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Abstract. In this paper we study a Landis-type conjecture for fractional Schrödinger equa-
tions of fractional power s ∈ (0, 1) with potentials. We discuss both the cases of differentiable

and non-differentiable potentials. On the one hand, it turns out for differentiable potentials

with some a priori bounds, if a solution decays at a rate e−|x|
1+

, then this solution is triv-

ial. On the other hand, for s ∈ (1/4, 1) and merely bounded non-differentiable potentials,

if a solution decays at a rate e−|x|
α

with α > 4s/(4s − 1), then this solution must again be

trivial. Remark that when s → 1, 4s/(4s − 1) → 4/3 which is the optimal exponent for the

standard Laplacian. For the case of non-differential potentials and s ∈ (1/4, 1), we also derive
a quantitative estimate mimicking the classical result by Bourgain and Kenig.

1. Introduction

In this work, we study a Landis-type conjecture for the fractional Schrödinger equation,

(1) ((−∆)s + q)u = 0 in Rn

with s ∈ (0, 1) and

(2) |q(x)| ≤ 1.

Roughly speaking, we are interested in the maximal vanishing rate of solutions to this equation
at infinity. For s = 1, in Section 3.5 in [KL88] V.A. Kondratev and E.M. Landis conjectured
that if |q(x)| ≤ 1 and |u(x)| ≤ C0 satisfies |u(x)| ≤ exp(−C|x|1+), then u ≡ 0. The Landis
conjecture was disproved by Meshkov [Mes91], who constructed a potential q and a nontrivial

u with |u(x)| ≤ C exp(−C|x| 43 ). He also showed that if |u(x)| ≤ C exp(−C|x| 43 +), then u ≡ 0.
In their seminal work, Bourgain and Kenig [BK05] derived a quantitative form of Meshkov’s
result in their resolution of Anderson localization for the Bernoulli model in higher dimensions.
It should be pointed out that in Meshkov’s counterexample both q and u are complex -valued
functions. In other words, the exponent 4/3 is optimal in the complex case (which corresponds to
the situation of systems). The proof in [BK05] is based on the Carleman method. In the spirit of
the Carleman method, several extensions have been made in [CS99, Dav14, DZ17, DZ18, LW14],
which also take singular drift coefficients and potentials into account.

In view of Meshkov’s counterexample, Kenig [Ken06] refined the Landis conjecture and asked
whether this conjecture is true for real -valued potentials and solutions. In 2005, Kenig, Silvestre
and the second author [KSW15] confirmed the Landis conjecture (in a quantitative form) when
n = 2 and q ≥ 0. This result was later extended to the more general situation with ∆ being
replaced by any second order elliptic operator [DKW17]. In the very recent preprint [DKW18],
this is further improved by also allowing for (exponentially) small negative contributions in the
potential. The Landis conjecture in the real case with n = 1 was recently studied by Rossi
[Ros18].

The main theme of this paper is to investigate a Landis-type conjecture for fractional Schrödinger
equations. We will consider both qualitative and quantitative estimates when the potentials are
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either differentiable or simply bounded. Similar to the original Landis conjecture (for the Laplace
operator), we are concerned with the maximal decay rate of non-trivial solutions. We are espe-
cially interested in understanding how the decay rate depends on the fractional power s ∈ (0, 1).
Detailed statements of our results are described below.

1.1. Qualitative estimates. We first discuss the qualitative behaviour of solutions to (1). Here
we will show that if the potential q satisfies an additional regularity estimate, then independently
of the value of s ∈ (0, 1) there are no super-exponentially decaying solutions to (1).

Theorem 1. Let s ∈ (0, 1) and assume that u ∈ Hs(Rn) is a solution to (1) such that q satisfies
q ∈ C1(Rn), (2), and in addition

(3) |x · ∇q(x)| ≤ 1

holds. Suppose that u further satisfies the following decay behaviour: there exists α > 1 such thatˆ

Rn

e|x|
α |u|2dx ≤ C <∞.(4)

Then u ≡ 0.

For s = 1, a similar qualitative estimate as in Theorem 1 with a differentiable potential
satisfying (2) and (3) was proved by Meshkov [Mes89]. Without the additional regularity result
on q, it is still possible to prove a qualitative decay result. However, as our argument for this
does not distinguish between the real and complex situation, the obtained decay deteriorates.

Theorem 2. Let s ∈ (1/4, 1) and assume that u ∈ Hs(Rn,C) is a solution to (1). Suppose that
(2) holds and u further satisfies the following decay behaviour: there exists α > 4s

4s−1 such thatˆ

Rn

e|x|
α |u|2dx ≤ C <∞.(5)

Then u ≡ 0.

We emphasize that as s→ 1 in both of our main results, the identified critical decay exponents
correspond to the ones from the case s = 1. Moreover, in the first result, Theorem 1, the critical
decay rate does not depend on the value of s ∈ (0, 1). It is thus natural to ask whether the
derived decay exponents are optimal or rather an artifact of our argument. Let us comment
on this. For real-valued problems (i.e. scalar equations), we expect that the exponential decay
(independent of the value of s ∈ (0, 1)) as the critical decay behaviour is sharp. Indeed, as in
[KSW15] and [BK05] it is possible to relate the decay behaviour at infinity to the local maximal
vanishing rate at zero (if growth conditions are assumed, which are necessary due to the global
character of the problem). Analogous arguments as in the classical case s = 1 would lead to the
conjecture that when considering

• the equation (1) with potentials of the size |q(x)| ≤M (instead of |q(x)| ≤ 1),
• and solutions u(x) which satisfy the growth bounds ‖u‖L∞(Rn) ≤ C0 and ‖u‖L∞(B1) ≥ 1,

a lower bound of the form

(6) ‖u‖L∞(Br) ≥ rCM
1
2s ,

holds. Here C = C(C0) > 0 and r ∈ (0, r0) for some sufficiently small constant r0 > 0. Results
of this flavour have been proved for eigenfunctions or equations with differentiable potentials
(with dependences on the C1 norm of the potentials, that is, M in (6) is the size of ‖q‖C1(Rn))
in [Rül17a, Zhu15] (on compact manifolds or bounded domains, respectively). For the spectral
fractional Laplacian and its eigenfunctions on compact manifolds these dependences are indeed
immediate consequences from the corresponding ones of the Laplacian.



ON THE FRACTIONAL LANDIS CONJECTURE 3

We recall that ∇q satisfies (3). Taking this expected quantitative maximal rate of vanishing
(6) for granted and relying on a scaling argument as in [BK05, KSW15], i.e. considering solutions
uR,x0

(x) for x0 ∈ BR \ BR/2 of the correspondingly rescaled version of (1), then suggest global
lower bounds of the type

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ exp(−CR log(R)) for R� 1,

where C = C(C0) > 0. Hence, this strongly suggests that for the class of potentials under con-
sideration, Theorem 1 is essentially sharp (possibly up to logarithmic contributions). However,
we further believe that as in [KSW15], at least under sign conditions on the potential and in
one dimension (which on the level of the Cafferelli-Silvestre extension corresponds to the two-
dimensional setting from [KSW15] in which complex analysis tools are available), it might be
possible to reduce the necessary regularity for q to L∞ regularity.

In view of Meshkov’s example [Mes91], in the case of Theorem 2, at least the growth behaviour
for s → 1 is expected to be optimal. As in the case s = 1, the Carleman estimate of Theorem
5 which lies at the core of the argument for Theorem 2 is of perturbative character. It hence
does not distinguish between the real vs the complex, i.e. the scalar vs the systems cases.
It would be interesting to investigate whether also for s ∈ (1/4, 1) there are Meshkov-type
examples saturating the proposed exponents from Theorem 2. We remark that the restriction to
s ∈ (1/4, 1) seems necessary as long as we only consider radial weight functions in our Carleman
estimates (due to the subelliptic nature of these estimates). We seek to prove the results of
Theorems 1 and 2 by combining elliptic estimates with Carleman estimates.

1.2. Quantitative estimates. In this subsection, we present a quantitative version of Theorem
2. Note that here q ∈ L∞(Rn) and that (2) is satisfied.

Theorem 3. Let s ∈ (1/4, 1) and assume that u ∈ Hs(Rn,C) is a solution to (1). Suppose that
u further satisfies ‖u‖L2({|x|<1}) = 1 and that there exists a constant C0 > 0 such that

‖u‖L∞(Rn) ≤ C0.

Then there exists a constant C = C(n, s, C0) > 0 such that for R > 0 large

inf
|x0|=R

‖u‖L∞({|x−x0|<1}) ≥ Ce−CR
4s

4s−1 logR.

We remark that by virtue of the ellipticity of the problem, it does not really matter in which
topology one works for the lower bounds. For instance, it would have equally been possible to
derive similar results under the assumption that |u(0)| = 1.

This result is similar in flavour to the decay estimates in [BK05]. However both the arguments
in the qualitative and the quantitative settings involve new intricacies and technical challenges
due to the nonlocal character of the equations at hand. Since lower bound estimates for nonlocal
equations pose serious difficulties, as in various other works on (quantitative) unique continuation
[FF14, FF15, BG17, Gar17, Rül15, Rül17a, Rül17b, RS17], we opt for working with the Caffarelli-
Silvestre extension [CS07], c.f. (7), (8) in Section 2, instead of dealing with the nonlocal equation
(1) directly. This allows us to investigate a local (degenerate) elliptic equation. It however comes
at the expense of having to study this equation in n+1 instead of n dimensions. In the additional
dimension, the control on the solution can hence only be derived through the equation. This
implies that we always have to transfer information from the boundary to the bulk and vice
versa. In the qualitative estimates, we for instance have to show that (exponential) decay on the
boundary implies (exponential) decay in the bulk. Similarly, we have to transfer upper and lower
bounds in the quantitative results from the boundary into the bulk and vice versa. This poses
non-trivial challenges, which however are overcome by an ingredient which was used in [RS17]:
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As one of our key tools which allows us to switch between the bulk and the boundary we rely on
a boundary-bulk interpolation inequality, c.f. Proposition 2.4.

1.3. Organization of the article. This paper is organized as follows. In Section 2, we will
collect several preliminary results that are needed in the proofs of the main theorems. We
then derive Carleman estimates for the fractional Laplacian (−∆)s with differentiable or non-
differentiable potentials in Section 3. The proofs of the qualitative estimates, Theorem 1 and 2,
are given in Section 4. Finally, in Section 5, we will prove Theorem 3.

2. Auxiliary Results

2.1. The Cafferelli-Silvestre extension. In the sequel, it will be convenient to localize the
problem at hand. This will be achieved by means of the Caffarelli-Silvestre extension [CS07]
which allows us to address the problem at hand by relying on tools for local equations. To this
end, for s ∈ (0, 1) and u ∈ Hs(Rn) we consider a solution ũ ∈ Ḣ1(Rn+1

+ , x1−2s
n+1 ) := {v : Rn+1

+ →
R :

´
Rn+1

+

x1−2s
n+1 |∇v|2dx ≤ C <∞} of the degenerate elliptic equation (whose weight however still

is in the Muckenhoupt class),

∇ · x1−2s
n+1 ∇ũ = 0 in Rn+1

+ ,

ũ = u on Rn × {0}.(7)

We recall that by the observations in [CS07],

(−∆)su(x) = cn,s lim
xn+1→0

x1−2s
n+1 ∂n+1ũ(x)

for some constant cn,s 6= 0. In particular, the equation (1) can be reformulated as the local,
degenerate elliptic equation

∇ · x1−2s
n+1 ∇ũ = 0 in Rn+1

+ ,

ũ = u on Rn × {0},
cn,s lim

xn+1→0
x1−2s
n+1 ∂n+1ũ = qu on Rn × {0}.

(8)

This however comes at the expense of adding a new variable, in which we have to infer control
by exploiting the equation.

When dealing with this equation, it will be convenient to also introduce the following notations
for the underlying domains and the related weighted function spaces. For Ω ⊂ Rn+1

+ , x0 ∈ Rn+1
+ ,

r,R > 0, we denote

B+
r (x0) := {x ∈ Rn+1

+ : |x− x0| ≤ r}, B′r(x0) := {x ∈ Rn × {0} : |x− x0| ≤ r},
B+
r := B+

r (0), B′r := B′r(0),

A+
r,R := {x ∈ Rn+1

+ : r ≤ |x| ≤ R}, A′r,R := {x ∈ Rn × {0} : r ≤ |x| ≤ R},

H1(Ω, x1−2s
n+1 ) := {v : Ω ∩ Rn+1

+ → R :

ˆ

Ω∩Rn+1
+

x1−2s
n+1 (|v|2 + |∇v|2)dx ≤ C <∞},

H1(Sn+, θ
1−2s
n ) := {v : Sn+ → R :

ˆ

Sn+

θ1−2s
n (|v|2 + |∇Sn+v|

2)dθ ≤ C <∞}, θn =
xn+1

|x| .

As an important elliptic estimate which we will be using frequently we recall Caccioppoli’s
inequality.
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Lemma 2.1. Let s ∈ (0, 1) and ũ ∈ H1(B+
4r, x

1−2s
n+1 ) be a solution to (7). Then, there exists

C = C(n, s) > 0 such that

‖x
1−2s

2
n+1 ∇ũ‖L2(B+

r ) ≤ C
(
r−1‖x

1−2s
2

n+1 ũ‖L2(B+
2r) + ‖u‖

1
2

L2(B′2r)‖ lim
xn+1→0

x1−2s
n+1 ∂n+1ũ‖

1
2

L2(B′2r)

)
.

Proof. The proof follows as for instance in Lemma 4.5 in [RS17], where however the boundary
terms are estimated by an L2 − L2 estimate instead of an Hs −H−s estimate. �

2.2. Boundary decay implies bulk decay. In order to deal with the original nonlocal problem
(1), we seek to apply methods which were developed for (quantitative) unique continuation results
for the local equation (8). Hence, we first translate the decay behaviour that is valid on Rn to
decay behaviour which also holds on Rn+1

+ . To this end, we heavily rely on interior and boundary
three balls estimates for the degenerate elliptic equation (8).

Proposition 2.2. Let s ∈ (0, 1) and u ∈ Hs(Rn) be a solution to (1). Assume that (2) holds
and there exist constants C, β ≥ 1 such that

(9) ‖e|x|β/2u‖L2(Rn) ≤ C.

Then, there exist constants C1, c1 > 0 such that for all x = (x′, xn+1) ∈ Rn+1
+ the Caffarelli-

Silvestre extension ũ(x) satisfies

|ũ(x′, xn+1)| ≤ C1e
−c1|(x′,xn+1)|β .

In order to infer the claimed interior decay, we rely on propagation of smallness estimates.
Here we make use of two types of propagation of smallness results: The first being an interior
propagation of smallness while the second one is a boundary-bulk propagation of smallness
estimate. In order to use tools from the quantitative analysis of elliptic equations, in the sequel,
we view (1) in terms of its Caffarelli-Silvestre extension (8).

Proposition 2.3. Let s ∈ (0, 1) and ũ ∈ H1(B+
4 , x

1−2s
n+1 ) be a solution to (7). Assume that

r ∈ (0, 1) and x0 = (x′0, 5r) ∈ B+
2 . Then, there exists α = α(n, s) ∈ (0, 1) such that

‖ũ‖L∞(B+
2r(x0)) ≤ C‖ũ‖αL∞(B+

r (x0))
‖ũ‖1−α

L∞(B+
4r(x0))

.

Proof. As (x0)n+1 = 5r, this follows from a standard interior L2 three balls estimate (c.f. Propo-
sition 5.4 in [RS17]) together with L2 − L∞ estimates for uniformly elliptic equations. �

Proposition 2.4. Let s ∈ (0, 1) and let ũ ∈ H1(Rn+1
+ , x1−2s

n+1 ) be a solution to (8) with q ∈
L∞(Rn). Assume that x0 ∈ Rn × {0}. Then,

(a) there exist α = α(n, s) ∈ (0, 1) and c = c(n, s) ∈ (0, 1) such that

‖x
1−2s

2
n+1 ũ‖L2(B+

cr(x0))

≤C
(
‖x

1−2s
2

n+1 ũ‖L2(B+
16r(x0)) + r1−s‖u‖L2(B′16r(x0))

)α
×

×
(
rs+1‖ lim

xn+1→0
x1−2s
n+1 ∂n+1ũ‖L2(B′16r(x0)) + r1−s‖u‖L2(B′16r(x0))

)1−α

+ C
(
‖x

1−2s
2

n+1 ũ‖L2(B+
16r(x0)) + r1−s‖u‖L2(B′16r(x0))

) 2s
1+s ×

×
(
rs+1‖ lim

xn+1→0
x1−2s
n+1 ∂n+1ũ‖L2(B′16r(x0)) + r1−s‖u‖L2(B′16r(x0))

) 1−s
1+s

.
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(b) there exist α = α(n, s) ∈ (0, 1) and c = c(n, s) ∈ (0, 1) such that

‖ũ‖L∞(B+
cr
2

) ≤Cr−
n
2

(
rs−1‖x

1−2s
2

n+1 ũ‖L2(B+
16r) + ‖u‖L2(B′16r)

)α (
r2s‖qu‖L2(B′16r) + ‖u‖L2(B′16r)

)1−α
+ Cr−

n
2

(
rs−1‖x

1−2s
2

n+1 ũ‖L2(B+
16r) + ‖u‖L2(B′16r)

) 2s
1+s (

r2s‖qu‖L2(B′16r) + ‖u‖L2(B′16r)

) 1−s
1+s

+ Cr−
n
2 rs‖qu‖

1
2

L2(B′16r)‖u‖
1
2

L2(B′16r).

(10)

Proof. The proof relies on a splitting argument and the boundary-bulk interpolation estimates
from Propositions 5.10-5.12 (also Proposition 5.6) in [RS17]. In order to infer the claim, we argue
in two steps, first deriving a suitable L2 estimate and then upgrading this to an L∞ estimate.
By scaling, it suffices to prove the estimate for r = 1. Without loss of generality, we can take
x0 = 0.

Step 1: The L2 estimate. For the L2 estimate we rely on Propositions 5.10-5.12 in [RS17].
Here we distinguish between the cases s ∈ [ 1

2 , 1) and s ∈ (0, 1
2 ).

Step 1a: The case s ∈ [ 1
2 , 1). In order to invoke the estimate from [RS17], we split our solution

u into two parts ũ = u1 + u2. The function u1 deals with the Dirichlet data

∇ · x1−2s
n+1 ∇u1 = 0 in Rn+1

+ ,

u1 = ζu in Rn × {0}.

Here ζ ∈ C∞0 (B′16) is a smooth cut-off function, which is equal to one in B′8. We will estimate u1

by bounds on the Caffarelli-Silvestre extension. The function u2 = ũ − u1 in turn is admissible
in Propositions 5.10-5.12 in [RS17], i.e., u2|B′8 = 0.

We begin with the estimate for u1: Invoking Lemma 4.2 in [RS17], we obtain the bound

‖x
1−2s

2
n+1 u1‖L2(Rn+1

+ ) ≤ C‖ζu‖Hs−1(Rn) ≤ C‖ζu‖L2(Rn) ≤ C‖u‖L2(B′16).(11)

The estimate for u2 follows from Proposition 5.10 in [RS17]. The result assert that for each
s ∈ ( 1

2 , 1) there exists a constant c = c(s, n) ∈ (0, 1) and α = α(s, n) ∈ (0, 1) such that

(12) ‖x
1−2s

2
n+1 u2‖L2(B+

c ) ≤ C‖x
1−2s

2
n+1 u2‖αL2(B+

2 )
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1u2‖1−αL2(B′2).

We modify this by interpolation in order to obtain an estimate where the normal derivative of
u2 is measured in the H−2s norm. To this end, we note that for any w by interpolation and the
characterization of the trace map (c.f. Step 1 in the proof of Proposition 5.11 in [RS17]):

‖w‖L2(Rn) ≤ C‖w‖
2s

1+s

H1−s(Rn)‖w‖
1−s
1+s

H−2s(Rn)

≤ C
(
‖x

2s−1
2

n+1 w‖L2(Rn+1
+ ) + ‖x

2s−1
2

n+1 ∇w‖L2(Rn+1
+ )

) 2s
1+s ‖w‖

1−s
1+s

H−2s(Rn)

≤ C
(
µ1−s

(
‖x

2s−1
2

n+1 w‖L2(Rn+1
+ ) + ‖x

2s−1
2

n+1 ∇w‖L2(Rn+1
+ )

)
+ µ−2s‖w‖H−2s(Rn)

)
.

(13)
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Applying this to w = ηx1−2s
n+1 ∂n+1u2, where η is a smooth, radial cut-off function which is equal

to one on B+
2 and vanishes outside of B+

4 gives us

(14)

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1u2‖L2(B′2)

≤C
(
µ1−s

(
‖x

1−2s
2

n+1 ∂n+1u2‖L2(B+
4 ) + ‖x

2s−1
2

n+1 ∇(ηx1−2s
n+1 ∂n+1u2)‖L2(Rn+1

+ )

)
+µ−2s‖ lim

xn+1→0
ηx1−2s

n+1 ∂n+1u2‖H−2s(Rn)

)
.

Similar to the proof of Proposition 5.11 in [RS17], we now estimate each term on the right
hand side of (14). The last term gives us

(15) ‖ lim
xn+1→0

ηx1−2s
n+1 ∂n+1u2‖H−2s(Rn) ≤ C‖ lim

xn+1→0
x1−2s
n+1 ∂n+1u2‖H−2s(B′8).

Applying Caccioppoli’s inequality in Lemma 2.1 (with zero Dirichlet condition) implies

(16) ‖x
1−2s

2
n+1 ∂n+1u2‖L2(B+

4 ) ≤ C‖x
1−2s

2
n+1 u2‖L2(B+

8 ).

It remains to estimate the second term on the right hand side of (14). Indeed, for the resulting
bulk term we have
(17)

‖x
2s−1

2
n+1 ∇(ηx1−2s

n+1 ∂n+1u2)‖L2(Rn+1
+ ) ≤ ‖x

1−2s
2

n+1 (∇η)(∂n+1u2)‖L2(Rn+1
+ ) + ‖x

1−2s
2

n+1 η∇′∂n+1u2‖L2(Rn+1
+ )

+ ‖x
2s−1

2
n+1 η∂n+1x

1−2s
n+1 ∂n+1u2‖L2(Rn+1

+ )

≤ ‖x
1−2s

2
n+1 (∂n+1u2)‖L2(B+

4 ) + ‖x
1−2s

2
n+1 ∇′∂n+1u2‖L2(B+

4 )

+ ‖x
1−2s

2
n+1 η∆′u2‖L2(Rn+1

+ )

≤ C‖x
1−2s

2
n+1 u2‖L2(B+

8 ).

Here we first used the triangle inequality, then the support condition for η and the equation for
u2 and finally applied Caccioppoli’s inequality (twice for the last two terms, noting that ∇′u2

solves a similar problem).
Substituting (15)-(17) into (14) and optimizing the resulting estimate in µ > 0 gives

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1u2‖L2(B′2) ≤ C‖x

1−2s
2

n+1 u2‖
2s

1+s

L2(B+
8 )
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1u2‖

1−s
1+s

H−2s(B′8).

Inserting this into (12) leads to

(18) ‖x
1−2s

2
n+1 u2‖L2(B+

c ) ≤ C‖x
1−2s

2
n+1 u2‖α̃L2(B+

8 )
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1u2‖1−α̃H−2s(B′8)

where α̃ = 1−s
1+sα + 2s

1+s . By slight abuse of notation, in the sequel, we simply drop the tilde.

Combining the two bounds (11), (18) and

‖ lim
xn+1→0

x1−2s
n+1 ∂n+1u1‖H−2s(B′16) ≤ ‖(−∆)su1‖L2(Rn) ≤ ‖u1‖L2(Rn) ≤ C‖u‖L2(B′16),
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and applying the triangle inequality leads to

‖x
1−2s

2
n+1 ũ‖L2(B+

c )

≤C
(
‖x

1−2s
2

n+1 ũ‖L2(B+
16) + ‖u‖L2(B′16)

)α(
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1ũ‖H−2s(B′16) + ‖u‖L2(B′16)

)1−α

≤C
(
‖x

1−2s
2

n+1 ũ‖L2(B+
16) + ‖u‖L2(B′16)

)α(
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1ũ‖L2(B′16) + ‖u‖L2(B′16)

)1−α

.

(19)

This already implies the claim of (a). In order to exploit it for the proof of (b), we strengthen
the estimate slightly. By Caccioppoli’s inequality of Lemma 2.1 (now with an L2 estimate for
the boundary contributions), we can further upgrade (19) to

‖x
1−2s

2
n+1 ũ‖L2(B+

c̃ ) + ‖x
1−2s

2
n+1 ∇ũ‖L2(B+

c̃ )

≤C
(
‖x

1−2s
2

n+1 ũ‖L2(B+
16) + ‖u‖L2(B′16)

)α(
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1ũ‖L2(B′16) + ‖u‖L2(B′16)

)1−α

+ C‖ lim
xn+1→0

x1−2s
n+1 ∂n+1ũ‖

1
2

L2(B′16)‖u‖
1
2

L2(B′16)

(20)

with c̃ = c/2.

Step 1b: The case s ∈ (0, 1
2 ). The case s ∈ (0, 1/2) is similar as the case discussed above

and relies on a splitting strategy. As above, the estimate for u1 is a direct consequence of the
boundary bulk estimates for the Caffarelli-Silvestre extension. Thus, the main remaining estimate
is the derivation of the corresponding analogue of (18). As in the proof of (18) this follows an
application of the corresponding L2 result from [RS17] (Proposition 5.12) and interpolation. More
precisely, Proposition 5.12 in [RS17] implies that for some c = c(n, s) > 0 and α = α(n, s) ∈ (0, 1)
we have

‖x
1−2s

2
n+1 u2‖L2(B+

c )

≤ C(‖x
1−2s

2
n+1 u2‖αL2(B+

2 )
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1u2‖1−αL2(B′2) + ‖ lim

xn+1→0
x1−2s
n+1 ∂n+1u2‖L2(B′2)).

In order to pass from this estimate which involves an L2 norm of the weighted Neumann data
to an estimate which involves its H−2s norm, we apply the interpolation estimate (13) as in
the case s ∈ ( 1

2 , 1). With this estimate at hand, the analogues of (19) and (20) then follow by
combining the estimates of the splitting argument as above. Note that (20) now becomes

‖x
1−2s

2
n+1 ũ‖L2(B+

c̃ ) + ‖x
1−2s

2
n+1 ∇ũ‖L2(B+

c̃ )

≤C
(
‖x

1−2s
2

n+1 ũ‖L2(B+
16) + ‖u‖L2(B′16)

)α(
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1ũ‖L2(B′16) + ‖u‖L2(B′16)

)1−α

+ C
(
‖x

1−2s
2

n+1 ũ‖L2(B+
16) + ‖u‖L2(B′16)

) 2s
1+s

(
‖ lim
xn+1→0

x1−2s
n+1 ∂n+1ũ‖L2(B′16) + ‖u‖L2(B′16)

) 1−s
1+s

+ C‖ lim
xn+1→0

x1−2s
n+1 ∂n+1ũ‖

1
2

L2(B′16)‖u‖
1
2

L2(B′16).

(21)

Step 2: The L∞ estimate. In order to pass from the L2-based bounds from step 1 to L∞

based estimates, we rely on an estimate due to Jin, Li, Xiong [JLX11] (Proposition 2.4 (i), c.f.
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also Proposition 3.2 in [FF14]), which states that under our conditions on B+
1/2 it holds

‖ũ‖L∞(B+
1/2

) ≤ C(‖x
1−2s

2
n+1 ũ‖L2(B+

1 ) + ‖x
1−2s

2
n+1 ∇ũ‖L2(B+

1 )).(22)

Combining this with the estimate (21) and inserting the identity cn,s lim
xn+1→0

x1−2s
n+1 ∂n+1ũ = qu

entails

‖ũ‖L∞(B+
c̃
2

) ≤C
(
‖x

1−2s
2

n+1 ũ‖L2(B+
16) + ‖u‖L2(B′16)

)α (
‖qu‖L2(B′16) + ‖u‖L2(B′16)

)1−α
+ C

(
‖x

1−2s
2

n+1 ũ‖L2(B+
16) + ‖u‖L2(B′16)

) 2s
1+s (‖qu‖L2(B′16) + ‖u‖L2(B′16)

) 1−s
1+s

+ C‖qu‖
1
2

L2(B′16)‖u‖
1
2

L2(B′16).

(23)

Based on this, we can also derive a pure L∞ estimate. Indeed, using Hölder’s inequality together

with the L2 integrability of the function (0, 1) 3 t 7→ t
1−2s

2 ∈ R for s ∈ (0, 1) on bounded domains
results in

‖ũ‖L∞(B+
c̃
2

) ≤C(1 + ‖q‖L∞(B′16))
1−α

(
‖ũ‖L∞(B+

16) + ‖u‖L∞(B′16)

)α
‖u‖1−αL∞(B′16)

+ C(1 + ‖q‖L∞(B′16))
1−s
1+s

(
‖ũ‖L∞(B+

16) + ‖u‖L∞(B′16)

) 2s
1+s ‖u‖

1−s
1+s

L∞(B′16)

+ C‖q‖
1
2

L∞(B′16)‖u‖L∞(B′16)

≤C(1 + ‖q‖L∞(B′16))
1−s
1+s

((
‖ũ‖L∞(B+

16) + ‖u‖L∞(B′16)

)α
‖u‖1−αL∞(B′16)

+
(
‖ũ‖L∞(B+

16) + ‖u‖L∞(B′16)

) 2s
1+s ‖u‖

1−s
1+s

L∞(B′16)

)
+ C‖q‖

1
2

L∞(B′16)‖u‖L∞(B′16).

Here we recall that

1− α =
1− s
1 + s

− 1− s
1 + s

α <
1− s
1 + s

.

�

Proof of Proposition 2.2. Step 1: L∞ decay. We first prove that the L2 bound in the statement
of the proposition entails a similar L∞ bound. In the sequel, we denote by c̃, C̃ general positive
constants which may depend on n, s and which are likely to change from line to line. Pick any
R ≥ 1 and x0 ∈ Rn × {0} with |x0| = 32R, (9) implies

‖u‖L2(B′16R(x0)) ≤ C̃e−c̃R
β

.(24)

We next recall that by the Hs(Rn) boundedness of u and the properties of the Caffarelli-Silvestre

extension, we have ‖x
1−2s

2
n+1 ∇ũ‖L2(Rn+1

+ ) ≤ C. Thus, the L2 boundedness of u and Poincaré’s

inequality then also yield a bound for ‖x
1−2s

2
n+1 ũ‖L2(Rn×(0,C1)) for any C1 > 0. Combining the

bound from Proposition 2.4(a), the L2
loc(R

n+1
+ , x1−2s

n+1 ) boundedness of ũ, the fact that ‖q‖L∞ ≤ 1
and (24), we infer that

‖x
1−2s

2
n+1 ũ‖L2(B+

cR(x0)) ≤ C̃e−c̃R
β

.
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R 2R−R−2R

xn+1

x′

Figure 1. The chain of balls from the proof of Proposition 2.2.

Here c > 0 denotes the constant from Proposition 2.4. Finally, invoking a translated and rescaled
version of (10) then also entails the bound

(25) ‖ũ‖L∞(B+

c2R
16

(x0)) ≤ C̃e−c̃R
β

.

This yields a bound for ũ for |x| ≥ 32R. We may in particular use this for R = 10. Hence, only
on the compact set B+

C with C = 320 an L∞ bound has not yet been obtained. This however

follows by applying a rescaled version of (22). Thus, ũ ∈ L∞(Rn+1
+ ). The estimate in the

bounded region and the quantitative estimate in the unbounded annuli can finally be combined
to infer that for all R > 0 and x0 ∈ Rn × {0}, |x0| = 32R we have

‖ũ‖L∞(B+

c2R
16

(x0)) ≤ C̃e−c̃R
β

.

In particular, by choosing R = 16
c R̃ and keeping x0 ∈ Rn × {0}, |x0| = 32R, we also obtain the

estimate

(26) ‖ũ‖L∞(B+

cR̃
(x0)) ≤ C̃e−c̄R̃

β

.

Step 2: Conclusion. With the bounds from Step 1, Propositions 2.3 and 2.4 at hand, the proof
of Proposition 2.2 follows by a chain of balls argument. More precisely, for x = (x′, xn+1) with
|x| > 2 there exists a value R = 2k for k ∈ N such that x ∈ A+

R,2R := {x ∈ Rn+1
+ : |x| ∈ (R, 2R]}.

This annulus can be covered by a finite union of balls and half balls:

A+
R,2R ⊂

m1⋃
j=1

B+
rj (xj) ∪

m2⋃
k=1

B+
cR((x′k, 0))

with the property that these balls form a chain, i.e. there is sufficient overlap between these to
iterate the following estimates (c.f. Figure 1 for an illustration of this), where c is the constant
derived in Proposition 2.4. We explain this iteration more carefully. Starting with a half ball
B+
cR(x̄) with x̄ = (x′1, 0) ∈ Rn × {0} we invoke (26) to infer that

‖ũ‖L∞(B+
cR(x̄)) ≤ Ce−aR

β

,

where a = a(n, s) > 0.
We now begin with the propagation of decay estimates into Rn+1

+ along a chain of balls.

We first choose a ball B+
r1(x1) ⊂ B+

cR(x̄) with r1 = cR
5 in such a way that a large part of

B+
r1(x1) ⊂ A+

R,2R, B+
4r1
⊂ Rn+1

+ and such that |B+
2r1

(x1)∆B+
cR(x̄)| ≥ c0R for some constant
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c0 = c0(n, s) > 0. In B+
4r1

(x1) we apply the three balls inequality of Proposition 2.3. Therefore,
in combination with the L∞ estimates from step 1, we obtain

‖ũ‖L∞(B+
2r1

(x1)) ≤ C‖ũ‖αL∞(B+
4r1

(x1))
‖ũ‖1−α

L∞(B+
r1

(x1))

≤ C‖ũ‖1−α
L∞(B+

cR(x̄))

≤ Ce−a(1−α)Rβ .

We iterate this along our chain of balls B+
rj (xj) with rj = cR

5 , which allows us to eventually cover

A+
R,2R with a finite number of balls. In particular, it yields the decay estimate

‖ũ‖L∞(A+
R,2R) ≤ Ce−ãR

β

for some positive constants C(m1,m2, n, s), ã(m1,m2, n, s). Finally, the analogous bounds also
follow in arbitrary other dyadic annuli centered at zero by rescaling the previous estimate (the
number of balls in the chain of balls estimate stays constant, since the size of the balls is also
rescaled). �

2.3. An interpolation inequality. We need another bulk-boundary interpolation estimate,
which will play a relevant role in our Carleman inequalities in the next section. Although this
was already introduced in [Rül15], we reprove it here for self-containedness.

Proposition 2.5. Let s ∈ (0, 1) and u : Sn+ → R with u ∈ H1(Sn+, θ
1−2s
n ). Then there exists a

constant C = C(s, n) > 0 such that for all τ > 1

‖u‖L2(Sn−1) ≤ C(τ1−s‖θ
1−2s

2
n u‖L2(Sn+) + τ−s‖θ

1−2s
2

n ∇Snu‖L2(Sn+)).

Proof. We argue in two steps.

Step 1: Derivation of a whole space estimate. Let w ∈ Hs(Rn)∩H1(Rn+1
+ , x1−2s

n+1 ). Then trace

estimates in the space H1(Rn+1
+ , x1−2s

n+1 ) (c.f. for instance Lemma 4.4 in [RS17]) imply

(27) ‖w‖L2(Rn) ≤ C(‖x
1−2s

2
n+1 w‖L2(Rn+1

+ ) + ‖x
1−2s

2
n+1 ∇w‖L2(Rn+1

+ )).

Starting from (27), scaling x by τ−1 with τ > 0 (i.e., x→ τ−1x), we then obtain

‖w‖L2(Rn) ≤ C(τ1−s‖x
1−2s

2
n+1 w‖L2(Rn+1

+ ) + τ−s‖x
1−2s

2
n+1 ∇w‖L2(Rn+1

+ )).(28)

Step 2: Conclusion. Considering u ∈ H1(Sn+, θ
1−2s
n ), we first extend this function zero ho-

mogeneously into a neighbourhood of Sn+ and multiply it by a cut-off function, i.e. we define
w(x) := η(x)u( x

|x| ), where η(x) = 1 if |x| ∈ (1/2, 3/2) and η(x) = 0 if |x| ∈ (0, 1/4)∪ (2,∞). The

resulting compactly supported function still satisfies w ∈ H1(Rn+1
+ , x1−2s

n+1 ) and further has the
property that

‖x
1−2s

2
n+1 ∇w‖L2(Rn+1

+ ) ≤ C(‖θ
1−2s

2
n ∇Snu‖L2(Sn+) + ‖θ

1−2s
2

n u‖L2(Sn+)),

‖x
1−2s

2
n+1 w‖L2(Rn+1

+ ) ≤ C‖θ
1−2s

2
n u‖L2(Sn+),

‖u‖L2(Sn−1) ≤ C‖w‖L2(Rn).

Inserting these into (28) and choosing τ ≥ τ0 > 1 (for some uniform τ0) then implies

‖u‖L2(Sn−1) ≤ C‖w‖L2(Rn) ≤ C(τ1−s‖x
1−2s

2
n+1 w‖L2(Rn+1

+ ) + τ−s‖x
1−2s

2
n+1 ∇w‖L2(Rn+1))

≤ C(τ1−s(1 + τ−1)‖θ
1−2s

2
n u‖L2(Sn+) + τ−s‖θ

1−2s
2

n u‖L2(Sn+)).
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Using that τ ≥ 1 then implies the claimed estimate. �

3. Carleman Inequalities

In the following two sections, we prove the Carleman estimates, which provide the main tools
in deriving the decay estimates of Theorems 1 and 2.

3.1. A Carleman inequality under differentiability assumptions. We begin with an esti-
mate in the setting of differentiable potentials. Here we “include” the potential into the estimate,
which allows us to obtain better boundary contributions. This is however at the expense of re-
quiring radial differentiability properties on the potential. It corresponds to a similar argument
from [Mes91] for s = 1 in the case of differentiable potentials.

Theorem 4. Let s ∈ (0, 1) and let ũ ∈ H1(Rn+1
+ , x1−2s

n+1 ) with supp(ũ) ⊂ Rn+1
+ \B+

1 be a solution
to

∇ · x1−2s
n+1 ∇ũ = f in Rn+1

+ ,

lim
xn+1→0

x1−2s
n+1 ∂n+1ũ = V ũ on Rn × {0},

where f ∈ L2(Rn+1
+ , x2s−1

n+1 ) with compact support in Rn+1
+ , V ∈ C1

r (Rn×{0}), i.e. V ∈ C0(Rn×
{0}) and x · ∇V exists. Let further φ(x) = |x|α for α ≥ 1. Then there exists a constant C > 1
such that for all τ ≥ τ0 > 1 it holds

τ3‖eτφ|x| 3α2 −1x
1−2s

2
n+1 ũ‖2L2(Rn+1

+ )
+ τ‖eτφ|x|α2 x

1−2s
2

n+1 ∇ũ‖2L2(Rn+1
+ )

≤ C
(
‖eτφx

2s−1
2

n+1 |x|f‖2L2(Rn+1
+ )

+τ‖eτφ|x|α2 |(x · ∇V )| 12 ũ‖2L2(Rn×{0}) + τ‖eτφ|x|α2 |V | 12 ũ‖2L2(Rn×{0})

)
.

(29)

Proof. We first pass to conformal polar coordinates. To this end, we define x = etθ with t ∈ R,

θ ∈ Sn+, set ū(t, θ) = e
(n−2s)

2 tũ(etθ) and multiply the resulting equation for ū with e
(n−2s)

2 t. This
then leads to the equation(

θ1−2s
n ∂2

t +∇Sn · θ1−2s
n ∇Sn − θ1−2s

n

(n− 2s)2

4

)
ū = f̃ in Sn+ × R,

lim
θn→0

θ1−2s
n ∂ν ū = Ṽ ū on Sn−1 × R.

Here f̃(t, θ) := e
(n+2+2s)

2 tf(etθ), Ṽ (t, θ) := e2stV (etθ) and ∂ν = ν · ∇Sn with ν = (0, · · · , 0, 1).

Next, setting v = eτϕ(t)ū and f̄ = eτϕ(t)f̃ (with ϕ(t) = φ(etθ) = eαt), we seek to prove the
following estimate, which (after returning to Cartesian coordinates) implies (29):

τ3‖ϕ′|ϕ′′| 12 θ
1−2s

2
n v‖2L2(Sn+×R) + τ‖|ϕ′′| 12 θ

1−2s
2

n ∇Snv‖2L2(Sn+×R) + τ‖|ϕ′′| 12 θ
1−2s

2
n ∂tv‖2L2(Sn+×R)

≤ C
(
‖θ

2s−1
2

n f̄‖2L2(Sn+×R) + τ‖|ϕ′| 12 |∂tṼ |
1
2 v‖2L2(Sn−1×R) + τ‖|ϕ′′| 12 |Ṽ | 12 v‖2L2(Sn−1×R)

)
.

(30)

In order to infer this, we consider the function v := θ
1−2s

2
n v, which satisfies the equation

Lϕv̄ :=

(
∂2
t + ∆̃Sn −

(n− 2s)2

4
+ τ2|ϕ′|2 − 2τϕ′∂t − τϕ′′

)
v̄ = θ

2s−1
2 f̄ in Sn+ × R,

lim
θn→0

θ1−2s
n ∂νθ

2s−1
2

n v̄ = Ṽ θ
2s−1

2
n v̄ on Sn−1 × R,
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where ∆̃Sn := θ
2s−1

2
n ∇Sn · θ1−2s

n ∇Snθ
2s−1

2
n . We split the bulk operator into its (formally) sym-

metric and antisymmetric parts:

S = ∂2
t + ∆̃Sn + τ2|ϕ′|2 − (n− 2s)2

4
,

A = −2τϕ′∂t − τϕ′′.

Then, using that S,A are only symmetric and antisymmetric up to boundary contributions, we
obtain

‖Lϕv̄‖2 = ‖Sv̄‖2 + ‖Av̄‖2 + ([S,A]v̄, v̄) + 4τ(Ṽ θ
2s−1

2
n v̄, ϕ′θ

2s−1
2

n ∂tv̄)0 + 2τ(Ṽ θ
2s−1

2
n v̄, ϕ′′θ

2s−1
2

n v̄)0.

(31)

For abbreviation, we have here set

‖ · ‖ = ‖ · ‖L2(Sn+×R), (·, ·) := (·, ·)L2(Sn+×R),

‖ · ‖0 := ‖ · ‖L2(Sn−1×R), (·, ·)0 := (·, ·)L2(Sn−1×R).
(32)

In the sequel, we will use this notation frequently. The bulk terms are bounded as usual. More
precisely, the commutator reads

([S,A]v̄, v̄) = 4τ3(ϕ′′|ϕ′|2v̄, v̄)− 4τ(ϕ′′∂2
t v̄, v̄)− 4τ(ϕ′′′∂tv̄, v̄)− τ(ϕ′′′′v̄, v̄)

= 4τ3(ϕ′′|ϕ′|2v̄, v̄) + 4τ(ϕ′′∂tv̄, ∂tv̄)− τ(ϕ′′′′v̄, v̄)

≥ 2τ3(ϕ′′|ϕ′|2v̄, v̄) + 4τ(ϕ′′∂tv̄, ∂tv̄).

(33)

In the last line, we used the growth of ϕ to absorb the last term into the first term on the right
hand side (for a sufficiently large choice of τ0 > 0). This yields the L2 and the radial part of the
gradient L2 bulk contributions.

In order to also obtain the full gradient estimate, we exploit the symmetric part of the operator.
By an integration by parts argument we infer for some small constant c0

c0τ‖|ϕ′|
1
2 θ

1−2s
2

n ∇Snθ
2s−1

2
n v̄‖2 ≤ c0τ |(Sv̄, ϕ′v̄)|+ c0τ‖|ϕ′′|

1
2 ∂tv̄‖2 + c0τ

3‖|ϕ′| 32 v̄‖2

+ c0τ

(
n− 2s

2

)2

‖|ϕ′| 12 v̄‖2 + c0τ |(θ1−2s
n ∂νθ

2s−1
2

n v̄, ϕ′θ
2s−1

2
n v̄)0|

≤ c0τ |(Sv̄, ϕ′v̄)|+ c0τ‖|ϕ′′|
1
2 ∂tv̄‖2 + c0τ

3‖ϕ′|ϕ′′| 12 v̄‖2

+ c0τ

(
n− 2s

2

)2

‖|ϕ′| 12 v̄‖2 + c0τ |(Ṽ θ
2s−1

2
n v̄, ϕ′θ

2s−1
2

n v̄)0|.

(34)

Combining (31), (33), (34) yields

c0τ‖|ϕ′|
1
2 θ

1−2s
2

n ∇Snθ
2s−1

2
n v̄‖2 + 2τ3‖ϕ′|ϕ′′| 12 v̄‖2 + 4τ‖|ϕ′′| 12 ∂tv̄‖2 + ‖Sv̄‖2 + ‖Av̄‖2

≤ c0τ |(Sv̄, ϕ′v̄)|+ c0τ‖|ϕ′′|
1
2 ∂tv̄‖2 + c0τ

3‖ϕ′|ϕ′′| 12 v̄‖2

+ c0τ

(
n− 2s

2

)2

‖|ϕ′| 12 v̄‖2 + c0τ |(Ṽ θ
2s−1

2
n v̄, ϕ′θ

2s−1
2

n v̄)0|

+ ‖Lϕv̄‖2 + 4τ |(Ṽ θ
2s−1

2
n v̄, ϕ′θ

2s−1
2

n ∂tv̄)0|+ 2τ |(Ṽ θ
2s−1

2
n v̄, ϕ′′θ

2s−1
2

n v̄)0|.
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Noting that the bulk terms on the right hand side of this estimate can be absorbed into the left
hand side, if c0 is chosen sufficiently small and τ0 ≥ 1 sufficiently large, entails

c0τ‖|ϕ′|
1
2 θ

1−2s
2

n ∇Snθ
2s−1

2
n v̄‖2 + τ3‖ϕ′|ϕ′′| 12 v̄‖2 + τ‖|ϕ′′| 12 ∂tv̄‖2

≤ ‖Lϕv̄‖2 + 4τ |(Ṽ θ
2s−1

2
n v̄, ϕ′θ

2s−1
2

n ∂tv̄)0|+ 3τ |(Ṽ θ
2s−1

2
n v̄, ϕ′′θ

2s−1
2

n v̄)0|.
(35)

It thus remains to control the boundary contribution involving the t-derivative (the other one is
already of the desired form, c.f. (30)). It is controlled by integrating by parts in t which leads to

τ
∣∣∣(Ṽ θ 2s−1

2
n v̄, ϕ′θ

2s−1
2

n ∂tv̄)0

∣∣∣ ≤ τ ∣∣∣((∂tṼ )θ
2s−1

2
n v̄, ϕ′θ

2s−1
2

n v̄)0

∣∣∣
+ τ

∣∣∣(Ṽ θ 2s−1
2

n v̄, ϕ′′θ
2s−1

2
n v̄)0

∣∣∣ .(36)

Returning from v̄ to v shows that the boundary contributions on the right hand side of (36) are
exactly controlled by the boundary contributions in (30). Thus, finally, combining (33) with (36)
yields (30), which concludes the proof for Theorem 4. �

3.2. A Carleman inequality without differentiability assumptions. In this section we
prove a similar Carleman estimate as in the previous section. However, in contrast to the
previous estimate, we now do not presuppose any differentiability properties on the potential V .
As in the classical case s = 1 this implies that we can no longer treat the potential V as part of
the operator, but instead have to deal with it perturbatively. This however does no longer allow
us to distinguish between the complex (system) and the real valued (scalar) case. Hence, we can
only derive weaker estimates.

Theorem 5. Let s ∈ (0, 1) and let ũ ∈ H1(Rn+1
+ , x1−2s

n+1 ) with supp(ũ) ⊂ B+
R \ B+

1 for some
constant R > 1 be a solution to

∇ · x1−2s
n+1 ∇ũ = f in Rn+1

+ ,

lim
xn+1→0

x1−2s
n+1 ∂n+1ũ = V ũ on Rn × {0},

where f ∈ L2(Rn+1
+ , x2s−1

n+1 ) with compact support in Rn+1
+ and V ∈ L∞(Rn). Let further φ(x) =

|x|α for some α ≥ 1.
Then there exist constants C, τ0 > 1 such that for all τ ≥ τ0 it holds

τ3‖eτφ|x| 3α2 −1x
1−2s

2
n+1 ũ‖2L2(Rn+1

+ )
+ τ‖eτφ|x|α2 x

1−2s
2

n+1 ∇ũ‖2L2(Rn+1
+ )

≤ C
(
‖eτφx

2s−1
2

n+1 |x|f‖2L2(Rn+1
+ )

+ τ2−2s‖eτφV |x|(1−α)sũ‖2L2(Rn×{0})

)
.

Proof. As in [GRSU18], we deduce the estimate by a splitting argument. To this end, we first
pass to conformal polar coordinates.

Step 1: Conformal coordinates and set-up. As in the proof of Theorem 4, we first pass to
conformal polar coordinates. With the notation from there, we obtain(

θ1−2s
n ∂2

t +∇Sn · θ1−2s
n ∇Sn − θ1−2s

n

(n− 2s)2

4

)
ū = f̃ in Sn+ × R,

lim
θn→0

θ1−2s
n ∂ν ū = Ṽ ū on Sn−1 × R.

(37)
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In order to deduce the desired exponential estimates for this problem, we split the function ū
into two parts ū = u1 + u2. Here u1 is a solution to(

θ1−2s
n ∂2

t +∇Sn · θ1−2s
n ∇Sn − θ1−2s

n

(n− 2s)2

4
−K2τ2|ϕ′|2θ1−2s

n

)
u1 = f̃ in Sn+ × R,

lim
θn→0

θ1−2s
n ∂νu1 = Ṽ ū on Sn−1 × R.

(38)

The constant K ∈ R is sufficiently large and is to be determined more precisely later; further
ϕ(t) := φ(et). We remark that by the Lax-Milgram theorem in H1(Sn+×R, θ1−2s

n ) a unique energy
solution to this problem exists. Further, by arguments similar as in the Appendix of [GRSU18]
this function is rapidly decaying at infinity. The equation for u2 follows correspondingly. In
order to infer the desired Carleman estimate, we combine elliptic estimates for u1 with the usual
commutator estimates for u2. We deduce these estimates separately and begin by discussing the
elliptic bounds for u1.

Step 2: Elliptic estimates for u1. Using the same notational convention as in (32) and testing
the weak form of the equation (38) by τ2e2τϕ|ϕ′′|2u1, we obtain

τ2(e2τϕ|ϕ′′|2θ1−2s
n ∂tu1, ∂tu1) + τ2(e2τϕ|ϕ′′|2θ1−2s

n ∇Snu1,∇Snu1)

+ τ2 (n− 2s)2

4
(e2τϕ|ϕ′′|2θ1−2s

n u1, u1) +K2τ4(e2τϕ|ϕ′|2|ϕ′′|2θ1−2s
n u1, u1)

= −τ2(e2τϕf̃ , |ϕ′′|2u1) + τ2(e2τφṼ ū, |ϕ′′|2u1)0

− 2τ3(e2τϕ|ϕ′′|2ϕ′θ1−2s
n ∂tu1, u1)− 2τ2(e2τϕϕ′′ϕ′′′u1, θ

1−2s
n ∂tu1).

(39)

Choosing K ≥ 1 sufficiently large and applying Young’s inequality, it is thus possible to absorb
unsigned contributions from the right hand side into the left hand side. This results in

τ2‖eτϕϕ′′θ
1−2s

2
n ∂tu1‖2 + τ2‖eτϕϕ′′θ

1−2s
2

n ∇Snu1‖2 +
1

2
K2τ4‖eτϕϕ′ϕ′′θ

1−2s
2

n u1‖2

≤ C(‖eτϕθ
2s−1

2
n f̃‖2 + τ2−2s‖eτϕϕ′′Ṽ e−αstu‖20) + ετ2+2s‖eτϕϕ′′eαstu1‖20.

(40)

Finally, in order to conclude the discussion on the function u1, we bound the boundary contribu-
tion τ2+2s‖e2τϕϕ′′eαstu1‖20 by means of the bulk-boundary interpolation estimate from Propo-
sition 2.5. Recalling that ϕ(t) = eαt and treating the non-spherical variables as constants, we
obtain

|ϕ′′|2e2αst

ˆ

Sn−1

u2
1dθ ≤ C(τ̃2−2s|ϕ′′|2e2αst

ˆ

Sn+

θ1−2s
n u2

1dθ + τ̃−2s|ϕ′′|2e2αst

ˆ

Sn+

θ1−2s
n |∇Snu1|2dθ).

Choosing τ̃ = eαtτ (such that both the L2 and the gradient contribution obtain radial weights
which match the elliptic bulk estimates from (40)), we obtain

|ϕ′′|2e2αst

ˆ

Sn−1

u2
1dθ ≤ C(τ2−2s|ϕ′′|2e2αt

ˆ

Sn+

θ1−2s
n u2

1dθ + τ−2s|ϕ′′|2
ˆ

Sn+

θ1−2s
n |∇Snu1|2dθ).

Multiplying with e2τϕ, using that ϕ′ = αeαt and integrating in the radial direction thus implies

τ2+2s‖eτϕ|ϕ′′|eαstu1‖20 ≤ C(τ4‖eτϕθ
1−2s

2
n eαtϕ′′u1‖2 + τ2‖eτϕθ

1−2s
2

n ϕ′′∇Snu1‖2)

≤ C(τ4‖eτϕθ
1−2s

2
n ϕ′ϕ′′u1‖2 + τ2‖eτϕθ

1−2s
2

n ϕ′′∇Snu1‖2).
(41)
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Therefore, we may absorb the last boundary term in (40) into the left hand side of (40) and are
left with

τ2‖eτϕϕ′′θ
1−2s

2
n ∂tu1‖2 + τ2‖eτϕϕ′′θ

1−2s
2

n ∇Snu1‖2 +K2τ4‖eτϕϕ′ϕ′′θ
1−2s

2
n u1‖2

≤ C(‖eτϕθ
2s−1

2
n f̃‖2 + τ2−2s‖eτϕϕ′′Ṽ e−αstu‖20).

(42)

Step 3: Commutator estimates for u2. Next we deal with the estimate for the function u2,
which follows from a commutator estimate similarly as in the proof of Theorem 4. Indeed, u2

satisfies the equation(
θ1−2s
n ∂2

t +∇Sn · θ1−2s
n ∇Sn − θ1−2s

n

(n− 2s)2

4

)
u2 = −K2τ2|ϕ′|2θ1−2s

n u1 in Sn+ × R,

lim
θn→0

θ1−2s
n ∂νu1 = 0 on Sn−1 × R.

(43)

In order to deduce the desired exponential estimates from this, we carry out a similar commutator
argument as in the proof of Theorem 4. In this procedure, we note that now the boundary terms
drop out due to the vanishing Neumann condition. With this observation and exactly the same
commutator bounds as in the proof of Theorem 4, we therefore obtain the estimate

τ3‖eτϕϕ′|ϕ′′| 12 θ
1−2s

2
n u2‖2 + τ‖eτϕ|ϕ′′| 12 θ

1−2s
2

n ∂tu2‖2 + τ‖eτϕ|ϕ′′| 12 θ
1−2s

2
n ∇Snu2‖2

≤ CK4τ4‖eτϕ|ϕ′|2θ
1−2s

2
n u1‖2.

(44)

Step 4: Conclusion. Finally, we combine the estimates from (42) and (44). By the triangle
inequality, this gives

τ3‖eτϕϕ′|ϕ′′| 12 θ
1−2s

2
n ū‖2 + τ‖eτϕ|ϕ′′| 12 θ

1−2s
2

n ∂tū‖2 + τ‖eτϕ|ϕ′′| 12 θ
1−2s

2
n ∇Sn ū‖2

≤ τ3‖eτϕϕ′|ϕ′′| 12 θ
1−2s

2
n u1‖2 + τ‖eτϕ|ϕ′′| 12 θ

1−2s
2

n ∂tu1‖2 + τ‖eτϕ|ϕ′′| 12 θ
1−2s

2
n ∇Snu1‖2

+ τ3‖eτϕϕ′|ϕ′′| 12 θ
1−2s

2
n u2‖2 + τ‖eτϕ|ϕ′′| 12 θ

1−2s
2

n ∂tu2‖2 + τ‖eτϕ|ϕ′′| 12 θ
1−2s

2
n ∇Snu2‖2

≤ C(‖eτϕθ
2s−1

2
n f̃‖2 + τ2−2s‖eτϕṼ ϕ′′e−αstū‖20) + CK4τ4‖eτϕ|ϕ′|2θ

1−2s
2

n u1‖2

≤ CK4(‖eτϕθ
2s−1

2
n f̃‖2 + τ2−2s‖eτϕϕ′′Ṽ e−αstū‖20).

After returning to Cartesian coordinates, this implies the claim of the theorem. �

4. Proofs of Theorems 1 and 2

In this section we discuss the proofs of Theorems 1 and 2.

4.1. Proof of the fractional Landis conjecture with differentiability assumptions. In
this section we discuss the proof of the Landis conjecture with differentiability assumptions on
the potential q, i.e. we present the proof of Theorem 1. The argument for this consists of
a combination of the Carleman estimate from Section 3.1 and the interpolation estimate from
Proposition 2.5.

Proof of Theorem 1. We begin by noticing that since for some α > 1 and some constant C,

‖e|x|α/2u‖L2(Rn) ≤ C <∞,
Proposition 2.2 implies the a similar L∞ estimate, i.e. there exist constants c̃, C̃ > 0 such that
for all R > 0

|ũ(x)| ≤ C̃e−c̃Rα for x ∈ A+
R
2 ,3R

.(45)
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Next we define w := ηRũ, where ηR is a radial cut-off function with the properties that for
some constant C > 1 independent of R > 1

supp(ηR) ⊂ B+
2R \B+

1 , ηR(x) = 1 for x ∈ B+
R \B+

2 ,

|∇ηR| ≤
C

R
, |∇2ηR| ≤

C

R2
for x ∈ B+

2R \B+
R ,

|∇ηR| ≤ C, |∇2ηR| ≤ C for x ∈ B+
2 \B+

1 .

We note that the radial dependence of ηR in particular entails that

∇ · x1−2s
n+1 ∇w = f in Rn+1

+ ,

lim
xn+1→0

x1−2s
n+1 ∂n+1w = ηR lim

xn+1→0
x1−2s
n+1 ∂n+1ũ = qηRu = qw on Rn × {0},

with f = 2x1−2s
n+1 ∇ηR · ∇ũ + ũ∇ · x1−2s

n+1 ∇ηR ∈ L2(Rn+1
+ , x2s−1

n+1 ) being compactly supported in

Rn+1
+ . As a consequence, the function w is admissible in the Carleman estimate from Theorem

4. Inserting it into this inequality with weight φ(x) = |x|β for β = α− ε > 1 with ε ∈ (0, α− 1),
yields

τ3‖eτφ|x| 3β2 −1x
1−2s

2
n+1 w‖2L2(Rn+1

+ )
+ τ‖eτφ|x| β2 x

1−2s
2

n+1 ∇w‖2L2(Rn+1
+ )

≤ C
(
R−2‖eτφx

1−2s
2

n+1 |x|∇ũ‖2L2(A+
R,2R)

+R−4‖eτφx
1−2s

2
n+1 |x|ũ‖2L2(A+

R,2R)

+ ‖eτφx
1−2s

2
n+1 |x|∇ũ‖2L2(A+

1,2)
+ ‖eτφx

1−2s
2

n+1 |x|ũ‖2L2(A+
1,2)

+τ‖eτφ|x| β2 |x · ∇q| 12w‖2L2(Rn×{0}) + τ‖eτφ|x| β2 |q| 12w‖2L2(Rn×{0})

)
.

(46)

We next discuss the bulk contributions which appear on the right hand side of the estimate (as
they are lower order error contributions). Here we first focus on the contributions on the annulus
A+
R,2R: Pulling out the exponential weights and using elliptic estimates in order to bound the

gradient contributions, we obtain

R−2‖eτφx
1−2s

2
n+1 |x|∇ũ‖2L2(A+

R,2R)
+R−4‖eτφx

1−2s
2

n+1 |x|ũ‖2L2(A+
R,2R)

≤ R−1eτφ̃(2R)‖x
1−2s

2
n+1 ∇ũ‖2L2(A+

R,2R)
+R−3eτφ̃(2R)‖x

1−2s
2

n+1 ũ‖2L2(A+
R,2R)

≤ C
(
R−3eτφ̃(2R)‖x

1−2s
2

n+1 ũ‖2L2(A+
R
2
,3R

)
+R−3eτφ̃(2R)‖x

1−2s
2

n+1 ũ‖2L2(A+
R
2
,3R

)

)
.

Here φ̃ : [0,∞) → R is defined as φ̃(r) = φ(x) = er
β

with |x| = r (which is well-defined since φ
is a radial function). Using that by (45) for each R ≥ R0 ≥ 1 it holds ‖ũ‖L∞(A+

R
2
,3R

) ≤ Ce−cR
α

,

we may pass to the limit R→∞ and infer that

lim
R→∞

(
R−2‖eτφx

1−2s
2

n+1 |x|∇ũ‖2L2(A+
R,2R)

+R−4‖eτφx
1−2s

2
n+1 |x|ũ‖2L2(A+

R,2R)

)
= 0.

Hence, we may pass to the limit R→∞ in (46) and deduce

τ3‖eτφ|x| 3β2 −1x
1−2s

2
n+1 w‖2L2(Rn+1

+ )
+ τ‖eτφ|x| β2 x

1−2s
2

n+1 ∇w‖2L2(Rn+1
+ )

≤ C
(
‖eτφx

1−2s
2

n+1 |x|∇ũ‖2L2(A+
1,2)

+ ‖eτφx
1−2s

2
n+1 |x|ũ‖2L2(A+

1,2)

+τ‖eτφ|x| β2 |x · ∇q| 12w‖2L2(Rn×{0}) + τ‖eτφ|x| β2 |q| 12w‖2L2(Rn×{0}).
)
.

(47)
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Next, we seek to estimate the boundary contribution and show that we can absorb it into
the left hand side of the estimate. For convenience and since our bulk-boundary estimates are
formulated in conformal coordinates, we prove this in conformal coordinates, i.e. in the form
(30). First consider the spherical integrals. We claim that
(48)

τ |ϕ′′|‖|q̃| 12 v‖2L2(Sn−1) ≤ C
(
τ3−2s|ϕ′′||ϕ′|2‖θ

1−2s
2

n v‖2L2(Sn+) + τ1−2s|ϕ′′|‖θ
1−2s

2
n ∇Snv‖2L2(Sn+)

)
,

where q̃(t, θ′) = e2stq(etθ′) with θ′ = (θ1, · · · , θn, 0), v(t, θ) = eτϕw(etθ) and ϕ(t) = φ(etθ) = eβt.
Indeed, we have

|ϕ′′|‖|q̃| 12 v‖2L2(Sn−1) ≤ τ |ϕ′′|e2st‖v‖2L2(Sn−1)

≤ C
(
τ̃2−2se2st|ϕ′′|‖θ

1−2s
2

n v‖2L2(Sn+) + τ̃−2se2st|ϕ′′|‖θ
1−2s

2
n ∇Snv‖2L2(Sn+)

)
.

Setting e2stτ̃−2s = τ−2s, i.e. τ̃ = τet, our choice of ϕ(t) = eβt with β > 1 and t ≥ 0 gives

τ̃2−2se2st|ϕ′′| = τ2−2se2t|ϕ′′| ≤ τ2−2s|ϕ′|2|ϕ′′|.
Multiplying (48) with eτϕ and integrating in the radial variable t ∈ (2,∞) we hence infer

τ‖eτϕ|ϕ′′| 12 |q̃| 12 v‖2L2(Sn−1×R) ≤ C
(
τ3−2s‖eτϕ|ϕ′||ϕ′′| 12 θ

1−2s
2

n v‖2L2(Sn+×R)

+τ1−2s‖eτϕ|ϕ′′| 12 θ
1−2s

2
n ∇Snv‖2L2(Sn+×R)

)
≤ C

(
τ3−2s‖eτϕ|ϕ′||ϕ′′| 12 θ

1−2s
2

n v‖2L2(Sn+×R)

+τ1−2s‖eτϕ|ϕ′′| 12 θ
1−2s

2
n ∇Snv‖2L2(Sn+×R)

)
.

A similar estimate also holds for τ‖eτϕ|ϕ′| 12 |∂tq̃|v‖2L2(Sn−1×R). Hence, choosing τ > 1 sufficiently

large, allows us to absorb the boundary term in (47) into the left hand side. Thus, we are left
with

τ3‖eτφ|x| 3β2 −1x
1−2s

2
n+1 w‖2L2(Rn+1

+ )
+ τ‖eτφ|x| β2 x

1−2s
2

n+1 ∇w‖2L2(Rn+1
+ )

≤ C
(
‖eτφx

1−2s
2

n+1 |x|∇ũ‖2L2(A+
1,2)

+ ‖eτφx
1−2s

2
n+1 |x|ũ‖2L2(A+

1,2)

)
.

Thus, pulling out the exponential weight in the above estimate in particular yields

τ3eτφ̃(4)‖x
1−2s

2
n+1 ũ‖2L2(B+

6 \B
+
4 )

+ τeτφ̃(4)‖x
1−2s

2
n+1 ∇ũ‖2L2(B+

6 \B
+
4 )

≤ Ceτφ̃(2)
(
‖x

1−2s
2

n+1 ∇ũ‖2L2(A+
1,2)

+ ‖x
1−2s

2
n+1 ũ‖2L2(A+

1,2)

)
.

Using the monotonicity of φ̃ and letting τ →∞ leads to a contradiction unless ũ = 0 in B+
6 \B+

4 .
Then however ũ ≡ 0 by the weak unique continuation property, which concludes the proof for
Theorem 1. �

4.2. Proof of Theorem 2. In this section, we present the argument for Theorem 2. This
follows along similar lines as the proof of Theorem 1, but now uses the Carleman estimate from
Theorem 5 combined with the boundary-bulk interpolation result of Proposition 2.2. As before,
the crucial part consists in estimating the boundary contributions appropriately.

Proof of Theorem 2. As in the proof of Theorem 1 we first multiply ũ with a radial cut-off
function ηR satisfying the same properties as in the previous proof. This leads to bulk con-
tributions, which are admissible in the Carleman estimate of Theorem 5 with φ(x) = |x|β and
β = α − ε > 4s

4s−1 , i.e. ε ∈ (0, α − 4s
4s−1 ). With a similar argument as in the proof of Theorem
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1, it is possible to pass to the limit R→∞. In conformal polar coordinates, this then leaves us
with the following Carleman estimate:

τ3‖eτϕ|ϕ′||ϕ′′| 12 θ
1−2s

2
n w̄‖2L2(Sn+×R) + τ‖eτϕ|ϕ′′| 12 θ

1−2s
2

n ∂tw̄‖2L2(Sn+×R)

+ τ‖eτϕ|ϕ′′| 12 θ
1−2s

2
n ∇Snw̄‖2L2(Sn+×R)

≤ C(‖eτϕθ
2s−1

2
n f̃‖2L2(Sn+×[1,2]) + τ2−2s‖eτϕ|ϕ′′|q̃e−βstw̄‖2L2(Sn−1×R)).

(49)

Here |f̃ | ≤ Cθ1−2s
n (|∂tū|+ |∇Sn ū|+ |ū|) and w̄(t, θ) = ū(t, θ)ηR(etθ). Similarly as in the proof of

Theorem 1, the crucial part consists in estimating the boundary contribution. We seek to absorb
it into the left hand side of (49). Similarly as in the argument leading to (42), this is achieved
by invoking the interpolation estimate of Proposition 2.2. More precisely, using that by virtue of
the choice of β ≥ 4s

4s−1 it holds that 2β + 4s− 2βs ≤ β + 2βs, and by further setting τ̃ = e−βtτ ,
we deduce

|ϕ′′|2|q̃|2e−2βst‖w̄‖2L2(Sn−1) ≤ Ce(4s−2βs+2β)t‖w̄‖2L2(Sn−1)

≤ C(τ̃2−2se(4s−2βs+2β)t‖θ
1−2s

2
n w̄‖2L2(Sn+) + τ̃−2se(4s−2βs+2β)t‖θ

1−2s
2

n ∇Snw̄‖2L2(Sn+))

≤ C(τ̃2−2se(β+2βs)t‖θ
1−2s

2
n w̄‖2L2(Sn+) + τ̃−2se(β+2βs)t‖θ

1−2s
2

n ∇Snw̄‖2L2(Sn+))

≤ C(τ2−2se3βt‖θ
1−2s

2
n w̄‖2L2(Sn+) + τ−2seβt‖θ

1−2s
2

n ∇Snw̄‖2L2(Sn+)).

Integrating this in t ∈ R, using that eβt ≤ Cβ min{|ϕ′|, |ϕ′′|}, thus results in

τ2−2s‖eτϕ|ϕ′′||q̃|e−βstw̄‖2L2(Sn−1×R) ≤ τ1+2s‖eτϕ|ϕ′′| 12 |q̃|e−βstw̄‖2L2(Sn−1×R)

≤ C(τ4−4s‖eτϕ|ϕ′||ϕ′′| 12 θ
1−2s

2
n w̄‖2L2(Sn+×R) + τ2−4s‖eτϕ|ϕ′′| 12 θ

1−2s
2

n ∇Snw̄‖2L2(Sn+×R)).

We notice that for s ∈ ( 1
4 , 1), 4 − 4s < 3 and 2 − 4s < 1. Now choosing τ ≥ τ0 > 0 sufficiently

large, implies that the boundary contribution in (49) can be absorbed into the left hand side of
this estimate. Hence, we infer

τ3‖eτϕ|ϕ′||ϕ′′| 12 θ
1−2s

2
n w̄‖2L2(Sn+×R) + τ‖eτϕ|ϕ′′| 12 θ

1−2s
2

n ∂tw̄‖|2L2(Sn+×R)

+ τ‖eτϕ|ϕ′′| 12 θ
1−2s

2
n ∇Snw̄‖|2L2(Sn+×R) ≤ C‖eτϕθ

2s−1
2

n f̃‖2L2(Sn+×[1,2]).
(50)

Pulling out the weight eτφ in (50) leads to

eτϕ(4)τ3‖eτϕ|ϕ′||ϕ′′| 12 θ
1−2s

2
n ū‖2L2(Sn+×[4,6)) ≤ Ceτϕ(2)‖θ

2s−1
2

n f̃‖2L2(Sn+×[1,2]).

Using the monotonicity of ϕ and passing to the limit τ → ∞ therefore implies that ū = 0 in
Sn+× [4, 6]. By unique continuation this however then also gives that ū ≡ 0, which concludes the
argument. �

5. Proof of the Quantitative Estimate of Theorem 3

In this section, we prove the quantitative estimate from Theorem 3. To this end, we deduce
bounds on the local vanishing order. Using a scaling argument as in Bourgain-Kenig [BK05],
we then deduce the desired result. In order to carry out this scaling argument, we work with a
slightly more general setting than in the previous sections and consider solutions to

((−∆)s + q)u = 0 on Rn(51)

with q ∈ L∞ but where q need not necessarily be bounded by one. The main goal of the following
estimates will be the derivation of precise dependences on ‖q‖L∞ .
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We begin with an auxiliary result which allows us to bound weighted gradient terms by
weighted L2 contributions (without boundary terms). This estimate should be thought of as an
improvement of the Caccioppoli estimate from Proposition 2.1 in which the boundary contribu-
tion can be eliminated due to the subcriticality of the space L∞ (a similar estimate holds in all
subcritical spaces).

Lemma 5.1. Let s ∈ (0, 1). Let u ∈ Hs(Rn) be a solution to (51). Then, there exists a constant
C = C(n, s) > 0 such that

‖x
1−2s

2
n+1 ∇ũ‖L2(B+

1 ) ≤ C
(

1 + ‖q‖
1
2s

L∞(Rn)

)
‖x

1−2s
2

n+1 ũ‖L2(B+
3/2

).

Proof. This is a quantitative version of the proof of Proposition 2.2. in [JLX11]. Following along
the lines of [JLX11], we first assume that ‖q‖L∞ ≤ δ for some δ ∈ (0, δ0) sufficiently small. Then,
the same argument as in the proof of Caccioppoli’s inequality implies that if we test the equation
for ũ by η2ũ we infer

‖x
1−2s

2
n+1 η∇ũ‖L2(B+

1 ) ≤ C(‖x
1−2s

2
n+1 |∇η|ũ‖L2(B+

1 ) + ‖q‖1/2L∞‖ηu‖L2(B′1)).

Here η is a smooth, radially symmetric cut-off function, which is equal to one in B+
2/3 and is

supported in B+
1 . Using the smallness assumption on ‖q‖L∞ and the Poincaré type inequality

‖ηu‖L2(B′1) ≤ C‖x
1−2s

2
n+1 ∇(ηũ)‖L2(B+

1 ), we then obtain

‖x
1−2s

2
n+1 η∇ũ‖L2(B+

1 ) ≤ C(‖x
1−2s

2
n+1 |∇η|ũ‖L2(B+

1 ) + δ
1/2
0 ‖x

1−2s
2

n+1 ∇(ηũ)‖L2(B+
1 )).

Here and below all constants C > 0 depend on n, s. Choosing δ0 := 1
4C2 then allows us to absorb

the gradient contribution from the right hand side into the left hand side. This yields

‖x
1−2s

2
n+1 ∇ũ‖L2(B+

2/3
) ≤ C‖x

1−2s
2

n+1 ũ‖L2(B+
1 ).(52)

In order to treat the general case, we consider the function ũδ(x) := u(δx+x0) for x0 ∈ Rn×{0}
arbitrary. This function still solves an equation of the type (51), but now with a potential
qδ(x) := δ2sq(δx + x0). In particular, ‖qδ‖L∞ ≤ δ2s‖q‖L∞ . Hence, choosing δ > 0 such that

δ2s‖q‖L∞ = δ0, i.e δ =
(

δ0
‖q‖L∞

) 1
2s

, then allows us to invoke (52). Rescaling this and covering

B′1 × (0, δ/2) by such balls, i.e. choosing xj ∈ B′5/4 × {0}, j ∈ {1, . . . , N}, and associated balls

B+
2δ
3

(xj), B
+
δ (xj), with only finite (dimension-dependent) overlap, such that

B′1 × (0, δ/2) ⊂
N⋃
j=1

B+
2δ/3(xj) ⊂

N⋃
j=1

B+
δ (xj) ⊂ B′5/4 × (0, δ),

yields for C = C(n, s) > 0

‖x
1−2s

2
n+1 ∇ũ‖2L2(B′1×(0,δ/2)) ≤

N∑
j=1

‖x
1−2s

2
n+1 ∇ũ‖2L2(B+

2δ
3

(xj))
≤

N∑
j=1

C

(‖q‖L∞
δ0

) 1
s

‖x
1−2s

2
n+1 ũ‖2L2(B+

δ (xj))

≤ C
(‖q‖L∞

δ0

) 1
s

‖x
1−2s

2
n+1 ũ‖2L2(B′

5/4
×(0,δ)),

It remains to infer a similar estimate in B′1 × (δ/2, 1). To this end, we note that in balls
Br(x̄0) with x̄0 = (x̄′0, 3r) and x̄′0 ∈ Rn arbitrary, we can apply Caccioppoli’s inequality without
boundary contributions and with uniform constants, i.e. there exists C = C(n, s) > 0 such that

‖x
1−2s

2
n+1 ∇ũ‖L2(Br(x̄0)) ≤

C

r
‖x

1−2s
2

n+1 ũ‖L2(B2r(x̄0)).
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Indeed, this follows from rescaling and noting that the functions ũr(x) := ũ(rx′, rxn+1) solve
uniformly elliptic equations with uniformly bounded ellipticity constants in B1(x̃0) with x̃0 =
(x̄′0/r, 3). Thus covering the domain B′1 × (r, 1) with balls of the described type (which can
be achieved with finite, only dimension dependent amount of overlap) and invoking a similar
additive covering argument as above implies

‖x
1−2s

2
n+1 ∇ũ‖L2(B′1×(δ/2,1)) ≤ C

(‖q‖L∞
δ0

) 1
2s

‖x
1−2s

2
n+1 ũ‖L2(B′

5/4
×(δ/2,1)).

This concludes the argument. �

Next we approach the desired lower bound estimates. As a first step towards these, we prove
a quantitative three balls inequality.

Lemma 5.2. Let s ∈ (1/4, 1). Let u ∈ Hs(Ω) be a solution to (51) with ‖u‖L∞(Rn) ≤ C0 <∞.
Then there exist constants C = C(n, s, C0) > 0, α = α(n, s) ∈ (0, 1) such that for all radii
r ∈ (0, 1) and all x0 ∈ Rn × {0} it holds

‖x
1−2s

2
n+1 ũ‖L2(B+

2r(x0)) ≤ CeC(1+‖q‖
2

4s−1
L∞ )‖x

1−2s
2

n+1 ũ‖αL2(B+
r (x0))

‖x
1−2s

2
n+1 ũ‖1−αL2(B+

4r(x0))
.(53)

Remark 5.3. The restriction r ∈ (0, 1) in the above three balls estimate is not necessary and
only for convenience. As we will however only apply the result in this case and as an extension
to arbitrary radii requires a slight discussion, we have added this restriction.

Proof. Without loss of generality, we prove the estimate for x0 = 0. To deduce the desired
result, we rely on the Carleman inequality from [Rül15] or equivalently the one from [GRSU18,
Proposition A.1]. For a function w ∈ H1(B+

5 , x
1−2s
n+1 ) with supp(w) ∈ B+

4 \ B+
r1 for some r1 > 0

solving

∇ · x1−2s
n+1 ∇w = f in Rn+1

+ ,

lim
xn+1→0

x1−2s
n+1 ∂n+1w = V w on Rn × {0},(54)

with f ∈ L2(B+
5 , x

2s−1
n+1 ) and V ∈ L∞(B′5) it reads

τ
1
2 ln(r2/r1)−1‖eτφx

1−2s
2

n+1 |x|−1w‖L2(B+
r2

) + τ−s‖eτφ(1 + ln2(|x|))−1|x|−sw‖L2(B′5)

+ τ‖x
1−2s

2
n+1 (1 + ln2(|x|))−1|x|−1w‖L2(B+

5 )

≤ C(τ−1‖eτφ|x|x
2s−1

2
n+1 f‖L2(B+

5 ) + τ
1−2s

2 ‖eτφ|x|sV w‖L2(B′5)).

(55)

Here r2 ∈ (2r1, 3) is arbitrary and φ(x) = ψ(|x|) with

ψ(r) = − ln(r) +
1

10

(
ln(r) arctan(ln(r))− 1

2
ln(1 + ln2(r))

)
.

We apply this estimate with w = ηũ, where η is a smooth, radial cut-off function such that

η(x) = 1 for |x| ∈ (4r/5, 5r/2), supp(η) ⊂ A+
3r/4,3r, |∇η| ≤

C

r
, |∇2η| ≤ C

r2
for some C > 1.
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The function w = ηũ satisfies an equation of the form (54) with f = ũ∇·x1−2s
n+1 ∇η+x1−2s

n+1 ∇η ·∇ũ
and V = q. Inserting w into the Carleman estimate, we thus infer

τ
1
2 ln(r2/r1)−1‖eτφx

1−2s
2

n+1 |x|−1w‖L2(B+
r2

) + τs‖eτφ(1 + ln2(|x|))−1|x|−sw‖L2(B′5)

≤ C(τ−1r−1‖eτφx
1−2s

2
n+1 ũ‖L2(A+

3r/4,r
) + τ−1‖eτφx

1−2s
2

n+1 ∇ũ‖L2(A+
3r/4,r

)

+ τ−1r−1‖eτφx
1−2s

2
n+1 ũ‖L2(A+

5r/2,3r
) + τ−1‖eτφx

1−2s
2

n+1 ∇ũ‖L2(A+
5r/2,3r

)

+ τ
1−2s

2 ‖eτφ|x|sqw‖L2(B′5)).

We first observe that if s ∈ (1/4, 1) and

τ ≥ 10C‖q‖ 2
4s−1 + 1,

then it is possible to absorb the boundary contribution from the right hand side into the left
hand side. From now on we assume that this is the case and drop the boundary contributions.
Thus, it remains to consider

τ
1
2 ln(r2/r1)−1‖eτφx

1−2s
2

n+1 |x|−1w‖L2(B+
r2

)

≤ C(τ−1r−1‖eτφx
1−2s

2
n+1 ũ‖L2(A+

3r/4,4r/5
) + τ−1‖eτφx

1−2s
2

n+1 ∇ũ‖L2(A+
3r/4,4r/5

)

+ τ−1r−1‖eτφx
1−2s

2
n+1 ũ‖L2(A+

5r/2,3r
) + τ−1‖eτφx

1−2s
2

n+1 ∇ũ‖L2(A+
5r/2,3r

)).

Pulling out the exponential weights and invoking Lemma 5.1 in order to control the gradient
contributions, we obtain

τ
1
2 ln(r2/r1)−1eτψ(r2)‖x

1−2s
2

n+1 |x|−1w‖L2(B+
r2

)

≤ C(1 + ‖q‖
1
2s

L∞)(τ−1r−1eτψ(3r/4)‖x
1−2s

2
n+1 ũ‖L2(A+

r/2,r
)

+ τ−1r−1eτψ(5r/2)‖x
1−2s

2
n+1 ũ‖L2(A+

2r,4r)).

Choosing r1 = 3r/4 and r2 = 2r then further allows us to simplify this

τ
1
2 r−1eτψ(2r)‖x

1−2s
2

n+1 ũ‖L2(A+
4r/5,2r

)

≤ C(1 + ‖q‖
1
2s

L∞)(τ−1r−1eτψ(3r/4)‖x
1−2s

2
n+1 ũ‖L2(A+

r/2,r
) + τ−1r−1eτψ(5r/2)‖x

1−2s
2

n+1 ũ‖L2(A+
2r,4r)).

Filling up holes (for which we use the monotonicity of the weight ψ) then yields

‖x
1−2s

2
n+1 ũ‖L2(B+

2r)

≤ C(1 + ‖q‖
1
2s

L∞)(eτψ(3r/4)−τψ(2r)‖x
1−2s

2
n+1 ũ‖L2(B+

r ) + eτψ(5r/2)−τψ(2r)‖x
1−2s

2
n+1 ũ‖L2(B+

4r)).

We optimize the right hand side in τ and choose

τ = C(1 + ‖q‖
2

4s−1

L∞ ) +
1

ψ( 3r
4 )− ψ( 5r

2 )
ln

 ‖x 1−2s
2

n+1 ũ‖L2(B+
r )

‖x
1−2s

2
n+1 ũ‖L2(B+

4r)

 .
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This yields the estimate

‖x
1−2s

2
n+1 ũ‖L2(B+

2r)

≤ C(1 + ‖q‖
1
2s

L∞)eC(1+‖q‖
2

1−4s
L∞ )‖x

1−2s
2

n+1 ũ‖αL2(B+
r )
‖x

1−2s
2

n+1 ũ‖1−αL2(B+
4r)

where

α =
ψ(5r/2)− ψ(2r)

ψ(3r/4)− ψ(5r/2)
∈ (0, 1)

is uniformly bounded from above and below (by the only slight convexification of the logarithmic
weight). �

The quantitative three balls estimate from Lemma 5.2 can be upgraded to a doubling inequality
with a precise dependence on ‖q‖L∞(Rn):

Proposition 5.4. Let s ∈ (1/4, 1). Let u ∈ Hs(Ω) be a solution to (51) with

‖u‖L2(B′1) ≥ K and ‖u‖L∞(Rn) ≤ C0.

Then there exists constants C = C(n, s, C0) > 1, γ = γ(n, s) > 0 such that for all r ∈ (0, 2) it
holds

‖x
1−2s

2
n+1 ũ‖L2(B+

2r) ≤ CK−γeC(1+‖q‖
2

4s−1
L∞ )‖x

1−2s
2

n+1 ũ‖L2(B+
r ).

Proof. We again apply the Carleman estimate (55) to a function of the form w = ηũ. However,
we now choose η such that for some r ≤ 1/4

η(x) = 1 for |x| ∈ (4r/5, 1), supp(η) ⊂ A+
3r/4,2,

|∇η(x)| ≤ C

r
, |∇2η(x)| ≤ C

r2
for |x| ∈ (3r/4, 4r/5),

|∇η(x)|, |∇2η(x)| ≤ C for |x| ∈ (1, 2).

The Carleman estimate from above yields

τ
1
2 ln(r2/r1)−1‖eτφx

1−2s
2

n+1 |x|−1w‖L2(B+
r2

) + τs‖eτφ(1 + ln2(|x|))−1|x|−sw‖L2(B′5)

+ τ‖eτφx
1−2s

2
n+1 (1 + ln2(|x|))−1|x|−1ũ‖L2(A+

4r/5,3/4
)

≤ C(τ−1r−1‖eτφx
1−2s

2
n+1 ũ‖L2(A+

3r/4,4r/5
) + τ−1‖eτφx

1−2s
2

n+1 ∇ũ‖L2(A+
3r/4,4r/5

)

+ τ−1‖eτφx
1−2s

2
n+1 ũ‖L2(A+

1,2) + τ−1‖eτφx
1−2s

2
n+1 ∇ũ‖L2(A+

1,2)

+ τ
1−2s

2 ‖eτφ|x|sqw‖L2(B′5)).

Now we choose τ ≥ τ0 = C(1 + ‖q‖
2

4s−1

L∞ ) so that we may absorb the boundary term from the
right hand side into the left hand side. Dropping these terms again, choosing r1 = 3r

4 , r2 = 2r,
estimating the gradient contributions by Lemma 5.1 and pulling out the exponential weights,
leads to

τ
1
2 eτψ(2r)r−1‖x

1−2s
2

n+1 ũ‖L2(A+
4r/5,2r

) + τeτψ(3/4)‖x
1−2s

2
n+1 ũ‖L2(A+

4r/5,3/4
)

≤ C(1 + ‖q‖
1
2s

L∞)(τ−1r−1eτψ(3r/4)‖x
1−2s

2
n+1 ũ‖L2(A+

r/2,r
) + τ−1eτψ(1)‖x

1−2s
2

n+1 ũ‖L2(A+
9/10,21/10

)).
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Filling up holes (we again use the monotonicity of the weight ψ) then yields

τ
1
2 eτψ(2r)r−1‖x

1−2s
2

n+1 ũ‖L2(B+
2r) + τeτψ(3/4)‖x

1−2s
2

n+1 ũ‖L2(B+
3/4

)

≤ C(1 + ‖q‖
1
2s

L∞)(τ−1r−1eτψ(3r/4)‖x
1−2s

2
n+1 ũ‖L2(B+

r ) + τ−1eτψ(1)‖x
1−2s

2
n+1 ũ‖L2(B+

21/10
)).

(56)

Using the monotonicity of ψ and choosing τ ≥ τ0 such that

eτψ(3/4)‖x
1−2s

2
n+1 ũ‖L2(B+

3/4
) ≥ 2(1 + ‖q‖

1
2s

L∞)eτψ(1)‖x
1−2s

2
n+1 ũ‖L2(B+

21/10
)),

then allows us to absorb the second right hand side term into the left hand side. A possible
choice for this is for instance

τ = τ0 +
2(1 + ‖q‖

1
2s

L∞)

ψ(3/4)− ψ(1)

‖x
1−2s

2
n+1 ũ‖L2(B+

21/10
)

‖x
1−2s

2
n+1 ũ‖L2(B+

3/4
)

.

Reinserting this into (56) implies

‖x
1−2s

2
n+1 ũ‖L2(B+

2r) ≤ C(1 + ‖q‖
1
2s

L∞)C̃eC(1+‖q‖
2

4s−1
L∞ )‖x

1−2s
2

n+1 ũ‖L2(B+
r )

‖x
1−2s

2
n+1 ũ‖L2(B+

21/10
)

‖x
1−2s

2
n+1 ũ‖L2(B+

3/4
)


A

,(57)

where A (again by the only slight logarithmic convexification of the logarithmic weight) is uni-
formly bounded.

It remains to bound the quotient on the right hand side of (57). To this end, we first estimate
the denominator from below and note that by the trace inequality in H1(B+

2 , x
1−2s
n+1 ) and by

Lemma 5.1, we have

K ≤ ‖u‖L2(B′1) ≤ C(1 + ‖q‖
1
2s

L∞)‖x
1−2s

2
n+1 ũ‖L2(B+

3/2
).

By Lemma 5.2 (taking r = 3/4) and by the uniform L∞ boundedness of ũ, we obtain that for
some uniform α ∈ (0, 1)

C−1K(1 + ‖q‖
1
2s

L∞)−1 ≤ CC1−α
0 eC(1+‖q‖

2
4s−1
L∞ )‖x

1−2s
2

n+1 ũ‖αL2(B+
3/4

)
.

For the numerator in (57), we simply use the L∞ bound and the fact that x
1−2s

2
n+1 is L2 integrable.

As a consequence, for some slightly larger constant C > 1,

‖x
1−2s

2
n+1 ũ‖L2(B+

21/10
)

‖x
1−2s

2
n+1 ũ‖L2(B+

3/4
)

≤ K− 1
αC(1 + ‖q‖

1
2s

L∞)C̃eC(1+‖q‖
2

4s−1
L∞ ).

Plugging this back into (57) and enlarging the constant C = C(n, s, C0) > 0 if necessary, con-
cludes the proof of the statement. �

As a corollary of the doubling estimates, we derive estimates on the order of vanishing of ũ
and u.

Corollary 5.5. Let s ∈ (1/4, 1). Let u ∈ Hs(Ω) be a solution to (51) with

‖u‖L2(B′1) ≥ K > 0 and ‖u‖L∞(Rn) ≤ C0.
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Then there exist constants Ca, Cb, Cc > 0, depending on n, s, C0, and γ̃ > 0, depending on n, s,
such that for all r ∈ (0, 1

4 )

(58) (1 + ‖q‖
1
2s

L∞)‖x
1−2s

2
n+1 ũ‖L2(B+

r ) ≥ CarCa(‖q‖
2

4s−1
L∞ +1)r−γ̃ logK ,

(1 + ‖q‖
1
2s

L∞)‖u‖L2(B′r) ≥ CbrCb(‖q‖
2

4s−1
L∞ +1)r−γ̃ logK ,

and

(1 + ‖q‖
1
2s

L∞)‖u‖L∞(B′r) ≥ CcrCc(‖q‖
2

4s−1
L∞ +1)r−γ̃ logK .

Proof. We first note that by the trace estimate in H1(Rn+1
+ , x1−2s

n+1 ) we have

K ≤ ‖u‖L2(B′1) ≤ C(‖x
1−2s

2
n+1 ũ‖L2(B+

2 ) + ‖x
1−2s

2
n+1 ∇ũ‖L2(B+

2 )).

By virtue of Lemma 5.1 this can be further controlled by

K ≤ C(1 + ‖q‖
1
2s

L∞)‖x
1−2s

2
n+1 ũ‖L2(B+

4 ).

The proof of the bulk bound is now immediate from the doubling inequality. Indeed, for each
r ∈ (0, 1/4) there exists k ≥ 2 such that r ∈ (2−k−1, 2−k). Thus,

K

C(1 + ‖q‖
1
2s

L∞)
≤ ‖x

2s−1
2

n+1 ũ‖L2(B+
4 ) ≤ CK−γeC(‖q‖

2
4s−1
L∞ +1)‖x

1−2s
2

n+1 ũ‖L2(B+
2 )

≤ Ck+2K−γ(k+2)e(k+2)C(‖q‖
2

4s−1
L∞ +1)‖x

1−2s
2

n+1 ũ‖L2(B+

2−k
)

≤ r−C(‖q‖
2

4s−1
L∞ +1)+γ̃ log(K)‖x

1−2s
2

n+1 ũ‖L2(B+
r ),

for some γ̃ = γ̃(s, n) > 0. This implies (58).
For the L2 boundary estimate, we use the boundary bulk interpolation estimate from Proposi-

tion 2.4 (a). Using the upper and lower bounds for the bulk contributions and observing that the
Neumann derivative again only amounts to an additional polynomial loss of ‖q‖L∞ then implies
the claim. The L∞ estimate follows immediately from the L2 bound. �

With the auxiliary results from Lemma 5.2-Corollary 5.5 at hand, we can address the proof
of Theorem 3:

Proof of Theorem 3. We consider the rescaled function ũR(x) := ũ(R(x + x0

R )) for some x0 ∈
Rn × {0} with |x0| = R. In particular, by rescaling, the trace inequalities in H1(Rn+1

+ , x1−2s
n+1 )

and by Lemma 5.1, this function satisfies

‖ũR‖L2(B′4
R

) =R−n/2‖ũ‖L2(B′4(
x0
R ))

≥R−n/2‖ũ‖L2(B′2(0)) ≥ R−n/2‖u‖L2(B′1) ≥ R−n/2,
where we used that |x0| = R and ‖u‖L2(B′1) = 1. Further, we note

‖uR‖L∞(Rn×{0}) ≤ C0.

As a consequence, for R ≥ 4, Corollary 5.5 is applicable (with K = R−n/2) and yields

(1 + ‖qR‖
1
2s

L∞)‖uR‖L∞(B′r) ≥ CcrCc(‖qR‖
2

4s−1
L∞ +1)rnγ̃ logR.
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Here qR(x) = R2sq(R(x+ x0

R )) denotes the potential in the Schrödinger equation for uR. Choosing

r = 1
R and using ‖qR‖L∞(Rn) ≤ R2s, we hence infer

‖u‖L∞(B′1(x0)) = ‖uR‖L∞(B′
1/R

) ≥ Cc(1 + ‖qR‖
1
2s

L∞)−1e−CcR
4s

4s−1 logRe−nγR logR.

Enlarging the constant Cc slightly then concludes the proof. �
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