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ABSTRACT. In this work, we study the Landis conjecture for second-order elliptic equations in the plane. Pre-
cisely, assume that V ≥ 0 is a measurable real-valued function satisfying ||V ||L∞(R2) ≤ 1. Let u be a real solution
to div(A∇u)−Vu = 0 in R2. Assume that |u(z)| ≤ exp(c0 |z|) and u(0) = 1. Then, for any R sufficiently large,

inf
|z0|=R

||u||L∞(B1(z0))
≥ exp(−CR logR) .

In addition to equations with electric potentials, we also derive similar estimates for equations with magnetic
potentials. The proofs rely on transforming the equations to Beltrami systems and Hadamard’s three-quasi-
circle theorem.

1. INTRODUCTION

In this work, we study the asymptotic uniqueness for general second-order elliptic equations in the whole
space. One typical example we have in mind is

Lu−Vu := div(A∇u)−Vu = 0 in Rn, (1.1)

where A is symmetric and uniformly elliptic with Lipschitz continuous coefficients and V is essentially
bounded. For (1.1), we are interested in the following Landis type conjecture: assume that ‖V‖L∞(Rn) ≤ 1
and ‖u‖L∞(Rn) ≤ C0 satisfies |u(x)| ≤ C exp(−C|x|1+), then u ≡ 0. When L = ∆, counterexamples to the
Landis conjecture were constructed by Meshkov in [9] where the exponent 4/3 was shown to be optimal for
complex-valued potentials and solutions. A quantitative form of Meshkov’s result was derived by Bourgain
and Kenig [2] in their resolution of Anderson localization for the Bernoulli model in higher dimensions. The
proof of Bourgain and Kenig’s result was based on Carleman type estimates. Using the Carleman method,
other related results for the general second elliptic equation involving the first derivative terms were obtained
in [3] and [8].

The known results mentioned above indicate that the exponent 1 in the Landis type conjecture is not true
for general coefficients and solutions. Therefore, we want to study the same question when A and V of (1.1)
are real-valued and the solution u is also real. In the case where L = ∆, n = 2, and V ≥ 0, a quantitative
Landis conjecture was proved in [6]. Precisely, let u be a real solution of ∆u−Vu = 0 in R2 satisfying
u(0) = 1, |u(x)| ≤ exp(C0|x|), where ‖V‖L∞ ≤ 1 and V ≥ 0. Then for R sufficiently large,

inf
|x0|=R

sup
|x−x0|<1

|u(x)| ≥ exp(−CR logR),

where C depends on C0.
Here we would like to generalize this result to the second-order elliptic operator L. Let A be symmetric

and uniformly elliptic with Lipschitz continuous coefficients. That is, for some λ ∈ (0,1],

A =

[
a11 a12
a21 a22

]
, a12 = a21 (1.2)

λ |ξ |2 ≤ ai j (x)ξiξ j ≤ λ
−1 |ξ |2 , for all x ∈ R2,ξ ∈ R2. (1.3)
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Since A is Lipschitz continuous, then there exists µ > 0 such that∣∣∣∣∇ai j
∣∣∣∣

∞
≤ µ for each i, j = 1,2. (1.4)

The ellipticity condition (1.3) implies that

aii ≥ λ for each i = 1,2 (1.5)

ai j ≤Cλ
−1 for each i, j = 1,2. (1.6)

We define the leading operator
L = div(A∇) . (1.7)

Remark 1.1. We will often use that L is a divergence-form operator. However, it will at times be useful to
think of L in non-divergence form:

L = ∂i (ai j∂ ju) = ai j∂i ju+∂iai j∂ ju := ai j∂i ju+b j∂ ju.

It follows from (1.4) that b ∈ L∞ with
∣∣∣∣b j
∣∣∣∣

∞
≤ 2µ for each j = 1,2.

By building on the techniques developed in [6], we will prove quantitative versions of Landis’ conjecture
when the leading operator is L. As in [6], to prove each Landis theorem, we first establish an appropriate
order-of-vanishing estimate, then we apply the shift and scale argument from [2]. We use the notation Br to
denote a ball of radius r centered at the origin. As defined in Section 2, Qs denotes a quasi-ball of radius s
centered at the origin that is associated to an elliptic operator. Constants b and d are chosen so that Bb ⊂Q1
and Q7/5 b Bd . It is shown in Section 2 that such ball exists, and they are bounded in terms of the ellipticity
constant. The functions σ and ρ , which are introduced at the end of Section 2 (see (2.1) and (2.2)), are used
below to define b and d. The first maximal order-of-vanishing theorem that we will discuss is the following.

Theorem 1.1. Set b = σ (1;λ ), d = ρ
(7

5 ;λ
)
+ 2

5 . Let u be a real-valued solution to

Lu−Vu = 0 in Bd ⊂ R2, (1.8)

where V ≥ 0 and A satisfies assumptions (1.2) and (1.3). Assume that

||u||L∞(Bd)
≤ exp

(
C0
√

M
)

(1.9)

||u||L∞(Bb)
≥ 1 (1.10)

||V ||L∞(Bd)
≤M (1.11)∣∣∣∣∇ai j

∣∣∣∣
L∞(Bd)

≤ µ
√

M, (1.12)

where M ≥ 1. Then there exists C =C (C0,λ ,µ) so that

||u||L∞(Br)
≥ rC

√
M. (1.13)

As in [2], a scaling argument shows that the following quantitative form of Landis’ conjecture follows
from Theorem 1.1.

Theorem 1.2. Assume that V : R2→ R is measurable and satisfies

||V ||L∞(R2) ≤ 1.

Assume also that V ≥ 0 a.e. in R2. Let u be a real solution to

Lu−Vu = 0 in R2, (1.14)
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where A satisfies the assumptions (1.2) – (1.4). Assume that |u(z)| ≤ exp(c0 |z|) and u(0) = 1, where
z = (x,y). Let z0 = (x0,y0). Then, for any R sufficiently large,

inf
|z0|=R

||u||L∞(B1(z0))
≥ exp(−CR logR) , (1.15)

where C depends on c0, λ , µ .

The second maximal order-of-vanishing theorem applies to equations with a magnetic potential in diver-
gence form.

Theorem 1.3. Set b = σ (1;λ ), d = ρ
(7

5 ;λ
)
+ 2

5 . Let u be a real-valued solution to

Lu+∇ · (Wu)−Vu = 0 in Bd ⊂ R2, (1.16)

where V ≥ 0 and A satisfies assumptions (1.2) and (1.3). Assume that for some M ≥ 1, (1.9) – (1.12) from
above hold, and

||W ||L∞(Bd)
≤
√

M. (1.17)

Then there exists C =C (C0,λ ,µ) such that (1.13) holds.

As above, the order-of-vanishing estimate implies the following Landis result.

Theorem 1.4. Assume that V : R2→ R, W : R2→ R2 are measurable and satisfy

||W ||L∞(R2) ≤ 1, ||V ||L∞(R2) ≤ 1.

Assume also that V ≥ 0 a.e. in R2. Let u be a real solution to

Lu+∇ · (Wu)−Vu = 0 in R2, (1.18)

where A satisfies the assumptions (1.2) – (1.4). Assume that |u(z)| ≤ exp(c0 |z|) and u(0) = 1, where
z = (x,y). Set z0 = (x0,y0). Then, for any R sufficiently large, estimate (1.15) holds where C depends on c0,
λ , µ .

The third pair of theorems apply to equations with magnetic potentials in a non-divergence form. For this
case, in the local setting, it suffices to work with matrices that have determinant equal to 1. This additional
assumption changes the ellipticity constant, which in turn changes how we define b and d.

Theorem 1.5. Set b = σ
(
1;λ 2

)
, d = ρ

(7
5 ;λ 2

)
+ 2

5 . Let u be a real-valued solution to

Lu−W ·∇u−Vu = 0 in Bd ⊂ R2, (1.19)

where V ≥ 0 and A satisfies assumptions (1.2) and (1.3) with λ replaced by λ 2, and detA = 1. Assume that
for some M ≥ 1, (1.9) – (1.10), and (1.12) from above hold, and

||V ||L∞(Bd)
≤C1M (1.20)

||W ||L∞(Bd)
≤
√

C1M. (1.21)

Then there exists C =C (C0,C1,λ ,µ) such that (1.13) holds.

Remark 1.2. For the general coefficient matrix A satisfying (1.2) – (1.4), dividing (1.19) gives

div
(

A√
detA

∇u
)
−W̃ ·∇u−Ṽ u = 0,

where

W̃ = A∇

(
1√
detA

)
+

W√
detA

, Ṽ =
V√
detA

. (1.22)

If W and V satisfy (1.20) and (1.21), then W̃ and Ṽ satisfy the similar bounds with a new constant C1
depending on λ ,µ . Also, the ellipticity constant of A/

√
detA is λ 2.
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Again, the local theorem implies the Landis theorem.

Theorem 1.6. Assume that V : R2→ R, W : R2→ R2 are measurable and satisfy

||W ||L∞(R2) ≤ 1, ||V ||L∞(R2) ≤ 1.

Assume also that V ≥ 0 a.e. in R2. Let u be a real solution to

Lu−W ·∇u−Vu = 0 in R2, (1.23)

where A satisfies the assumptions (1.2) – (1.4). Assume that |u(z)| ≤ exp(c0 |z|) and u(0) = 1, where
z = (x,y). Set z0 = (x0,y0). Then, for any R ≥ R0, estimate (1.15) holds, where R0 depends on λ ,µ and C
depends on c0, λ , µ .

This article is organized as follows. In Section 2, we discuss fundamental solutions of second-order el-
liptic operators that satisfy (1.3). These results apply to second-order elliptic operators with L∞ coefficients.
These fundamental solutions lead to the definitions of quasi-balls and quasi-circles, as well as related results.
In Section 3, the shift and scale argument from [2] is applied to show how each quantitative Landis theorem
follows from the corresponding order-of-vanishing estimate. A number of useful tools are developed in Sec-
tion 4. To start, we introduce some first-order Beltrami operators that generalize ∂ . Then, a few properties
that relate first-order Beltrami operators to second-order elliptic operators are established. With these facts,
a Hadamard three-quasi-circle theorem is proved. Finally, we present some of the work of Bojarksi from
[1] including a similarity principle for solutions to non-homogenous Beltrami equations. In Section 5, the
tools developed in the previous section are combined with the framework from [6] to prove Theorem 1.1.
Section 6 shows how to account for a magnetic potential, proving Theorem 1.3. The proof of Theorem 1.5
is contained in Section 7. A technical proof of one of the facts from Section 4 may be found in the appendix.

2. QUASI-BALLS AND QUASI-CIRCLES

Let L (λ ) denote the set of all second-order elliptic operators acting on R2 that satisfy ellipticity condi-
tion (1.3). Throughout this section, assume that L∈L (λ ). We start by discussing the fundamental solutions
of L. These results are based on the Appendix of [7].

Definition 2.1. A function G is called a fundamental solution for L with pole at the origin if

• G ∈ H1,2
loc

(
R2 \0

)
, G ∈ H1,p

loc

(
R2
)

for all p < 2 and for every ϕ ∈C∞
0
(
R2
)

∫
ai j (z)DiG(z) D jϕ (z)dz =−ϕ (0) .

• |G(z)| ≤C log |z|, for some C > 0, |z| ≥C.

Lemma 2.2 (Theorem A-2, [7]). There exists a unique fundamental solution G for L, with pole at the origin
and with the property that lim

|z|→∞

G(z)− g(z) = 0, where g is a solution to Lg = 0 in |z| > 1 with g = 0 on

|z|= 1. Moreover, there are constants C1,C2,C3,C4,R1 < 1,R2 > 1, that depend on λ , such that

C1 log
(

1
|z|

)
≤−G(z)≤C2 log

(
1
|z|

)
for |z|< R1

C3 log |z| ≤ G(z)≤C4 log |z| for |z|> R2.

As a corollary to this theorem, we have the following.
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Corollary 2.3. There exist additional constants C5,C6, depending on λ , such that

|z|C2 ≤ exp(G(z))≤ |z|C1 for |z|< R1

C5 |z|C2 ≤ exp(G(z))≤C6 |z|C4 for R1 < |z|< R2

|z|C3 ≤ exp(G(z))≤ |z|C4 for |z|> R2.

Proof. Exponentiating the bounds given in Theorem 2.2 gives the first and third line of inequalities. Since
G is a solution to Lu = 0 in the annulus A = {z : R1 < |z|< R2}, then by the maximum principle and the
bounds given in Lemma 2.2

max
z∈A

G(z)≤max
z∈∂A

G(z)≤max{C4 logR2,C1 logR1}=C4 logR2

min
z∈A

G(z)≥ min
z∈∂A

G(z)≥min{C3 logR2,C2 logR1}=C2 logR1.

It follows that for any z ∈ A,

C2 logR1 ≤ G(z)≤C4 logR2.

Therefore, whenever R1 < |z|< R2,

exp(G(z))≤ RC4
2 =

(
R2

|z|

)C4

|z|C4 ≤
(

R2

R1

)C4

|z|C4 ,

and

exp(G(z))≥ RC2
1 =

(
R1

|z|

)C2

|z|C2 ≥
(

R1

R2

)C2

|z|C2 ,

giving the second line of bounds. �

The level sets of G will be important to us.

Definition 2.4. Define a function ` : R2→ (0,∞) as follows: `(z) = s iff G(z) = lns. Then set

Zs =
{

z ∈ R2 : G(z) = lns
}
=
{

z ∈ R2 : `(z) = s
}
.

We refer to these level set of G as quasi-circles. That is, Zs is the quasi-circle of radius s. We also define
(closed) quasi-balls as

Qs =
{

z ∈ R2 : `(z)≤ s
}
.

Open quasi-balls are defined analogously. We may also use the notation QL
s and ZL

s to remind ourselves of
the underlying operator.

The following lemma follows from the bounds given in Corollary 2.3.

Lemma 2.5. There are constants c1,c2,c3,c4,c5,c6,S1 < 1,S2 > 1, that depend on λ , such that if z ∈ Zs,
then

sc1 ≤ |z| ≤ sc2 for s≤ S1

c5sc1 ≤ |z| ≤ c6sc4 for S1 < s < S2

sc3 ≤ |z| ≤ sc4 for s≥ S2.

Thus, the quasi-circle Zs is contained in an annulus whose inner and outer radii depend on s and λ . For
future reference, it will be helpful to have a notation for the bounds on these inner and outer radii.
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Definition 2.6. Define

σ (s;λ ) = sup

r > 0 : Br ⊂
⋂

L∈L (λ )

QL
s

 (2.1)

ρ (s;λ ) = inf

r > 0 :
⋃

L∈L (λ )

QL
s ⊂ Br

 . (2.2)

Remark 2.1. These functions are defined so that for any operator L in L (λ ), Bσ(s;λ ) ⊂ QL
s ⊂ Bρ(s;λ ).

The quasi-balls and quasi-circles just defined above are centered at the origin since G is a fundamental
solution with a pole at the origin. We may sometimes use the notation Zs (0) and Qs (0) as a reminder that
these sets are centered around the origin. If we follow the same process for any point z0 ∈ R2, we may
discuss the fundamental solutions with pole at z0, and we may similarly define the quasi-circles and quasi-
balls associated to these functions. We will denote the quasi-circle and quasi-ball of radius s centred at z0 by
Zs (z0) and Qs (z0), respectively. Although Qs (z0) is not necessarily a translation of Qs (0) for z0 6= 0, both
sets are contained in annuli that are translations.

Throughout, we will often work with quasi-balls in addition to standard balls.

3. THE SHIFT AND SCALE ARGUMENTS

The bulk of the paper is devoted to proving the order-of-vanishing estimates stated in Theorems 1.1, 1.3,
and 1.5. Before we get to those details, we show how Theorems 1.2, 1.4, and 1.6 follow from the local
estimates and the shift and scale arguments in [2].

Proof of Theorem 1.2. Let u be a real-valued solution to (1.14). Let z0 ∈ R2 be such that |z0|= R for some
R≥ 1. For a constant a yet to be determined, define

uR (z) = u(z0 +aRz) , AR (z) = A(z0 +aRz) , VR (z) = (aR)2V (z0 +aRz) ,

and set
LR = div(AR∇) .

Since A satisfies (1.2) and (1.3), then so too does AR. By construction, uR is a solution to

LRuR−VRuR = 0.

Since |u(z)| ≤ exp(c0 |z|), it follows that

||uR||L∞(Bd)
≤ exp(c0 (1+ad)R) ,

where d = ρ
(7

5 ;λ
)
+ 2

5 depends on λ . We choose a > 0 so that 1
a ≤ b, where b = σ (1;λ ) depends on λ .

Then z1 :=− z0
aR ∈ Bb, uR (z1) = u(0) = 1 and it follows that

||uR||L∞(Bb)
≥ 1.

Since ||V ||L∞ ≤ 1, then ||VR||L∞(Bd)
≤ (aR)2. The condition

∣∣∣∣∇ai j
∣∣∣∣

L∞ ≤ µ implies that
∣∣∣∣∇aR,i j

∣∣∣∣
L∞(Bd)

≤
aRµ . Hence, the assumptions of Theorem 1.1 are satisfied for uR with M = (aR)2. Therefore,

||uR||L∞(Br)
≥ rCaR.

Setting r = 1
aR and rewriting in terms of u, we see that

||u||L∞(B1(z0))
≥ exp

(
−C̃R logR

)
,

as required. �
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Proof of Theorem 1.4. Let u be a real-valued solution to (1.18). Define z0, a, uR, AR, VR, and LR as in the
previous proof. If we set

WR (z) = RW (z0 +aRz) ,

then uR is a solution to

LRuR +∇(WR uR)−VRuR = 0.

Since ||W ||L∞ ≤ 1, then ||WR||L∞(Bd)
≤ aR. The assumptions of Theorem 1.3 are satisfied for uR with M =

(aR)2, and the conclusion follows as above. �

To prove the third version of the theorem, we must account for the additional determinant condition in
the statement of Theorem 1.5.

Proof of Theorem 1.6. Let u be a real-valued solution to (1.23). Set Ã = A√
detA

so that det Ã = 1. Now the

ellipticity constant of Ã is λ 2. Then u is a solution to L̃u−W̃ ·∇u−Ṽ u = 0 in R2, where L̃ = div
(
Ã∇
)

and
W̃ , Ṽ are given in (1.22). Note that

∣∣∣∣W̃ ∣∣∣∣L∞ ≤C1, and
∣∣∣∣Ṽ ∣∣∣∣L∞ ≤ λ−1, with C1 =C1 (λ ,µ). The rest of the

proof proceeds as above. �

4. USEFUL TOOLS

This section contains a number of tools that will be used in the proofs of the order-of-vanishing estimates
to be given in the following sections. We first define the Beltrami operator that will play the role of ∂̄ from
[6]. Then we present some results that show that such Beltrami operators are related to elliptic operators of
the form L in the same way that ∂ related to ∆. These results are proved with elementary (but somewhat
lengthly) computations. Once we have the computational results, we will prove an optimal three-balls in-
equality, which we call the Hadamard three-quasi-ball inequality. Finally, we present some work of Bojarski
from [1], including the similarity principle for equations of the form Du = au+bū.

4.1. The Beltrami operators. We define a Beltrami operator that will play the role of the ∂̄ operator from
the original paper [6]. For a complex-valued function f = u+ iv, define

D f = ∂̄ f +η (z)∂ f +ν (z)∂ f , (4.1)

where

∂̄ = 1
2 (∂x + i∂y)

∂ = 1
2 (∂x− i∂y)

η (z) =
a11−a22 +2ia12

det(A+ I)
(4.2)

ν (z) =
detA−1

det(A+ I)
. (4.3)

Lemma 4.1. For η ,ν defined above, we have

|η (z)|+ |ν (z)| ≤ 1−λ

1+λ
.
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Proof. The proof of this lemma is purely computation.

|η (z)|2 = (a11−a22)
2 +4a2

12

[det(A+ I)]2
=

(a11 +a22)
2−4a11a22 +4a2

12

[det(A+ I)]2
=

(trA)2−4detA

(detA+ trA+1)2

|η (z)|= λ1−λ2

(λ1 +1)(λ2 +1)

|ν (z)|= |detA−1|
[det(A+ I)]

=
|λ1λ2−1|

(λ1 +1)(λ2 +1)
,

where we are using λ1 ≥ λ2 to denote the eigenvalues of A. It follows that

|η (z)|+ |ν (z)|= λ1−λ2

(λ1 +1)(λ2 +1)
+

|λ1λ2−1|
(λ1 +1)(λ2 +1)

≤ 1−λ

1+λ
.

�

A computation shows that for f = u+ iv

D f =
(a11 +detA)+ ia12

det(A+ I)
ux +

a12 + i(a22 +detA)
det(A+ I)

uy

+
(a11 +1)+ ia12

det(A+ I)
ivx +

a12 + i(a22 +1)
det(A+ I)

ivy. (4.4)

When A has determinant equal to 1, ν (z) = 0 and we may write

D =
(a11 +1)+ ia12

det(A+ I)
∂x +

a12 + i(a22 +1)
det(A+ I)

∂y. (4.5)

In addition to the operator D, we will also make use of an operator that is related to D through some
function w. For a given function w, set

ηw (z) =
{

η (z)+ν (z) ∂w
∂w for ∂w 6= 0

η (z)+ν (z) otherwise
,

where η and ν are as defined in (4.2) and (4.3), respectively. By Lemma 4.1, it follows that |ηw| ≤
1−λ

1+λ
.

Define

Dw f = ∂ f +ηw (z)∂ f . (4.6)

If ηw (z) = αw (z)+ iβw (z), then

Dw =
1
2
[∂x + i∂y +(αw + iβw)(∂x− i∂y)]

=
1+αw + iβw

2
∂x +

βw + i(1−αw)

2
∂y (4.7)

Bertrami operators of this form will be used in the proofs of the main theorems.
At times, the dependence on w will not be important to our arguments, so we define

D̂ =
1+α + iβ

2
∂x +

β + i(1−α)

2
∂y, (4.8)
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where α,β are assumed to be functions of z such that α
2 +β

2 ≤
(

1−λ

1+λ

)2

< 1. Associated to D̂ is the

second-order elliptic operator L̂ = div
(
Â∇
)

with

Â =

 (1+α)2+β 2

1−α2−β 2
2β

1−α2−β 2

2β

1−α2−β 2
(1−α)2+β 2

1−α2−β 2

=

[
â11 â12
â12 â22

]
. (4.9)

A computation shows that the smallest eigenvalue of Â satisfies

λ− = 1− 2

1+(α2 +β 2)−1/2 =
1−
√

α2 +β 2

1+
√

α2 +β 2
≥ λ ,

while the largest eigenvalue of Â satisfies

λ+ =
1+
√

α2 +β 2

1−
√

α2 +β 2
≤ λ

−1.

Therefore we can see that Â has the same ellipticity constant, λ . Finally, note that if detA = 1, then D takes
the form of D̂. This means that the rest of the results of this section may be applied to D in this case.

Remark 4.1. Note that if D is given as in (4.1) and D f = 0, then Dw f = 0 with w = f , where Dw is defined
in (4.6).

4.2. Computational results for elliptic operators. The following results show that D̂ relates to L̂ in some
of the same ways that ∂ relates to ∆. These properties will allow us to prove the Hadamard three-quasi-circle
theorem.

Lemma 4.2. If D̂ f = 0, where f (x,y) = u(x,y)+ iv(x,y) for real-valued u and v, then

L̂u = 0 = L̂v.

Proof. If D̂ f = 0, then it follows from (4.8) that the following Cauchy-Riemann type equations hold{
(1+α)ux−βvx +βuy− (1−α)vy = 0
βux +(1+α)vx +(1−α)uy +βvy = 0. (4.10)

Some algebraic manipulations give rise to two more equivalent sets of equations{
â11ux + â12uy− vy = 0
â12ux + â22uy + vx = 0, (4.11)

and {
â11vx + â12vy +uy = 0
â12vx + â22vy−ux = 0, (4.12)

where we have used the definition of Â in (4.9). From (4.11), we have

0 = ∂x [â11ux + â12uy− vy]+∂y [â12ux + â22uy + vx] ,

so that L̂u = 0. Similarly, by (4.12),

0 = ∂x [â11vx + â12vy +uy]+∂y [â12vx + â22vy−ux] ,

so that L̂v = 0 as well. �

We find another parallel with the Laplace equation. As in the case of L̂ = ∆, the logarithm of the norm of
f is a subsolution to the second-order equation whenever D̂ f = 0. To see this, it suffices to prove that

Lemma 4.3. If D̂ f = 0 and f 6= 0, then L̂ [log | f (z)|] = 0.
9



Proof. If f = u+ iv, where u and v are real-valued, then log | f (z)|= 1
2 log

(
u2 + v2

)
. We have

∂x log | f (z)|= uux + vvx

u2 + v2

∂y log | f (z)|=
uuy + vvy

u2 + v2 .

Then,

L̂[log | f (x)|] = ∂x (â11∂x log | f (z)|+ â12∂y log | f (z)|)+∂y (â12∂x log | f (z)|+ â22∂y log | f (z)|)

= ∂x

(
â11

uux + vvx

u2 + v2 + â12
uuy + vvy

u2 + v2

)
+∂y

(
â12

uux + vvx

u2 + v2 + â22
uuy + vvy

u2 + v2

)
= [∂x (â11ux + â12uy)+∂y (â12ux + â22uy)]

u
u2 + v2

+[∂x (â11vx + â12vy)+∂y (â12vx + â22vy)]
v

u2 + v2

+∂x

(
u

u2 + v2

)
â11ux +∂x

(
u

u2 + v2

)
â12uy +∂y

(
u

u2 + v2

)
â12ux +∂y

(
u

u2 + v2

)
â22uy

+∂x

(
v

u2 + v2

)
â11vx +∂x

(
v

u2 + v2

)
â12vy +∂y

(
v

u2 + v2

)
â12vx +∂y

(
v

u2 + v2

)
â22vy.

Since L̂u = 0 = L̂v by the previous lemma, the top two lines vanish and we have,

L̂[log | f (x)|] = ∂x

(
u

u2 + v2

)
â11ux +∂x

(
u

u2 + v2

)
â12uy +∂y

(
u

u2 + v2

)
â12ux +∂y

(
u

u2 + v2

)
â22uy

+∂x

(
v

u2 + v2

)
â11vx +∂x

(
v

u2 + v2

)
â12vy +∂y

(
v

u2 + v2

)
â12vx +∂y

(
v

u2 + v2

)
â22vy

=
{

â11

[
(ux)

2 +(vx)
2
]
+2â12 (uxuy + vxvy)+ â22

[
(uy)

2 +(vy)
2
]} 1

u2 + v2

−2
[
â11 (uux + vvx)

2 +2â12 (uux + vvx)(uuy + vvy)+ â22 (uuy + vvy)
2
] 1

(u2 + v2)2 .

By the relations (4.11) and (4.12),

â11

[
(ux)

2 +(vx)
2
]
+2â12 (uxuy + vxvy)+ â22

[
(uy)

2 +(vy)
2
]

= â11

[
(ux)

2 +(vx)
2
]
+[ux (vy− â11ux)+ vx (−uy− â11vx)]

+ [(−vx− â22uy)uy +(ux− â22vy)vy]+ â22

[
(uy)

2 +(vy)
2
]

= 2(uxvy− vxuy) ,

and

â11 (uux + vvx)
2 +2â12 (uux + vvx)(uuy + vvy)+ â22 (uuy + vvy)

2

= (uux + vvx){â11 (uux + vvx)+ [u(vy− â11ux)+ v(−uy− â11vx)]}
+{[u(−vx− â22uy)+ v(ux− â22vy)]+ â22 (uuy + vvy)}(uuy + vvy)

= (uux + vvx)(uvy− vuy)+(−uvx + vux)(uuy + vvy)

= (uxvy−uyvx)
(
u2 + v2) .

Therefore,

L̂[log | f (z)|] = 0,
10



proving the lemma. �

Since ∆ = 4∂̄ ∂ = 4∂ ∂̄ is used in [6] to prove the third version of the theorem, we would like a decom-
position for our operator L = div(A∇) into first-order operators. Under some additional assumptions on the
structure of A, the following lemma shows that this is possible.

Lemma 4.4. Assume that A has determinant equal to 1. Then the operator L may be decomposed as

L =
(

D+W̃
)

D̃,

where

D̃ = [1+a11− ia12]∂x +[a12− i(1+a22)]∂y = det(A+ I)D

W̃ =
(α∂xa11−β∂xa12 + γ∂ya11 +δ∂ya12)+ i(γ∂xa11 +δ∂xa12−α∂ya11 +β∂ya12)

a11 det(A+ I)2

α = a11 +a22 +2a11a22 β = 2a12 (1+a11)

γ = a12 (a22−a11) δ = (1+a11)
2−a2

12,

and D is given by (4.5).

The proof of this lemma is straightforward, but tedious. We will prove it in the Appendix.

4.3. A Hadamard three-quasi-circle theorem. Using the fundamental solution Ĝ for the operator L̂, we
can now prove the following.

Theorem 4.5. Let f be a function for which D̂ f = 0. Set

M (s) = max{| f (z)| : z ∈ Zs} .
Then for any 0 < s1 < s2 < s3,

log
(

s3

s1

)
logM (s2)≤ log

(
s3

s2

)
logM (s1)+ log

(
s2

s1

)
logM (s3) . (4.13)

Proof. Let As1,s3 = {z : s1 ≤ `(z)≤ s3}= Qs3 \Qs1 , where ` is associated to Ĝ, the fundamental solution of
L̂. By Lemma 2.5, this set is contained in an annulus with inner and outer radius depending on s1, s3, and λ .
In particular, it is bounded and does not contain the origin. Therefore, Ĝ(z) is bounded on As1,s3 . Let z0 be
in the interior of As1,s3 . If f (z0) = 0, then aĜ(z0)+ log | f (z0)|=−∞ for any a ∈ R. On the other hand, if
f (z0) 6= 0, then Lemma 4.3 implies that L̂

[
aĜ(z)+ log | f (z)|

]
= 0 for z near z0. By the maximum principle,

z0 cannot be an extremal point. Therefore, aĜ(z)+ log | f (z)| takes it maximum value on the boundary of
As1,s3 . We will choose the constant a ∈ R so that

max
{

aĜ(z)+ log | f (z)| : z ∈ Zs1

}
= max

{
aĜ(z)+ log | f (z)| : z ∈ Zs3

}
,

or rather
log(sa

1M (s1)) = log(sa
3M (s3)) .

It follows that for any z ∈As1,s3 ,

aĜ(z)+ log | f (z)| ≤ log(sa
1M (s1))(or log(sa

3M (s3))).

Furthermore, for any s2 ∈ (s1,s3),

max
{

aĜ(z)+ log | f (z)| : z ∈ Zs2

}
≤ log(sa

1M (s1))(or log(sa
3M (s3))),

or
log(sa

2M (s2))≤ log(sa
1M (s1))(or log(sa

3M (s3))).
11



Consequently,
sa

2M (s2)≤ sa
1M (s1) (or sa

3M (s3)),

so that for any τ ∈ (0,1), since sa
1M (s1) = sa

3M (s3), then

sa
2M (s2)≤ [sa

1M (s1)]
τ [sa

3M (s3)]
1−τ

[M (s2)]
log
(

s3
s1

)
≤
[(

s1

s2

)a

M (s1)

]τ log
(

s3
s1

)[(
s3

s2

)a

M (s3)

](1−τ) log
(

s3
s1

)
.

We choose τ so that τ log
(

s3
s1

)
= log

(
s3
s2

)
. Then (1− τ) log

(
s3
s1

)
= log

(
s2
s1

)
and

[(
s1

s2

)a]τ log
(

s3
s1

)[(
s3

s2

)a](1−τ) log
(

s3
s1

)
= exp

[
a log

(
s3

s2

)
log
(

s1

s2

)
+a log

(
s2

s1

)
log
(

s3

s2

)]
= 1.

Therefore,

M (s2)
log
(

s3
s1

)
≤M (s1)

log
(

s3
s2

)
M (s3)

log
(

s2
s1

)
.

Taking logarithms completes the proof. �

Corollary 4.6. Let f satisfy D̂ f = 0. Then for 0 < s1 < s2 < s3

|| f ||L∞(Qs2)
≤
(
|| f ||L∞(Qs1)

)θ (
|| f ||L∞(Qs3)

)1−θ

,

where

θ =
log(s3/s2)

log(s3/s1)
.

Remark 4.2. From Remark 4.1, we know that if D f = 0, then D f f = 0. Hence Corollary 4.6 applies to
such f .

4.4. The similarity principle. The approach here is based on the work of Bojarksi, as presented in [1]. We
will start with a few definitions and facts that will be used below. For simplicity, we work on a bounded
domain Ω. Define the operators

T ω (z) =− 1
π

∫∫
Ω

ω (ζ )

ζ − z
dζ

Sω (z) =− 1
π

∫∫
Ω

ω (ζ )

(ζ − z)2 dζ .

We will make use the of the following results, collected from [1].

Lemma 4.7. Suppose that g ∈ Lp for some p > 2. Then T g exists everywhere as an absolutely convergent
integral and Sg exists almost everywhere as a Cauchy principal limit. The following relations hold:

∂̄ (T g) = g

∂ (T g) = Sg

|T g(z)| ≤ cp ||g||Lp

||Sg||Lp ≤Cp ||g||Lp

lim
p→2+

Cp = 1.

12



Lemma 4.8 (see Lemmas 4.1, 4.3 [1]). Let w be a generalized solution (possibly admitting isolated singu-
larities) to

∂̄w+q1 (z)∂w+q2 (z)∂w = A(z)w+B(z) w̄
in a bounded domain Ω⊂R2. Assume that |q1 (z)|+ |q2 (z)| ≤ α0 < 1 in Ω, and A, B are bounded functions.
Then w(z) is given by

w(z) = f (z)eT ω(z) = f (z)eφ(z),

where f is a solution to
∂̄ f +q0 (z)∂ f = 0

and
φ (z) = T ω (z) .

Here, ω solves (4.15) and q0 is defined by (4.14).

The proof ideas are available in [1]. For completeness, we include the proof.

Proof. Let w(z) be the generalized solution. Set

h(z) =
{

A(z)+B(z) w̄
w for w(z) 6= 0 and w(z) 6= ∞

A(z)+B(z) otherwise

q0 (z) =
{

q1 (z)+q2 (z) ∂w
∂w for ∂w 6= 0

q1 (z)+q2 (z) otherwise .
(4.14)

We have |q0 (z)| ≤ |q1 (z)|+ |q2 (z)| ≤ α0. Consider the integral equation

ω +q0Sω = h. (4.15)

Let p > 2 be such that Cpq0 < 1. Since h(z) ∈ Lp (Ω), then by a fixed point argument, this integral equation
has a unique solution ω (z) ∈ Lp. Set φ (z) = T ω (z), then define f (z) = w(z)e−φ(z). We see that

∂̄ f = ∂̄we−φ − ∂̄ φwe−φ = ∂̄we−φ −ωwe−φ

∂ f = ∂we−φ −∂φwe−φ = ∂we−φ −Sωwe−φ .

It follows that

∂̄ f +q0∂ f =
[
∂̄w+q0∂w− (ω +q0Sω)w

]
e−φ

=
[
∂̄w+q0∂w−hw

]
e−φ

=
[
∂̄w+q1∂w+q2∂w−Aw−Bw̄

]
e−φ

= 0.

�

Corollary 4.9. Let w be a generalized solution (possibly admitting isolated singularities) to

∂̄w+q1 (z)∂w+q2 (z)∂w = A(z)w+B(z) w̄

in a bounded domain Ω⊂R2. Assume that |q1 (z)|+ |q2 (z)| ≤ α0 < 1 in Ω, and A, B are bounded functions.
Then w(z) is given by

w(z) = f (z)g(z) ,
where f is a solution to

∂̄ f +q0 (z)∂ f = 0
and

exp
[
−C
(
||A||L∞(Ω)+ ||B||L∞(Ω)

)]
≤ |g(z)| ≤ exp

[
C
(
||A||L∞(Ω)+ ||B||L∞(Ω)

)]
.
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Proof. From the previous lemma, we have that g(z)= exp(T ω (z)), where ω is the unique solution to (4.15).
Since Cpα0 < 1, then

||ω||Lp ≤C ||h||Lp .

Therefore,
|T ω (z)| ≤C ||h||Lp ≤C

[
||A||L∞(Ω)+ ||B||L∞(Ω)

]
,

where C depends on Ω. The conclusion follows. �

5. THE PROOF OF THEOREM 1.1

Before we can prove Theorem 1.1, we need to develop a set of results that are analogous to those in [6].
The first step is to show that a positive multiplier exists. We then use this positive multiplier to transform
the PDE (1.8) into a divergence-form equation. The divergence-form equation is used to introduce a stream
function, which gives rise to a Beltrami equation. Then, using the similarity principle of Bojarski and the
Hadamard three-quasi-circle theorem, we are able to prove Theorem 1.1. From now on, unless specified
otherwise, all constants C, c depend on λ and µ . Moreover, these constants are allowed to change from line
to line. We also use the more compact notation σ (·) and ρ (·) in place of σ (·;λ ) and ρ (·;λ ) where it is
understood that these functions depend on the ellipticity constant λ .

The first step is to show that there exists a positive solution φ to (1.8) in the ball Bd , where d = ρ
(7

5

)
+ 2

5 .
Let η be some constant to be determined and set

φ1 (x,y) = exp(ηx) .

Then by (1.11), (1.12), and (1.5)

div(A∇φ1)−V φ1 =
[
η (∂xa11 +∂ya12)+η

2a11−V
]

φ1

≥
[
λη

2−M−2ηµ
√

M
]

φ1.

If η = c1
√

M for some constant c1 depending on λ and µ that is sufficiently large, then φ1 is a subsolution.
Now define φ2 = exp

(
c2
√

M
)
, where c2 is a constant chosen so that φ2 ≥ φ1 on Bd . Since V ≥ 0, then

Lφ2−V φ2 ≤ 0, so φ2 is a supersolution. It follows that there exists a positive solution φ to (1.8) such that

exp
(
−C1
√

M
)
≤ φ (z)≤ exp

(
C1
√

M
)

for all z ∈ Bd , (5.1)

where C1 depends on c1,c2, and λ .
Furthermore, (by Theorem 8.32 from [5], for example) for 0 < α < 1, s < 2, φ satisfies the interior

estimate
||∇φ ||L∞(Qαs)

≤C ||φ ||L∞(Qs)
, (5.2)

where C =C (λ ,K,M,s,α), with

K = max
i, j=1,2

∣∣ai j
∣∣
0,γ;Q2

= max
i, j=1,2

[∣∣∣∣ai j
∣∣∣∣

L∞(Q2)
+ sup

x 6=y∈Q2

∣∣ai j (x)−ai j (y)
∣∣

|x− y|γ

]
,

where 0 < γ < 1 is arbitrary. Note that since

sup
x 6=y∈Q2

∣∣ai j (x)−ai j (y)
∣∣

|x− y|γ
≤ sup

x 6=y∈Q2

µ
|x− y|
|x− y|γ

= sup
x 6=y∈Q2

µ |x− y|1−γ ≤ µ diam(Q2) ,

then C =C (λ ,µ,M,s,α). Moreover, by scaling considerations and Lemma 2.5,

C (λ ,µ,M,s,α)≤ C (λ ,µ,M,α)

sc .

Set v = u/φ . Since u and φ are both solutions to (1.8) and A is symmetric by (1.2), we see that

div
(
φ

2A∇v
)
= 0 in Bd ⊂ R2. (5.3)
14



We use (5.3) to define a stream function in Bd . Let ṽ, with ṽ(0) = 0, satisfy the following system of equations{
ṽy = φ 2 (a11vx +a12vy)
−ṽx = φ 2 (a12vx +a22vy) .

(5.4)

Specifically, for any (x,y) ∈ Bd ,

ṽ(x,y) =
∫ y

0
φ

2 (a11vx +a12vy)(0, t)dt−
∫ x

0
φ

2 (a12vx +a22vy)(s,y)ds. (5.5)

The stream function is used to transform the divergence-free equation into a Beltrami equation. Set w =
φ 2v+ iṽ. Then, using (5.4), we see that

Dw = 2φDφv+φ
2Dv+D(iṽ)

= 2D(logφ)φ
2v

+φ
2
[
(a11 +detA)+ ia21

det(A+ I)
vx +

a12 + i(a22 +detA)
det(A+ I)

vy

]
+ i
[
(a11 +1)+ ia12

det(A+ I)
ṽx +

a12 + i(a22 +1)
det(A+ I)

ṽy

]
= 2D(logφ)φ

2v

+φ
2
[
(a11 +detA)+ ia21

det(A+ I)
vx +

a12 + i(a22 +detA)
det(A+ I)

vy

]
+ iφ 2

[
−(a11 +1)+ ia12

det(A+ I)
(a12vx +a22vy)+

a12 + i(a22 +1)
det(A+ I)

(a11vx +a12vy)

]
= D(logφ)(w+w) .

Therefore,

Dw = α (w+ w̄) , (5.6)

where α = D(logφ).
The next step is to estimate α . Here we mimic the arguments from [6], making appropriate modifications

to account for the variable coefficients of the operator. To understand the behavior of α , we will study
ψ = logφ . From (5.1), we see that

|ψ (z)| ≤C
√

M in Bd . (5.7)

Furthermore, a computation shows that ψ solves the following equation

div(A∇ψ)+A∇ψ ·∇ψ =V in Bd . (5.8)

Lemma 5.1. If φ is a solution to (1.8) and ψ = logφ , then

||∇ψ||L∞(Bρ(7/5)) ≤C
√

M, (5.9)

where C depends on λ ,µ .

Proof. Recall that d = ρ (7/5)+2/5. Let θ ∈C∞
0 (Bd) be a cutoff function for which θ ≡ 1 in Bρ(7/5)+1/5.

Multiply (5.8) by θ and integrate by parts:

λ

∫
θ |∇ψ|2 ≤

∫
θA∇ψ ·∇ψ =

∫
θV −

∫
div(A∇θ)ψ ≤C

(
M+
√

M
)
.

It follows that ∫
Bρ(7/5)+1/5

|∇ψ|2 ≤CM.

We rescale equation (5.8). Set ϕ = ψ

C
√

M
for some C > 0. Then (5.8) is equivalent to

ε div(A∇ϕ)+A∇ϕ ·∇ϕ = Ṽ in Bd , (5.10)
15



where ε = 1
C
√

M
and Ṽ = V

C2M . Now choose C sufficiently large so that∣∣∣∣Ṽ ∣∣∣∣L∞(Bd)
≤ 1, ||ϕ||L∞(Bd)

≤ 1,
∫

Bρ(7/5)+1/5

|∇ϕ|2 ≤ 1. (5.11)

Claim 5.2. Let c > 0 be such that for any z ∈ Bρ(7/5), B2c/5 (z) ⊂ Bρ(7/5)+1/5. For any z ∈ Bρ(7/5), and
ε < r < c/5, if (5.10) and (5.11) hold, then ∫

Br(z)
|∇ϕ|2 ≤Cr2.

Proof of Claim 5.2. It suffices to take z = 0. Let η ∈C∞
0 (B2r) be a cutoff function such that η ≡ 1 in Br. Set

m = |B2r|−1
∫

B2r

ϕ . By the divergence theorem

0 = ε

∫
div
(
A∇
[
(ϕ−m)η

2])
= ε

∫
div(A∇ϕ)η

2 +4ε

∫
ηA∇ϕ ·∇η + ε

∫
(ϕ−m)div

(
A∇
(
η

2)) . (5.12)

We now estimate each of the three terms. By (5.10) and (5.11),∫
ε div(A∇ϕ)η

2 =−
∫

A∇ϕ ·∇ϕη
2 +

∫
Ṽ η

2 ≤−λ

∫
|∇ϕ|2 η

2 +
∣∣∣∣Ṽ ∣∣∣∣L∞(Bd)

∫
B2r

1

≤−λ

∫
|∇ϕ|2 η

2 +Cr2. (5.13)

By Cauchy-Schwarz and Young’s inequality,∣∣∣∣4ε

∫
ηA∇ϕ ·∇η

∣∣∣∣≤ 4λε

(∫
|∇ϕ|2 η

2
)1/2(∫

|∇η |2
)1/2

≤ λ

2

∫
|∇ϕ|2 η

2 +Cε
2. (5.14)

For the third term, we use the Poincaré inequality to show that∣∣∣∣ε ∫ (ϕ−m)div
(
A∇
(
η

2))∣∣∣∣≤Cεr−2
∫

B2r

|ϕ−m| ≤C
(∫

B2r

|ϕ−m|2
)1/2(∫

B2r

ε
2r−4

)1/2

≤Cr
(∫

B2r

|∇ϕ|2
)1/2 (

ε
2r−2)1/2 ≤Cε

2 +
1

400

∫
B2r

|∇ϕ|2 . (5.15)

Combining (5.12)-(5.15), we see that∫
Br

|∇ϕ|2 ≤Cε
2 +Cr2 +

1
200λ

∫
B2r

|∇ϕ|2 ≤Cr2 +
1

200λ

∫
B2r

|∇ϕ|2 . (5.16)

If r2 ≥ 1
200 , then by the last estimate of (5.11), the inequality above implies that∫

Br

|∇ϕ|2 ≤Cr2.

Otherwise, if r2 < 1
200 , choose k ∈ N so that

c
5
≤ 2kr ≤ 2c

5
.

Clearly, r2 ≥C (1/200λ )k. It follows from repeatedly applying (5.16) that∫
Br

|∇ϕ|2 ≤Cr2 +

(
1

200λ

)k ∫
B2kr

|∇ϕ|2 ≤Cr2,

proving the claim. �
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We now use Claim 5.2 to give a pointwise bound for ∇ϕ in Bρ(7/5). Define

ϕε (z) =
1
ε

ϕ (εz) , Aε (z) = A(εz) , Lε = divAε∇.

Then
∇ϕε (z) = ∇ϕ (εz) , Lεϕε (z) = εLϕ (εz) .

It follows from (5.10) that
Lεϕε +Aε∇ϕε ·∇ϕε = Ṽ (εz) := Ṽε (z) ,∣∣∣∣Ṽε

∣∣∣∣
L∞(B1)

≤ 1.

Moreover, ∫
B2

|∇ϕ (εz)|2 = 1
ε2

∫
B2ε

|∇ϕ|2 ≤ 1
ε2Cε

2 =C,

where we have used Claim 5.2. It follows from Theorem 2.3 and Proposition 2.1 in Chapter V of [4] that
there exists p > 2 such that

||∇ϕε ||Lp(B1)
≤C. (5.17)

Now we define
ϕ̃ε (z) = ϕε (z)−

1
|B1|

∫
B1

ϕε .

Since ∇ϕ̃ε = ∇ϕε , then
Lε ϕ̃ε =−Aε∇ϕ̃ε ·∇ϕ̃ε +Ṽε := ζ in B1.

Clearly, ||ζ ||Lp/2(B1)
≤C. Moreover, by Hölder, Poincaré and (5.17),

||ϕ̃ε ||Lp/2(B1)
≤C ||ϕ̃ε ||Lp(B1)

≤C ||∇ϕ̃ε ||Lp(B1)
≤C.

By Theorem 9.11 from [5], for every ε < ε0,

||ϕ̃ε ||W 2,p/2(Br)
≤C,

for any r < 1, where C depends on ε0 and r. By repeating these arguments, we obtain that

||∇ϕ̃ε ||L∞(Br′ )
= ||∇ϕε ||L∞(Br′ )

= ||∇ϕ||L∞(B
εr′ )
≤C,

for r′ < r. This derivation works for any z ∈ Bρ(7/5) and any ε < ε0. Since ϕ = ψ

C
√

M
, conclusion of the

lemma follows. �

Using that the coefficients of D are bounded, we obtain the following corollary.

Corollary 5.3. If α = Dψ and ||∇ψ||L∞(Bρ(7/5)) ≤C
√

M, then

||α||L∞(Bρ(7/5)) ≤C
√

M. (5.18)

We have now have all the tools we need to prove Theorem 1.1.

Proof. As shown using the stream function (5.4), if u is a solution to (1.8) in Bd , then w = φ 2v+ iṽ is a
solution to (5.6) in Bd c Bρ(7/5). By the similarity principle given in Lemma 4.8 and Corollary 4.9, any
solution to (5.6) in Bρ(7/5) is a function of the form

w(z) = f (z)g(z) ,

with
Dw f = 0 in Bρ(7/5)

and

exp
(
−C
√

M
)
≤|g(z)| ≤ exp

(
C
√

M
)

in Bρ(7/5), (5.19)
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where we have used (5.18) and the definition of Dw is given in (4.6). By Corollary 4.6, the Hadamard
three-quasi-circle theorem applied to Dw,

|| f ||L∞(Qs1)
≤
(
|| f ||L∞(Qs/2)

)θ (
|| f ||L∞(Qs2)

)1−θ

, (5.20)

where s
2 < s1 < s2 <

7
5 and

θ =
log(s2/s1)

log(2s2/s)
.

Substituting f = wg−1 into (5.20) and using (5.19), we see that

||w||L∞(Qs1)
≤ exp

(
C
√

M
)(
||w||L∞(Qs/2)

)θ (
||w||L∞(Qs2)

)1−θ

. (5.21)

Since w = φ 2v+ iṽ = φu+ iṽ, then

|φu| ≤ |w| ≤ |φu|+ |ṽ| .
It follows from expression (5.5) and Lemma 2.5 that for any z ∈ Qs, where s < 2,

|ṽ(z)| ≤Csc exp
(

2C1
√

M
)
||∇v||L∞(Qs)

.

Using that v = u/φ , the bounds for φ in (5.1), and the interior estimate (5.2), we see that setting s1 = 1 and
s2 =

6
5 in (5.21) gives

||u||L∞(Q1)
≤ exp

(
C
√

M
)(

s−c ||u||L∞(Qs)

)θ (
||u||L∞(Q7/5)

)1−θ

≤ exp
(

C
√

M
)(

s−c ||u||L∞(Qs)

)θ

,

where we have applied (1.9) to the last term on the right. Since ||u||L∞(Q1)
≥ ||u||L∞(Bb)

≥ 1, we have

||u||L∞(Qs)
≥ sc exp

(
−C
√

M
θ

)
.

By Lemma 2.5, Qs ⊂ Bsc1 . It follows that

||u||L∞(Br)
≥ rC

√
M,

as claimed �

6. THE PROOF OF THEOREM 1.3

By building on the techniques from the previous section, we show here how to prove Theorem 1.3. To
transform equation (1.16) into a divergence-free equation, we will construct a positive solution to the adjoint
equation. That is, we show there exists a positive solution φ to (1.19).

Let η be some constant to be determined and set

φ1 (x,y) = exp(ηx) .

Then by (1.11), (1.17), (1.12), and (1.5)

div(A∇φ1)−W ·∇φ1−V φ1 =
[
η (∂xa11 +∂ya12)+η

2a11−ηW1−V
]

φ1

≥
[
λη

2−M−2ηµ
√

M−η
√

M
]

φ1.

If η = c1
√

M for some constant c1 depending on λ and µ that is sufficiently large, then φ1 is a subsolution.
Now define φ2 = exp

(
c2
√

M
)
, where c2 is a constant chosen so that φ2 ≥ φ1 on Bd . Since V ≥ 0, then

Lφ2−W ·∇φ2−V φ2 ≤ 0, so φ2 is a supersolution. It follows that there exists a positive solution φ to (1.19)
18



such that (5.1) holds. As above, a version of the interior estimate (5.2) holds for φ . Set v = u/φ . Using the
equations for u and φ , and that A is symmetric, we see that

div
(
φ

2A∇v+φ
2Wv

)
= 0 in Bd ⊂ R2. (6.1)

Since φ 2A∇v+φ 2Wv is divergence-free, then there exists ṽ, with ṽ(0) = 0, for which{
∂yṽ = φ 2 (a11vx +a12vy +W1v)
−∂xṽ = φ 2 (a12vx +a22vy +W2v) .

(6.2)

That is, for any (x,y) ∈ Bd ,

ṽ(x,y) =
∫ y

0
φ

2 (a11vx +a12vy +W1v)(0, t)dt−
∫ x

0
φ

2 (a12vx +a22vy +W2v)(s,y)ds. (6.3)

Set w = φ 2v+ iṽ. Then, using (6.2),

Dw = 2φDφv+φ
2Dv+D(iṽ)

= 2D(logφ)φ
2v

+φ
2
[
(a11 +detA)+ ia21

det(A+ I)
vx +

a12 + i(a22 +detA)
det(A+ I)

vy

]
+ i
[
(a11 +1)+ ia12

det(A+ I)
ṽx +

a12 + i(a22 +1)
det(A+ I)

ṽy

]
= 2D(logφ)φ

2v

+φ
2
[
(a11 +detA)+ ia21

det(A+ I)
vx +

a12 + i(a22 +detA)
det(A+ I)

vy

]
+ iφ 2

[
−(a11 +1)+ ia12

det(A+ I)
(a12vx +a22vy +W2v)+

a12 + i(a22 +1)
det(A+ I)

(a11vx +a12vy +W1v)
]

= 2
[

D(logφ)+
a12− i(a11 +1)

2det(A+ I)
W2 +

−(a22 +1)+ ia12

2det(A+ I)
W1

]
φ

2v.

Therefore,

Dw = β (w+ w̄) (6.4)

where

β = D(logφ)+
a12− i(a11 +1)

2det(A+ I)
W2 +

−(a22 +1)+ ia12

2det(A+ I)
W1

:= α +
a12− i(a11 +1)

2det(A+ I)
W2 +

−(a22 +1)+ ia12

2det(A+ I)
W1.

Lemma 6.1. If φ is a solution to (1.19) and ψ = logφ , then

||∇ψ||L∞(Bρ(7/5)) ≤C
√

M,

where C depends on λ ,µ .

The proof of Lemma 6.1 is analagous to that of Lemma 5.1, except that we must include the magnetic
potential W . We omit the details since the arguments in [6] may be combined with the proof of Lemma 5.1
above. If we combine Lemma 6.1, Corollary 5.3, the bounds on A from (1.5) and (1.6), and the bounds on
W in (1.17), we see that

||β ||L∞(Bρ(7/5)) ≤ ||α||L∞(Bρ(7/5)) +C ||W1||L∞(Bρ(7/5)) +C ||W2||L∞(Bρ(7/5))

≤C
√

M

The proof of Theorem 1.3 follows that of Theorem 1.1, where we replace the bounds for α with the bounds
for β .
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7. THE PROOF OF THEOREM 1.5

The establish the local order-of-vanishing estimate for (1.19), we will use a trick similar to the one that
appears in [6]. Instead of transforming (1.19) into a divergence-free equation and defining a stream function,
we construct an equation of the form Dw = W̃w. Recall that detA = 1 in (1.19). Also, we now have an
ellipticity constant of λ 2 in (1.3) instead of λ . Therefore, in what follows, the shortened notations σ (·) and
ρ (·) stand for σ

(
·;λ 2

)
and ρ

(
·;λ 2

)
.

As shown in the previous section, there exists a positive solution φ to (1.19) such that (5.1) and (5.2) hold.
Set v = u/φ , where u is a solution to (1.19). It follows that

Lv+(2A∇ψ−W ) ·∇v = div
(

A
∇u
φ
−A

u∇φ

φ 2

)
+

(
2

A∇φ

φ
−W

)
·
(

∇u
φ
− u∇φ

φ 2

)
= 0, (7.1)

where ψ = logφ . Using the decomposition given by Lemma 4.4, we may rewrite (7.1) as

DD̃v = W̃ D̃v+(W −2A∇ψ) ·∇v. (7.2)

Lemma 7.1. There exists ϒ̃ so that
(W −2A∇ψ) ·∇v = ϒ̃D̃v. (7.3)

Moreover, ∣∣∣∣∣∣ϒ̃∣∣∣∣∣∣
L∞(Bρ(7/5))

≤C
√

M. (7.4)

Proof. Set ϒ = e+ i f , where e, f are real-valued functions to be determined. Then

ϒD̃v = (e+ i f ){[1+a11− ia12]∂xv+[a12− i(1+a22)]∂yv}
= [e(1+a11)+ f a12]∂xv+[ea12 + f (1+a22)]∂yv+ i{[ f (1+a11)− ea12]∂xv+[ f a12− e(1+a22)]∂yv}

so that,

1
2

[
ϒD̃v+ϒD̃v

]
= [e(1+a11)+ f a12]∂xv+[ea12 + f (1+a22)]∂yv.

If we define

ϒ̃ =

{
1
2

[
ϒ+ ϒ̄

D̃v
D̃v

]
whenever D̃v 6= 0

0 otherwise
,

then (7.3) will be satisfied if we choose e, f so that

e(1+a11)+ f a12 =W1−2a11
∂xφ

φ
−2a12

∂yφ

φ

ea12 + f (1+a22) =W2−2a12
∂xφ

φ
−2a22

∂yφ

φ
.

Solving this system, we see that[
e
f

]
=

1
det(A+ I)

[
1+a22 −a12
−a12 1+a11

][
W1−2a11

∂xφ

φ
−2a12

∂yφ

φ

W2−2a12
∂xφ

φ
−2a22

∂yφ

φ

]

=
1

det(A+ I)

[
(1+a22)W1−a12W2−2(1+a11)

∂xφ

φ
−2a12

∂yφ

φ

−a12W1 +(1+a11)W2−2a12
∂xφ

φ
−2(1+a22)

∂yφ

φ

]
.

We may apply Lemma 6.1, with λ replaced by λ 2 wherever necessary, to conclude that ||∇ψ||L∞(Bρ(7/5)) ≤
C
√

M. Combining this with the bounds on A and W leads to (7.4) and completes the proof. �
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Returning to (7.2), we see that

DD̃v =
(

W̃ + ϒ̃

)
D̃v.

Since ∣∣∣∣∣∣W̃ + ϒ̃

∣∣∣∣∣∣
L∞(Bρ(7/5))

≤C
√

M,

then we may apply the results from the previous section to the equation above, where D̃v now plays the role
of w. An application of the similarity principle, Lemma 4.8 applied to D, shows that

D̃v(z) = f (z)g(z) ,

where D f = 0 in Bρ(7/5) and exp
(
−C
√

M
)
≤ |g(z)| ≤ exp

(
C
√

M
)
. Then the Hadamard three-quasi-circle

theorem (with respect to the operator D) is used as in the proof of Theorem 1.1 above, along with ‖D̃v‖ ∼
‖∇v‖, to show that

||∇v||L∞(Qs1)
≤ exp

(
C
√

M
)(
||∇v||L∞(Qs/2)

)θ (
||∇v||L∞(Qs2)

)1−θ

, (7.5)

where s/2 < s1, s1 = 6/5, s2 = 13/10 and

θ =
log(s2/s1)

log(2s2/s)
.

Using the interior bound (5.2), as well as the bound on u given in (1.9), we have

||∇v||L∞(Q6/5) ≤ exp
(

C
√

M
)(

s−c ||u||L∞(Qs)

)θ

. (7.6)

To complete the proof, we need to bound the lefthandside from below using the assumption that ||u||L∞(Q1)
≥

||u||L∞(Bb)
≥ 1. We repeat the argument from [6] here. This assumption implies that there exists z0 ∈Q1 such

that |u(z0)| ≥ 1. Without loss of generality, we’ll assume that u(z0)≥ 1. Since u is real-valued, then for any
a > 0, we have that either u(z)≥ a for all z ∈Q6/5, or there exists z1 ∈Q6/5 such that u(z1)< a. We’ll need
to choose a appropriately. If the second case holds, then by (5.1) we see that

u(z1)

φ (z1)
≤ a

φ (z1)
≤ aexp

(
C1
√

M
)
,

while
u(z0)

φ (z0)
≥ exp

(
−C1
√

M
)
.

If we set a = 1
2 exp

(
−2C1

√
M
)

then

u(z1)

φ (z1)
≤ 1

2
exp
(
−C1
√

M
)

and it follows that

C ||∇v||L∞(Q6/5) ≥ |v(z0)− v(z1)| ≥
u(z0)

φ (z0)
− u(z1)

φ (z1)
≥ 1

2
exp
(
−C1
√

M
)
.

Combining this bound with (7.6) and Lemma 2.5 leads to the proof of the theorem. If we are in the former
case, then u(z) ≥ a for all z ∈ Q6/5 and the conclusion of the theorem is obviously satisfied. The proof of
the Theorem 1.5 is now complete.

Remark 7.1. Using the similar ideas as in [6], one could also study the quantitative Landis conjecture for
(1.14), (1.18), (1.23) defined in an exterior domain. We leave this generalization to the reader.
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APPENDIX

In the appendix, we will prove Lemma 4.4. Equivalently, we need to show that(
D+W̃

)
D̃ = divA∇

= (∂xa11 +∂ya12)∂x +(∂xa12 +∂ya22)∂y +a11∂xx +2a12∂xy +a22∂yy.

To start, we use the notation W̃ =
w1 + iw2

det(A+ I)
. Because we assume that detA = 1, then ν (z) = 0 and D is

given by (4.5). Since

DD̃ =
1

det(A+ I)
{[1+a11 + ia12]∂x +[a12 + i(1+a22)]∂y}{[1+a11− ia12]∂x +[a12− i(1+a22)]∂y}

=
1

det(A+ I)
[(1+a11)∂xa11 +a12∂xa12 +a12∂ya11 +(1+a22)∂ya12]∂x

+
i

det(A+ I)
[−(1+a11)∂xa12 +a12∂xa11−a12∂ya12 +(1+a22)∂ya11]∂x

+
1

det(A+ I)
[(1+a11)∂xa12 +a12∂xa22 +a12∂ya12 +(1+a22)∂ya22]∂y

+
i

det(A+ I)
[−(1+a11)∂xa22 +a12∂xa12−a12∂ya22 +(1+a22)∂ya12]∂y

+a11∂xx +2a12∂xy +a22∂yy,

and

W̃ D̃ =
w1 + iw2

det(A+ I)
{[1+a11− ia12]∂x +[a12− i(1+a22)]∂y}

=
1

det(A+ I)
{[w1 (1+a11)+w2a12]+ i [w2 (1+a11)−w1a12]}∂x

+
1

det(A+ I)
{[w1a12 +w2 (1+a22)]+ i [w2a12−w1 (1+a22)]}∂y,

then it suffices to show that the following four equations are satisfied

det(A+ I)(∂xa11 +∂ya12) = (1+a11)∂xa11 +a12∂xa12 +a12∂ya11 +(1+a22)∂ya12 +(1+a11)w1 +a12w2

0 =−(1+a11)∂xa12 +a12∂xa11−a12∂ya12 +(1+a22)∂ya11 +(1+a11)w2−a12w1

det(A+ I)(∂xa12 +∂ya22) = (1+a11)∂xa12 +a12∂xa22 +a12∂ya12 +(1+a22)∂ya22 +a12w1 +(1+a22)w2

0 =−(1+a11)∂xa22 +a12∂xa12−a12∂ya22 +(1+a22)∂ya12 +a12w2− (1+a22)w1.

Since detA = 1, then a11a22−a2
12 = 1 and

∂xa22 =
2a12∂xa12−a22∂xa11

a11
(A.1)

∂ya22 =
2a12∂ya12−a22∂ya11

a11
. (A.2)
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Replacing the derivatives of a22 with (A.1) and (A.2), then simplyfing, the four equations above are equiva-
lent to

(1+a11)w1 +a12w2 = (1+a22)∂xa11−a12∂xa12−a12∂ya11 +(1+a11)∂ya12

(1+a11)w2−a12w1 =−a12∂xa11 +(1+a11)∂xa12− (1+a22)∂ya11 +a12∂ya12

a12w1 +(1+a22)w2 =
a12a22

a11
∂xa11 +

(
1+a11−a2

12
a11

)
∂xa12−

(1+a11)a22

a11
∂ya11 +

(2+a11)a12

a11
∂ya12

(1+a22)w1−a12w2 =
(1+a11)a22

a11
∂xa11−

(2+a11)a12

a11
∂xa12 +

a12a22

a11
∂ya11 +

1+a11−a2
12

a11
∂ya12.

Noting that (1+a11)
2 +a2

12 = a11 det(A+ I), the first pair of equations may be solved for w1 and w2:[
w1
w2

]
=

1
a11 det(A+ I)

[
1+a11 −a12

a12 1+a11

][
(1+a22)∂xa11−a12∂xa12−a12∂ya11 +(1+a11)∂ya12
−a12∂xa11 +(1+a11)∂xa12− (1+a22)∂ya11 +a12∂ya12

]

=

 a11+a22+2a11a22
a11 det(A+I) ∂xa11− 2(1+a11)a12

a11 det(A+I)∂xa12 +
a12(a22−a11)
a11 det(A+I) ∂ya11 +

(1+a11)
2−a2

12
a11 det(A+I) ∂ya12

a12(a22−a11)
a11 det(A+I) ∂xa11 +

(1+a11)
2−a2

12
a11 det(A+I) ∂xa12− a11+a22+2a11a22

a11 det(A+I) ∂ya11 +
2(1+a11)a12
a11 det(A+I)∂ya12

 ,
which is consistent with the definition of W̃ given in the statement of the lemma.

Similarly, since (1+a22)
2 +a2

12 = a22 det(A+ I), the second pair of equations also implies that[
w1
w2

]
=

1
a22 det(A+ I)

[
1+a22 a12
−a12 1+a22

]

×

 (1+a11)a22
a11

∂xa11− (2+a11)a12
a11

∂xa12 +
a12a22

a11
∂ya11 +

1+a11−a2
12

a11
∂ya12

a12a22
a11

∂xa11 +
(

1+a11−a2
12

a11

)
∂xa12− (1+a11)a22

a11
∂ya11 +

(2+a11)a12
a11

∂ya12


=

 a11+a22+2a11a22
a11 det(A+I) ∂xa11− 2(1+a11)a12

a11 det(A+I)∂xa12 +
a12(a22−a11)
a11 det(A+I) ∂ya11 +

(1+a11)
2−a2

12
a11 det(A+I) ∂ya12

a12(a22−a11)
a11 det(A+I) ∂xa11 +

(1+a11)
2−a2

12
a11 det(A+I) ∂xa12− a11+a22+2a11a22

a11 det(A+I) ∂ya11 +
2(1+a11)a12
a11 det(A+I)∂ya12

 .
This completes the proof of the decomposition lemma.

REFERENCES

[1] B. V. Bojarski. Generalized solutions of a system of differential equations of the first order and ellip-
tic type with discontinuous coefficients, volume 118 of Report. University of Jyväskylä Department of
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