) C Q_) and 0 < r; < 1y < r3 < T, we have
that

0 1-6
/ |Vug |*dedy < C (/ |Vui]2dxdy) (/ \Vui|2d:cdy) ,
B(zo,72) B(zo,r1) B(zo,r3)
(4.12)

where 0 < 6 < 1 and C depend on Ay, My, n,r1/73,79/73.
Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. It suffices to study the case where p is small. Since
¥ € C?, it satisfies both the uniform interior and exterior sphere properties, i.e.,
there exists ag > 0 such that for all z € 3, there exist balls B C 2, and B’ C Q)_ of
radius ag such that BNY = B N'Y = {z}. Next let v, be the unit normal at z € &
pointing into Q. (inwards) and L = {z +tv, C R" : t € [py, —3po]}. We then fix
R, Ry satisfying (4.9) and choose pg > 0 so that

S. = UyerB(y, po) C Us.

Denote k = Ry/(2R; +3Rs). Note that we move the construction of the three-region
inequality from 0 to z.

Let x € Q4 and consider B(z, p) C €2y, where p < min{ag, po}. For any y € Qy,,
we discuss three cases.
(i) Let y € Q4 ,, then by (4.12) and the chain of balls argument, we have that

N1

fB(y,p) [Vul? fB(m,p) [Vul?

— <C 5 , (4.13)
Jo [Vul Jo IVul

where N7 depends on 2, and p.

(ii) Let y € {y € Q, : dist(y,X) < p}U{y € Q_ : dist(y, ) < 3p}, then B(y, p) C S.
for some z € X.. Note that U; C Q. , (taking p even smaller if necessary). We then
apply (4.13) iteratively to estimate

N1
ff]l |vu|2 fB(.t,p) |vu|2
- <C PR , (4.14)
Jo [Vul Jo [Vul
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where C' depends on U; and p. Combining estimates (4.14) and (4.11) yields

KkON1
IB(y,p) |V_u|2 <C (-fB(w) |Vu|2>

fg Va2 fg Va2 (4.15)

(iii) Finally, we consider the case where y € 2_N€y, and dist(y, X) > 3p. We observe
that if y. = 2z + (—3p)v., then (4.15) implies

Yx,P S C Z,p .

Jo [Vul? Jo [Vul?

Again using (4.12) and the chain of balls argument (starting with (4.16)), we obtain

that N1 g
Jowo VU _ o (Jpen VT
JoIVul> — Jo IVul? '
Putting together (4.13), (4.15), and (4.17) gives
fB(y,p) |Vu_|2 < C .fB(r,m [Vul’ (4.18)
Jo [Vul> — Jo [Vul? ‘

for all y € €y, where 0 < s < 1 and C' depends on Ao, My, n, 1o, Ko, p, s
In view of (4.18) and covering 23, with balls of radius p, we have that

Jog, VU (o V7Y
LIvar =\ vap

Note that u — ¢ is the solution to (4.2) with Dirichlet boundary value ¢ — ¢y. By
Corollary 1.3 in [13], we have that

19l = 19/ = 60) 3@y < €16~ G20, oy

with 0 < o/ < ﬁ, which implies

(4.16)

(4.17)

(4.19)

/ o I9E < CIR\ D0 = gy < Collo = ulmy (420)
3p

Here we have used |Q2\(25,| < p proved in [3]. Using the Poincaré inequality, we have
¢ — ¢0”%11/2(ag) < Cllu— ¢0||%I1(Q) < CHVUH%Q(Q)'
Combining this and (4.20), we see that if p is small enough depending on Q. do, Ao,
Mo, 1o, Ko, so, Lo, @, o', p, and [|¢ — ¢0H01,a’(ag)/”¢ - ¢0HH1/2(8Q)7 then
2
||VUHL2(93P)

= 2
||VU||%2(Q)

1
5
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The proposition follows from this and (4.19). O
We now have enough tools to derive bounds on |D].
Theorem 4.2 Suppose that the assumptions of this section hold.

(1) If, moreover, there exists h > 0 such that
1 "
|Dy| > §\D| (fatness condition,). (4.21)

Then there exist constants K, Ko > 0 depending only on Q4, dy, h, Ao, My,
ro, Ko, so, Lo, o, &, and [[¢ — ¢ol|cr.ar90)/1|¢ — dollg1/2(a0), such that

K < DI < Ky

Wo—W
Wo

Wy —-W
Wo '

ii) For a general inclusion D contained strictly in )., we assume that there exists
i1) F [ inclusion D tained strictly in € that th St
dy > 0 such that
dlSt(D, aQ+) Z dl.

Then there exist constants K1, K, p > 1, depending only on Q, dy, dy, h, Ao,
Mo, 1o, Ko, 50, Lo, @, o, and || — ¢ol|c1.0(90)/ |0 — ol 111/2(00), such that

Wo-W (4.22)

— | <|DI<K!
WO ’ — | ‘ — 2

0

Proof. The proof follows closely the arguments in [4] and [17]. The lower bound
can be obtained by basic estimates. Let ¢ = ﬁ de/ u. By the gradient estimate
d/4 4

of [13, Theorem 1.1}, the interior estimate of [9, Theorem 8.17] and the Poincaré
inequality for the domain €244, we have

IVull Loy, < Cllu = ||y < Cllu = cllr2@,,.,) < CllVullr2@).-

Qa/3

From this, the trivial estimate [[Vul|7 ) < C!D\HVUH%w(Qd/Q) and the second in-

equality of (4.7), the lower bound follows.

Next, we prove the upper bounds.

(i) Let p = % and cover Dy, with internally nonoverlapping closed squares {Qx }i_,
of side length 2p. It is clear that (), C D, hence

D
/]Vu]deZ/ ]Vu\%ixE#min/ |Vu|*dx.
D Ul Qk p=kJq,

D
> C|2 |/|Vu|2dx.
P Q
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Here we have used Proposition 4.1 and the fatness condition at the last inequality.
The upper bound of |D| follows from this and the first inequality of (4.7).

(i) To prove the upper bound without the fatness condition, we need the fact that
|Vu|? is an A, weight which an easy consequence of the doubling condition for Vu.
It turns out when D is strictly contained in €2, where the coefficient A, is Lipschitz.
The well-known theorem guarantees that |Vu|* is an A, weight in 2, (see [8] or [4]),
i.e., for any 7 > 0, there exists B > 0 and p > 1 such that

! / V) ! / V| 7T o
|B(CL,T’)| B(a,r) ! |B(CL7T)| B(a,r) ! N

for any ball B(a,r) C 2,7, where B and p depends on various constants listed in
Proposition 4.1. To derive the upper bound of (4.22), we choose 7 = d; /2 and follow
exactly the same lines as in the proof of Theorem 2.2 [4].

O

Remark 4.3 We point out that part (i) of Theorem J.2 still holds if the assumption
(4.6) is replaced by
dist(D,0) > dy > 0.
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