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Abstract. We propose an efficient eigensolver for computing densely distributed

spectrum of the two-dimensional transmission eigenvalue problem (TEP) which is

derived from Maxwell’s equations with Tellegen media and the transverse magnetic

mode. The discretized governing equations by the standard piecewise linear finite

element method give rise to a large-scale quadratic eigenvalue problem (QEP). Our

numerical simulation shows that half of the positive eigenvalues of the QEP are densely

distributed in some interval near the origin. The quadratic Jacobi-Davidson method

with a so-called non-equivalence deflation technique is proposed to compute the dense

spectrum of the QEP. Extensive numerical simulations show that our proposed method

makes the convergence efficiently even it needs to compute more than 5000 desired

eigenpairs. Numerical results also illustrate that the computed eigenvalue curves can

be approximated by the nonlinear functions which can be applied to estimate the

denseness of the eigenvalues for the TEP.
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1. Introduction

The transmission eigenvalue problems (TEP) have recently received a great deal of

attention in the area of the inverse scattering which is essential in the study of

direct/inverse scattering problems for nonabsorbing inhomogeneous media [3, 4, 5,

6, 8, 10, 11, 20, 27]. The existence of transmission eigenvalues is closely related to

the validity of some reconstruction methods for the inverse scattering problems in an

inhomogeneous medium such as the linear sampling method [1, 7] and the factorization

method [21]. On the other hand, it has been shown that transmission eigenvalues can

be estimated by using the far-field data [2] or the near-field data (Cauchy data) [30].

In fact, both Dirichlet eigenvalues and transmission eigenvalues carry the information

of the scatterer and can be estimated by either the far-field or the near-field data. For

example, the Herglotz wave function [9] is applied at the first Dirichlet eigenvalue to

reconstruct the shape of the sound-soft scatterer. The eigenvalue method using multiple

frequency near-field data (EM2F) [32] is proposed to detect Dirichlet or transmission

eigenvalues and to reconstruct the support of the scatterer by determining the indicator

function. In addition, the EM2F can be used to distinguish between the sound-soft

obstacle and nonabsorbing inhomogeneous medium. For further study in the theories

and applications of TEP, we refer to [6] and the references therein for further details.

In this paper, we consider the scattering of acoustic waves by an inhomogeneous

medium which occupies a bounded and simply connected domain D ⊆ R2. The

related so-called TEP is to find λ > 0 and nontrivial functions u, v ∈ L2(D) with

u− v ∈ H2
0 (D) = {w ∈ H2|w = 0, ∂w

∂ν
= 0 on ∂D} satisfying

∆u+ λε(x, y)u = 0, in D, (1a)

∆v + λv = 0, in D, (1b)

where ν is the outer unit normal to the smooth boundary ∂D and ε(x, y) is the index

of refraction. Any positive λ such that (1) has nontrivial solutions u and v is called an

interior transmission eigenvalue. Note that u− v ∈ H2
0 (D) is equivalent to

u = v on ∂D, (2a)

∂u

∂ν
=
∂v

∂ν
on ∂D. (2b)

Equation (1a) can be regarded as the reduced Maxwell equations with transverse

magnetic (TM) modes. In this paper, we will consider the case where the parameter

ε(x, y) are chosen sufficiently large. For the standard Maxwell equations, ε corresponds

to the electric permittivity which is written as the product of the relative permittivity

and the free space permittivity. In practice, ε can not be taken as large as we wish.

Therefore, in this paper, we will derive (1a) from Maxwell’s equations with Tellegen

media (non-reciprocal and non-chiral). It turns out for this case ε is the sum of the

electric permittivity and the square of Tellegen parameter. By choosing large Tellegen

parameter, we can enlarge the parameter ε as well.



Efficient numerical algorithm for transmission eigenvalues 3

There are several theoretical results regarding the existence of interior transmission

eigenvalues [4, 5, 20, 27]. Several numerical algorithms for computing the transmission

eigenvalues were proposed recently. Three finite element methods (FEMs) and a

coupled boundary element method were proposed for solving the two-dimensional

(2D)/three-dimensional (3D) interior transmission eigenvalue problems in [10, 12, 33],

and, furthermore, in a recently published book [34] for details. In view of the existence

theory of the transmission eigenvalues based on the fourth order reformulation in [5],

two iterative methods together with convergence analysis were studied in [31]. In [18],

a mixed FEM for 2D TEP was proposed, which leads to a non-Hermitian quadratic

eigenvaluue problem (QEP) and then was solved by an adaptive Arnoldi method. On

the other hand, the multilevel correction method was used to reduce the solution of

TEP into a series of solutions to some linear boundary value problems which could be

solved by the multigrid method [19].

In many cases with general inhomogeneous medium, the desired positive

transmission eigenvalues are surrounded by complex ones. Based on complex-valued

contour integrals and the boundary integral equation, an accurate numerical method for

computing interior transmission eigenvalues for many obstacles (different from spheres)

in 3D acoustic scattering was presented in [22]. However, only constant index of

refraction and smooth domains were treated there. The algorithm used in [22] was

later extended to the electromagnetic case in [23, 24]. The QEP above can be rewritten

as a particular parametrized symmetric definite generalized eigenvalue problem (GEP).

For such GEP, the eigenvalue curves can be arranged in a monotonic order so that the

desired curves are sequentially located by a new secant-type iteration (see [25] for 2D

TEP and [13] for 3D TEP, respectively).

In this paper, we focus on the 2D TEP with complex media and make the following

contributions.

• We derive the 2D TEP (1) with ε(x, y) = ε̃(x, y) + γ2 from the Maxwell’s equation

with non-reciprocal, non-chiral media and the transverse magnetic mode (TM).

Here ε̃(x, y) is the electric permittivity and γ is the Tellegen parameter.

• Discretized (1) by the standard piecewise linear finite element method [10] results

in a GEP. The GEP is then reduced to a QEP by deflating all nonphysical zeros.

Our numerical simulations indicate that half of the positive eigenvalues of the QEP

are densely distributed in some interval.

• We adapt the quadratic Jacobi-Davidson (QJD) method with partial locking

technique for computing a large number of desired eigenpairs of the QEP. In order to

accelerate convergence, we also develop a so-called partial non-equivalence deflation

technique combined with QJD to deflate the part of computed eigenvalues to infinity

while keeping the other eigenvalues unchanged. Numerical results demonstrate that

the new partial deflation technique makes the convergence efficiently for computing

5000 desired eigenpairs.

• Furthermore, we modify QJD with partial deflation technique so that it can be
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applied to compute all the eigenvalues in a given interval. Therefore, we separate the

densely distributed eigenvalues of the TEP into several subintervals and compute

the desired eigenpairs simultaneously by the modified method. Numerical results

show that this modified method can be applied to compute more than 10000 target

eigenpairs in our model.

• According to the computed eigenvalues, we find that the logarithms of the

eigenvalue curves vs log10(ε(x, y)) for the TEP (1) are approximated by straight

lines with almost the same negative slope. Therefore, we can estimate the

distribution of the eigenvalues for given ε(x, y) from these parallel straight lines.

This paper is organized as follows. Section 2 is devoted to derive a 2D TEP with

TM mode in non-reciprocal, non-chiral media. A corresponding discretization TEP and

its spectral analysis are given in Section 3. In Section 4, we develop a non-equivalence

low-rank deflation which can be used to accelerate convergence of QJD for computing the

desired positive eigenvalues. A practical QJD algorithm combined with non-equivalence

deflation and numerical results are presented in Sections 5 and 6, respectively. Finally,

a concluding remark is given in Section 7.

2. Description of the governing equation

We consider Maxwell’s equations in complex media [35]:

∇× E = iω (µH + ζE) , (3a)

∇×H = −iω (ε̃E + ξH) , (3b)

where E and H are the electronic field and magnetic field, respectively, ω represents

the frequency, ε̃ and µ are the permittivity and the permeability, respectively, ξ and ζ

are 3-by-3 magnetoelectric parameter matrices in various forms for describing different

types of materials (see [28, p.26] and [35, p.44]). In this paper, we assume µ = 1 and

all other parameters are functions of x, y. For this situation, we study the TM mode

for (3), i.e.,

E =
[
0 0 E3(x, y)

]>
, H =

[
H1(x, y) H2(x, y) 0

]>
. (4)

Let

ζ =

 0 0 ζ1
0 0 ζ2
−ζ1 −ζ2 0

 , ξ =

 0 0 ξ1
0 0 ξ2
−ξ1 −ξ2 0

 . (5)

Then, Eqs. (3a) implies that ∂yE3

−∂xE3

0

 = iω


H1

H2

0

+

ζ1E3

ζ2E3

0


 . (6)
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Substituting (6) into (3b) yields

(iω)−1

 0

0

−
(
∂2

∂x2
+ ∂2

∂y2

)
E3

−
 0

0
∂
∂x

(ζ2E3)− ∂
∂y

(ζ1E3)


= − iω

ε̃
 0

0

E3

−
 0

0

ξ1H1 + ξ2H2


 ,

which implies that

−∆E3

= ω2

[
ε̃E3 − ξ1

(
(iω)−1

∂

∂y
E3 − ζ1E3

)
+ ξ2

(
(iω)−1

∂

∂x
E3 + ζ2E3

)]
+ iω

[
∂

∂x
(ζ2E3)−

∂

∂y
(ζ1E3)

]
= ω2 (ε̃+ ξ1ζ1 + ξ2ζ2)E3 + iω

[
∂

∂x
(ζ2E3)−

∂

∂y
(ζ1E3) + ξ1

∂

∂y
E3 − ξ2

∂

∂x
E3

]
.

If we choose ζ1 = ξ1 = γ1 and ζ2 = ξ2 = γ2, where γ1, γ2 are real constants, then we

have

−∆E3 = ω2
[
ε̃+

(
γ21 + γ22

)]
E3 ≡ ω2ε(x, y)E3 (7)

with

ε(x, y) = ε̃(x, y) + γ21 + γ22 . (8)

Maxwell’s equations with real parameters ζ = ξ are called Tellegen model.

We now discuss the boundary conditions. Recall that ν is the outer unit normal to

∂D. Then it is readily seen that

E × ν =

 0

0

E3

×
ν1ν2

0

 =

−ν2E3

ν1E3

0


and

(∇× E)× ν =

 ∂
∂y
E3

− ∂
∂x
E3

0

×
ν1ν2

0

 =

∂E3

∂y
ν2 + ∂E3

∂x
ν1

0

0

 =

∂E3

∂ν

0

0

 .
In other words, boundary conditions E × ν|∂D and (∇× E)× ν|∂D are equivalent to

E3|∂D and
∂E3

∂ν
|∂D.

We then arrive at the TEP for (1a)-(1b) and (2a)-(2b) with ε(x, y) given in (8).
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3. Discretization of TEP and its spectral analysis

We briefly review the discretization of the TEP (1) based on the standard piecewise

linear FEM (see [10] for details). Let

Sh = The space of continuous piecewise linear functions on D,

SIh = The subspace of functions in Sh with vanishing DoF on ∂D,

SBh = The subspace of functions in Sh with vanishing DoF in D.

Here DoF stands for degrees of freedom. Let {φi}ni=1 and {ψi}mi=1 denote standard nodal

bases for the finite element spaces of SIh and SBh , respectively, then

u = uIh + uBh =
n∑
i=1

uiφi +
m∑
i=1

wiψi, (9a)

v = vIh + vBh =
n∑
i=1

viφi +
m∑
i=1

wiψi. (9b)

Applying the standard piecewise linear finite element method to (1a) and using

integration by parts, we get

n∑
i=1

ui (∇φi,∇φj) +
m∑
j=1

wi (∇ψi,∇φj)

= ω2

(
n∑
i=1

ui (εφi, φj) +
m∑
i=1

wi (εψi, φj)

)
. (10)

Similarly, applying the standard piecewise linear finite element method to (1b), we have

n∑
i=1

vi (∇φi,∇φj) +
m∑
j=1

wi (∇ψi,∇φj) = ω2

(
n∑
i=1

vi (φi, φj) +
m∑
i=1

wi (ψi, φj)

)
. (11)

Finally, applying the linear finite element method with boundary conditions (2a), (2b)

and the integration by parts to the difference equation between (1a) and (1b), we obtain(
n∑
i=1

(ui − vi)∇φi,∇ψj

)

= ω2

(
n∑
i=1

ui(εφi, ψj) +
m∑
i=1

wi(εφi, ψj)−
n∑
i=1

vi(φi, ψj)−
m∑
i=1

wi(φi, ψj)

)
. (12)

Hereafter, we define the stiffness matrices K, E, and mass matrices M1, Mε, F1,

Fε, G1 and Gε as in Table 1. In addition, we set u = [u1, . . . , un]>, v = [v1, . . . , vn]>,

and w = [w1, . . . , wm]>. Then, the discretizations of (10), (11) and (12) give rise to a

generalized eigenvalue problem (GEP)

Az = λBz (13a)
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stiffness matrix for interior meshes K = [(∇φi,∇φj)] � 0 ∈ Rn×n

stiffness matrix for
E = [(∇φi,∇ψj)] ∈ Rn×m

interior/boundary meshes

mass matrices for interior M1 = [(φi, φj)] � 0 ∈ Rn×n

meshes with ε = 1 or ε > 1 Mε = [(εφi, φj)] � 0 ∈ Rn×n

mass matrices for interior/boundary F1 = [(φi, ψj)] ∈ Rn×m

meshes with ε = 1 or ε > 1 Fε = [(εφi, ψj)] ∈ Rn×m

mass matrices for boundary G1 = [(ψi, ψj)] � 0 ∈ Rm×m

meshes with ε = 1 or ε > 1 Gε = [(εψi, ψj)] � 0 ∈ Rm×m

Table 1. Stiffness and mass matrices with ε(x, y) > 1 for (x, y) ∈ D̄.

with λ = ω2,

A =

K 0 E

0 −K E

E> E> 0

 , B =

Mε 0 Fε
0 −M1 F1

F>ε F>1 Gε −G1

 , z =

u

v

w

 . (13b)

For simplicity, we denote

G = Gε −G1, M = Mε −M1, F = Fε − F1, (14a)

M̂1 = M1 − F1G
−1F>, M̂ = M − FG−1F>, K̂ = K − EG−1F>, (14b)

and

S =
[
K E

]
, T1 =

[
M1 F1

]
, M =

[
M F

F> G

]
. (14c)

Suppose that M � 0 symmetric positive definite. Then it follows that G � 0, M � 0

and M̂ � 0. The quadratic eigenvalue problem (QEP) is defined as

Q(λ)x ≡
(
λ2A2 + λA1 + A0

)
x = 0, (15)

where A2, A1 and A0 are all n× n symmetric matrices given by

A2 = M1 + M̂1M̂
−1M̂>

1 + F1G
−1F>1 (16a)

= M1 + T1M−1T >1 ,

A1 = −K − K̂M̂−1M̂>
1 − M̂1M̂

−1K̂> − EG−1F>1 − F1G
−1E> (16b)

= −K − SM−1T >1 − T1M−1S>,

A0 = K̂M̂−1K̂> + EG−1E> (16c)

= SM−1S>.

It has been shown [13] that the GEP (13) can be reduced to the QEP as in (15)

and (16) with x = u− v in which all nonphysical zero are removed.
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Theorem 1 ([13]). Let L(λ) and Q(λ) be matrix pencils defined as in (13) and (15),

respectively. Then

σ(L(λ)) = σ(Q(λ)) ∪ {0, · · · , 0}︸ ︷︷ ︸
m

.

Here, σ(·) denotes the spectrum of the associated matrix pencil.

Let (λ,x) be an eigenpair of (15), then

λ2(x∗A2x) + λ(x∗A1x) + (x∗A0x) = 0. (17)

Suppose that A1 is symmetric negative definite and A2, A0 � 0. We then obtain that

b ≡ −x∗A1x > 0, a ≡ x∗A2x > 0, c ≡ x∗A0x > 0

which imply that the roots of the quadratic equation (17) are

λ+ =
b+
√
b2 − 4ac

2a
> 0, λ− =

2c

b+
√
b2 − 4ac

> 0 (18)

provided that b2− 4ac > 0. Consequently, there are 2n positive eigenvalues of (15) and

the associated eigenvectors are real.

Theorem 2. Let

W0 =

[
M F

F> G

]−1/2 [
K

E>

]
, W1 =

[
M F

F> G

]−1/2 [
M1

F>1

]
, (19)

d0 = ‖W0‖2, d1 = ‖W1‖2, (20)

and {
a0 = λmin(A0), ā0 = λmax(A0) = d20,

a2 = λmin (A2) , ā2 = λmax(A2).
(21)

Suppose that

a1 = λmin(K)− 2d0d1 > 0, ā1 = λmax(K) + 2d0d1, (22)

δ = λmin(K)2 − 4d0(d1λmin(K) + d0λmax(M1)) > 0. (23)

Then there are n positive eigenvalues of (15) in the interval (r∗, r
∗), where

r∗ =
2d20

a1 +
√
δ
, r∗ =

2λmin(A0)

ā1 +
√
ā1 − 4a2a0

> 0. (24)

Proof. By the definitions of W0 and W1, A1 in (16b) can be expressed by

A1 = −(K +W>
0 W1 +W>

1 W0). (25)
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Let x be the unit eigenvector of (15). Note that x is real. Eq. (25) implies that

b = −x>A1x = x>Kx + x>W>
0 W1x + x>W>

1 W0x

≥ λmin(K)− 2d0d1 = a1 > 0.

Recall that a = x>A2x and c = x>A0x. Then we have that

b2 − 4ac ≥ (λmin(K)− 2d0d1)
2 − 4d20(λmin(M1) + d21)

= λmin(K)2 − 4d0(d1λmin(K) + d0λmax(M1)) = δ > 0

and thus

λ− =
2c

b+
√
b2 − 4ac

≤ 2d20

a1 +
√
δ

= r∗.

On the other hand, we can see that

b = −x>A1x ≤ λmax(K) + 2d0d1 = ā1,

b2 − 4ac ≤ ā21 − 4a2a0,

which implies

λ− =
2c

b+
√
b2 − 4ac

≥ 2a0

ā1 +
√
ā21 − 4a2a0

= r∗.

It follows from (18) that there are n smallest positive eigenvalues on (r∗, r
∗).

Remark 3. By (16c), the value x>A0x is dominated by x>K̂M̂−1K̂>x provided that

λmin(K) ≡ O(κ)� 1. From (16a), x>A2x ≈ O(1) holds. If we can choose the coefficient

ε(x, y) in (1a) so that max |(M)ij| ≈ max |(K)ij|, then from (24) it follows that

λ− ≈
2O(κ)

O(κ) +
√
O(κ)2 +O(κ)

≈ O(1).

In other words, there are n positive eigenvalues of (1) which are densely distributed in

the interval (0, O(1)). This motivates us to develop efficient numerical algorithms to

compute all smallest clustering positive eigenvalues.

4. Non-equivalence low-rank deflation

In this section, we introduce the non-equivalence low-rank deflation [14] to locate the

successive eigenpairs of the QEP in (15). Once the smallest positive eigenvalue is

retrieved, we then transform it to infinity by the deflation scheme, while keeping all

other eigenvalues unchanged. The next successive eigenvalue thus becomes the target

positive eigenvalue of the new transformed problem, which is then repeatly solved by

the proposed method.
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Definition 4 ([14]). Let (Λ1, X1) ∈ Rr×r × Rn×r with rank(X1) = r be a given pair.

(Λ1, X1) is called an eigenmatrix pair of Q(λ) in (15) if it satisfies

A2X1Λ
2
1 + A1X1Λ1 + A0X1 = 0. (26)

In particular, (diag(∞, · · · ,∞), X1) is called an∞-eigenmatrix pair for Q(λ) if A2X1 =

0.

Given an eigenmatrix pair (Λ1, X1) ∈ Rr×r × Rn×r(r ≤ n) of Q(λ) in (15) with Λ1

being nonsingular, we define a new deflated QEP as

Qd(λ) := λ2Ã2 + λÃ1 + Ã0, (27)

where

Ã2 := A2 − A2X1Θ1X
>
1 A2, (28a)

Ã1 := A1 + A2X1Θ1Λ
−>
1 X>1 A0 + A0X1Λ

−1
1 Θ1X

>
1 A2, (28b)

Ã0 := A0 − A0X1Λ
−1
1 Θ1Λ

−>
1 X>1 A0, (28c)

and

Θ1 := (X>1 A2X1)
−1. (28d)

The nonequivalence deflation (28) allows us to transform Q(λ) into a new QEP Qd(λ)

with the same eigenvalues, except that the eigenvalues of Λ1 are replaced by r infinities.

On the other hand, let (Λ2, X2) ∈ Rs×s×Rn×s be another eigenmatrix pair of Q(λ).

Suppose that σ(Λ1) ∩ σ(Λ2) = ∅. Then the following orthogonality relation holds [14]

X>2 A0X1 − Λ>2 (X>2 A2X1)Λ1 = 0. (29)

Using this orthogonality relation, we can see that (Λ2, X2) is also an eigenmatrix pair

of Qd(λ).

5. Jacobi-Davidson method for quadratic eigenvalue problems

In this section, we propose a quadratic Jacobi-Davidson (QJD) method [15, 29]

combined with non-equivalence deflation scheme to solve the QEP (15). Suppose Vk
is a k-dimensional subspace with an orthogonal unitary basis {v1,v2, . . . ,vk}. Let

Vk = [v1, · · · ,vk] and (θk, sk) be an eigenpair of V ∗kQ(λ)Vks = 0 and (θk,uk ≡ Vksk) be

a Ritz pair of Q(λ) with ‖sk‖2 = 1. To expand the subspace Vk successively, the QJD

method seaks an approximate solution for the correction equation:(
I − pku

∗
k

u∗kpk

)
Q(θk) (I − uku

∗
k) t = −rk, t⊥uk, (30)

where rk = Q(θk)uk and pk = (2θkA2+A1)uk. This is a crucial step in the QJD method

that may affect the overall performance significantly.
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There are different schemes [15] for solving (30). Here, based on the coefficient

matrices A0, A1, A2 in (16), we adopt the scheme proposed in [15] to solve (30). Using

the condition t⊥uk, Eq. (30) can be rewritten as

Q(θk)t =
u∗kQ(θk)t

u∗kpk
pk − rk ≡ ηkpk − rk. (31)

We can then solve the two linear systems

Q(θk)t1 = pk, Q(θk)t2 = rk (32a)

and compute the solution t of (31) as

t = ηkt1 − t2 with ηk =
u∗kt2
u∗kt1

. (32b)

Based on the above discussions, we summarize the quadratic Jacobi-Davidson

method for the computation of the desired eigenvalue of the QEP (15) in Algorithm 1.

Algorithm 1 QJD method for Q(λ)x ≡ (λ2A2 + λA1 + A0)x = 0.

Input: Coefficient matrices A0, A1, A2 and an initial orthonormal matrix V .

Output: The desired eigenpair (λ,x).

1: Compute Wi = AiV and Mi = V ∗Wi for i = 0, 1, 2.

2: while (the desired eigenpair is not convergent) do

3: Compute the eigenpairs (θ, s) of (θ2M2 + θM1 +M0)s = 0.

4: Select the desired eigenpair (θ, s) with ‖s‖2 = 1.

5: Compute u = V s, p = (2θA2 + A1)u, r = Q(θ)u.

6: Solve the correction vector t in (32).

7: Orthogonalize t against V ; set v = t/‖t‖2.
8: Compute

wi = Aiv, Mi =

[
Mi V ∗wi

v∗Wi v∗wi

]
for i = 0, 1, 2.

9: Expand V = [V,v] and Wi = [Wi,wi] for i = 0, 1, 2.

10: end while

11: Set λ = θ and x = u.

Note that the solutions t1 and t2 in (32a) can be efficiently computed by the

following way. Substituting A2, A1 and A0 in (16) into (32a), Eq. (32a) can be

represented as {
θ2kM1 − θkK +

(
θkM̂1 − K̂

)
M̂−1

(
θkM̂

>
1 − K̂>

)
+ (θkF1 − E)G−1

(
θkF

>
1 − E>

)}
t = b, (33)
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where b = pk or b = rk. Let

t̂ = M̂−1
(
θkM̂

>
1 − K̂>

)
t, t̃ = G−1

(
θkF

>
1 − E>

)
t,

which is equivalent to(
K̂> − θkM̂>

1

)
t + M̂ t̂ = 0,

(
E> − θkF>1

)
t +Gt̃ = 0. (34a)

Then (33) can be expressed by(
θkK − θ2kM1

)
t +

(
K̂ − θkM̂1

)
t̂ + (E − θkF1) t̃ = −b. (34b)

Combining (34a) with (34b), the solution t in (33) can be solved from the augmented

linear system  M̂ K̂> − θkM̂>
1

G E> − θkF>1
K̂ − θkM̂1 E − θkF1 θkK − θ2kM1


t̂

t̃

t

 =

 0

0

−b

 . (35)

5.1. Partial locking scheme

To compute successively all other desired eigenvalues, deflation [14, 16] or locking

[15, 16, 17, 26] scheme is necessary. The Jacobi-Davidson method incorporated with

locking scheme is capable of calculating the smallest positive eigenvalue first and

then of computing all other desired eigenvalues successively by suitably choosing the

orthonormal searching space span(V ≡ [Vc, V0]), where the columns of Vc form an

orthonormal basis for the subspace generated by the convergent eigenvectors and V0
is any matrix satisfying V >0 V0 = I. Therefore, in each iteration of Algorithm 1,

the convergent eigenvalues λ1, . . . , λj will be included in the set of eigenvalues of the

projective QEP (θ2M2 + θM1 +M0)s = 0 in Line 3 of Algorithm 1. So, the target Ritz

value θ in Line 4 of Algorithm 1 is chosen as θ /∈ {λ1, . . . , λj}.
Let {λ1, . . . , λm} be the desired eigenvalues. If m is small, then the locking scheme

can be applied to compute all desired eigenvalues successively. However, when m is

large, locking all convergent eigenvectors in the searching subspace span(V ) will reduce

the efficiency significantly because it increases the costs of computing eigenpairs of

(θ2M2 + θM1 + M0)s = 0, the Ritz vectors u, and the reorthogonalization of the

correction vector t against V in Lines 1, 5 and 7, respectively, of Algorithm 1. In order

to remedy this drawback, we propose a partial locking scheme with at most locking `

convergent eigenvectors in each iteration. Namely, for the computation of the (j + 1)-

th eigenpair (λj+1,xj+1) with j + 1 ≤ `, all the convergent eigenvectors x1, . . . ,xj are

locked in V which means that the columns of Vc is an orthonormal basis of the subspace

span{x1, . . . ,xj}. If j + 1 > `, then only the convergent eigenvectors xj+1−`, . . . ,xj are

locked. The algorithm is summarized in Algorithm 2.
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Algorithm 2 Quadratic Jacobi-Davidson method with partial locking scheme.

Input: Coefficient matrices A0, A1, A2, number p of desired eigenvalues, locking number

` (` < p) and an initial orthonormal matrix V .

Output: The desired eigenpair (λj,xj) for j = 1, . . . , p.

1: Set Vc = [ ];

2: for j = 1, . . . , p do

3: Use Algorithm 1 with initial matrix V to compute the desired eigenpair (λj,xj);

4: if j ≤ ` then

5: Orthogonalize xj against Vc; set Vc = [Vc,xj/‖xj‖2];
6: else

7: Orthogonalize xj against Vc(:, 2 : `); set Vc = [Vc(:, 2 : `),xj/‖xj‖2];
8: end if

9: Find an initial matrix V0 such that V >0 V0 = I with V ≡ [Vc, V0].

10: end for

5.2. Partial deflation scheme

In Section 4, an explicit nonequivalence low-rank deflation method is proposed to

transform the convergent eigenvalues to the infinity, while all other eigenvalues remain

unchanged. The next successive eigenvalue thus becomes the smallest positive one of

the transformed problem. In this subsection, we will discuss how to efficiently apply

QJD to solve the deflated QEP Qd(λ)x = 0 in (27).

Let Y0 = A0X1Λ
−1
1 ∈ Rn×r and Y2 = A2X1 ∈ Rn×r. Then the matrices Ã2, Ã1 and

Ã0 defined in (28c) can be written as

Ã2 = A2 − Y2Θ1Y
>
2 , (36a)

Ã1 = A1 + Y2Θ1Y
>
0 + Y0Θ1Y

>
2 , (36b)

Ã0 = A0 − Y0Θ1Y
>
0 . (36c)

As stated in (32a), to solve the correction vector td, we need to solve the linear system(
θ2kÃ2 + θkÃ1 + Ã0

)
t = b. (37)

In view of (36), (37) can be rewritten as[
Q(θk)− (θkY2 − Y0) Θ1

(
θkY

>
2 − Y >0

)]
t = b. (38)

Denote

U = θkY2 − Y0.

Applying the Sherman-Morrison-Woodbury formula, the solution of (38) can be
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computed as

t =
{
Q(θk)− UΘ1U

>}−1 b

= Q(θk)
−1b +Q(θk)

−1U
(
I −Θ1U

>Q(θk)
−1U

)−1
Θ1U

>Q(θk)
−1b

= Q(θk)
−1b +Q(θk)

−1U
(
Θ−11 − U>Q(θk)

−1U
)−1

U>Q(θk)
−1b.

In other words, in each iteration, we need to solve the linear systems

Q(θk)Z =
[
p̃k r̃k U

]
, (39a)

where r̃k = Qd(θk)ũk and p̃k = (2θkÃ2 + Ã1)ũk, and compute the correction vector td
as

td = ηkt̃1 − t̃2 with ηk =
ũ∗kt̃2

ũ∗kt̃1
(39b)

where

t̃1 = Z(:, 1) + Z(:, 3 : r + 2)(Θ−11 − U>Z(:, 3 : r + 2))−1U>Z(:, 1), (39c)

t̃2 = Z(:, 2) + Z(:, 3 : r + 2)(Θ−11 − U>Z(:, 3 : r + 2))−1U>Z(:, 2). (39d)

From above, we can see that the computational cost of solving Qd(λ)x = 0 by QJD

will be increasing as r increases. In order to reduce the computational cost, similar to

the concept of partial locking scheme, we propose a partial deflation scheme with at most

deflating ` convergent eigenvectors in each iteration. That is, for computing the (j+ 1)-

th eigenpair (λj+1,xj+1) with j + 1 ≤ `, all the convergent eigenvectors x1, . . . ,xj are

deflated. If j + 1 > `, then only the convergent eigenvectors xj+1−`, . . . ,xj are deflated.

We summarize the steps in Algorithm 3.

6. Numerical results

In what follows, we will compare the efficiency of Algorithm 2 with ` = 20 and

Algorithm 3 with ` = 10 for computing desired positive real transmission eigenvalues

λi > 0, i = 1, . . . , p, on four different domains [25] as shown in Figure 1. The meshes for

these domains are constructed by triangular meshes. The associated matrix dimensions

n and m of matrices in Table 1 are listed in Table 2. The distributions of {λ1, . . . , λp}
with ε(x, y) = 50, 100, 500, 1000 and matrix dimensions n and m in Table 2 are shown

in Figures 1(e), 1(f), 1(g) and 1(h), respectively. All the eigenvalues almost have an

uniform distribution.

All computations for numerical test examples are carried out in MATLAB 2015b.

The linear system in (35) is solved by Gaussian elimination (i.e., left matrix divide in

MATLAB). Tic and toc functions are used to measure elapsed time in second. For the

hardware configuration, we use an HP server equipped with the RedHat Linux operating

system, two Intel Quad-Core Xeon E5-2643 3.33 GHz CPUs and 96 GB of main memory.
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Algorithm 3 Quadratic Jacobi-Davidson method with partial deflation scheme.

Input: Coefficient matrices A0, A1, A2, number p of desired eigenvalues, number `

(` < p) of deflation and an initial orthonormal matrix V .

Output: The desired eigenpair (λj,xj) for j = 1, . . . , p.

1: Set X1 = [ ], Y0 = [ ], Y2 = [ ] and Θ = [ ];

2: for j = 1, . . . , p do

3: Use Algorithm 1 with the initial matrix V and solve the correction vector td by

(39) to compute the first desired eigenpair (λj,xj) of Qd(λ)x = 0;

4: Compute y0 = λ−1j A0xj and y2 = A2xj;

5: if j ≤ ` then

6: Set Θ =

[
Θ X>1 y2

x>j Y2 x>j y2

]
, Θ1 = Θ−1, X1 = [X1,xj], Y0 = [Y0,y0] and

Y2 = [Y2,y2];

7: else

8: Set Θ =

[
Θ(2 : `, 2 : `) X1(:, 2 : `)>y2

x>j Y2(:, 2 : `) x>j y2

]
and Θ1 = Θ−1;

9: Set X1 = [X1(:, 2 : `),xj], Y0 = [Y0(:, 2 : `),y0] and Y2 = [Y2(:, 2 : `),y2];

10: end if

11: Update the initial matrix V .

12: end for
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Figure 1. Model domains and the associated distributions of the 5000 positive target

eigenvalues for ε(x, y) = 50, 100, 500, 1000.

Table 2. The matrix dimension n, m (K ∈ Rn×n, E ∈ Rn×m) of the matrices for the

benchmark problems. Here the mesh size h ≈ 0.04.

Domain disk ellipse dumbbell peanut

(n,m) (124631, 1150) (71546, 976) (149051, 1871) (168548, 1492)
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Table 3. The first and pth eigenvalues λ1 and λp computed by Algorithm 3 and the

associated (e1(ε0), ep(ε0)) defined in (40), where p = 5000 and ε0 = 5000.

Domain disk ellipse

(e1(ε0), ep(ε0)) (0.00290, 4.25) (1.837× 10−3, 2.129)

(λ1, λp) (0.00294, 4.28) (2.087× 10−3, 2.210)

(r1, rp) (0.014, 0.007) (0.119, 0.037)

Domain dumbbell peanut

(e1(ε0), ep(ε0)) (0.0113, 6.42) (6.392× 10−3, 5.621)

(λ1, λp) (0.0114, 6.49) (6.440× 10−3, 5.673)

(r1, rp) (0.009, 0.011) (0.007, 0.009)

6.1. Numerical validation for the clustering eigenvalues

In this section, we shall numerically validate that the TEP has densely distributed

eigenvalues in the interval (0, O(1)) if the coefficient ε(x, y) in (1a) is sufficient large as

shown in Remark 3. Furthermore, we shall demonstrate that each eigencurve vs ε(x, y)

can be numerically approximated by a nonlinear function.

In order to observe the variety of the distribution of the eigenvalues with various

coefficients ε(x, y), we compute the fifty smallest positive real eigenvalues for each given

constant ε(x, y) = ε0 and show the computed eigenvalues in Figures 2(a), 2(c), 2(e)

and 2(g). From these results, we see that the distributions of these fifty eigenvalues are

clustered to the interval (0.2,1) as ε0 approaches to 103.

On the other hand, these results also show that each eigencurve λi(ε0) can be

approximated by a nonlinear function

λi(ε0) ≈ ei(ε0) ≡ bi × ε−ai0 (40)

with constant ai and bi for i = 1, . . . , 50. We show the nonlinear functions e1(ε) and

e50(ε) in Figures 2(a), 2(c), 2(e) and 2(g) with red lines. These approximations can be

extended to other eigencurves. Using the eigenvalues shown in Figures 1(e), 1(f), 1(g)

and 1(h), we get the coefficients ai and bi for i = 1, . . . , 5000 as shown in Figures 2(b),

2(d), 2(f) and 2(h), respectively. The approximation in (40) can be used to estimate

the eigenvalues for a given ε0. In Table 3, we demonstrate the computed eigenvalues λ1
and λp by Algorithm 3 and (e1(ε0), ep(ε0)) in (40) for ε0 = 5000 and p = 5000 with the

domains in Figure 1. The results show that the relative errors ri ≡ |λi − ei|/|λi| can be

achieved about 0.01 for i = 1 and p.

Furthermore, the curves of the coefficients ai and bi for i = 1, . . . , 5000 in

Figures 2(b), 2(d), 2(f) and 2(h) can be approximated by a linear function

ai ≈ `a(i) ≡ α1 × i+ α0 (41a)

and a nonlinear function

bi ≈ eb(i) ≡ β0 × iβ1 × 10β2(log10(i))
2

, (41b)
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nonlinear functions.
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Figure 3. Relative errors of approximations e(100, i) for i = 5001, . . . , 10105.

respectively, as shown in the associated figures. Substituting (41) into (40), we can see

that the positive eigencurve λi(ε) can be approximated by

λi(ε) ≈ e(ε, i) ≡ β0 × iβ1 × 10β2(log10(i))
2 × ε−(α1×i+α0).

Comparing with the eigenvalues λi(100), for i = 5001, . . . , 10105, of the TEP with

peanut domain as shown in Figure 6(b), the relative errors |λi(100)− e(100, i)|/λi(100)

for i = 5001, . . . , 10105 range from 5 × 10−7 to 0.012 as shown in Figure 3. This

demonstrates that e(ε, i) is a good approximation for the eigencurve.

6.2. Numerical comparisons of locking and deflation schemes

Let µk denote the number of the target eigenvalues which are computed by QJD in

Algorithm 1 with k iterations. If k ≥ 16, then we define µ16 :=
∑

k≥16 µk. On the other

hand, we denote Tl and Td the average of the CPU times in seconds for computing p

target positive smallest eigenvalues by Algorithms 2 and 3, respectively.

In Figure 4, we show the percentage µk/p for k = 0, 1, . . . , 16 with ε0 =

50, 100, 500, 1000. The results indicate that the iteration numbers k of Algorithm 3

with deflation scheme are concentrated at k = 4, 5, 6 for each ε0. However, the iteration

number k of Algorithm 2 with locking scheme depends on ε0. The iteration number

is concentrated at 4, 5, 6 only when ε0 is large enough as shown in Figures 4(c) and

4(d). Figures 4(a) and 4(b) show that, in average, locking schemes need more and

more iterations to compute the target eigenpair as ε0 becomes smaller. When the

convergent eigenvectors are locked into the searching subspace span{V }, the small size

QEP (θ2M2 + θM1 +M0)s = 0 in Line 3 at Algorithm 1 will produce dummy Ritz pairs.

The convergence of the locking scheme can be affected by such dummy Ritz pairs when

the distribution of the eigenvalues is not clustered, for example, ε0 = 50, 100. In the

deflation scheme, there is no dummy Ritz pairs created by the convergent eigenvectors.

This is one of the reasons that, in average, the iteration number for the deflation scheme

is less than that for the locking scheme when ε0 ranges from 50 to 500.
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Figure 4. Percentages µk

p for the locking scheme and the deflation scheme with various

ε0.

From Section 5, we can see that the computational cost of the deflation scheme

is more than that of the locking scheme in each iteration. As shown in Figures 4(a),

4(b) and 4(c), due to the fact that the total iterations of deflation scheme are less than

that of locking scheme for ε0 = 50, 100 and 500, the average time Td is less than Tl.

For ε0 = 1000, both the iteration numbers of the locking and the deflation schemes are

concentrated at 3, 4, 5, 6. This leads to Td > Tl as shown in Figure 4(d).

In order to demonstrate that less iterations are needed for solving the TEP using

the deflation scheme, we compute the first 5000 eigenpairs of the TEP with domains in

Figure 1 using Algorithm 3. The percentages µk
p

with ε0 = 50, 100, 500, 1000 are shown

in Figure 5. The numerical results demonstrate that only when ε0 = 50, more iterations

of the QJD are needed to compute the target eigenvalues. The most iterations of the

QJD are concentrated at 3, 4, 5, 6 for other ε0’s.

Remark 5. (i). Theorem 2 indicates that the QEP (15) has a set of densely distributed

positive eigenvalues when ε(x, y) is chosen sufficiently large. From Figure 4, we can see

that, in average, the CPU time for computing one eigenpair of the TEP by Algorithm 3

ranges from 33 seconds to 175 seconds with associated matrix dimensions being 71546

and 168548, respectively. This result shows that densely distributed positive eigenvalues
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Figure 5. Percentage µk

p for the deflation scheme with various ε0.

of the TEP can be efficiently computed by Algorithm 3.

(ii). When ε(x, y) is close to 1, the desired positive eigenvalues of (15) are surrounded

by complex ones. Due to this fact, these positive eigenvalues are hard to be computed by

the QJD. Thus, to compute them more efficiently, several secant-type iteration methods

were proposed [13, 18, 25]. In each iteration of the secant-type method, the approximated

eigenvalues can be guaranteed to be real. But, for computing the densely distributed

positive eigenvalues (in the case where ε is large), secant-type iteration methods need

more and more iterations than that of QJD. In other words, QJD outperforms secant-

type methods for large ε(x, y).

6.3. Computing the eigenvalues in the given interval

In Subsection 6.2, we have demonstrated that Algorithms 2 and 3 can be applied to

compute a lot of the target eigenpairs sequentially. Even each target eigenvalue can be

efficiently computed by the proposed methods, the total CPU time becomes very large

when the number of target eigenvalues is huge. In order to reduce the total CPU time,

we slightly modify Algorithm 3 so that it can be applied to compute the eigenvalues in

a given interval. We name it as Mod. Alg. 3. Therefore, the target eigenvalues can be

computed by Mod. Alg. 3 in parallel with a given different interval. In Figure 6, we show

the results of the peanut domain with ε0 = 100 and the given intervals (10i, 10(i + 1)]
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Figure 6. Peanut with ε(x, y) = 100.

for i = 0, 1, . . . , 59. In other words, we apply Mod. Alg. 3 to compute all eigenvalues in

the interval (0, 600].

Comparing the percentages µk
5000

in computing λ1, . . . , λ5000 with Algorithm 3 and

Mod. Alg. 3, the results of Figure 6(a) show that the percentages µ3+···+µ7
5000

for

Algorithm 3 and Mod. Alg. 3 are equal to 0.6488 and 0.7274, respectively. This indicates

that, in average, the convergence of Mod. Alg. 3 is better than that of Algorithm 3. On

the other hand, in Figure 6(b), we demonstrate the iteration steps of the QJD in Mod.

Alg. 3 for computing each eigenvalue. These numerical results show that the larger the

target eigenvalue, the more iterations of the QJD.

7. Conclusion

In this paper, we propose a numerical algorithm to compute positive interior

transmission eigenvalues (densely distributed) for the two-dimensional acoustic

scattering problem that is derived from Maxwell’s equations with the TM mode in non-

reciprocal and non-chiral media having material parameters ε(x, y), γ, and ε(x, y) =

ε̃(x, y) + γ2. The associated discretized eigenvalue problem is related to a generalized

eigenvalue problem which can be reduced to a QEP by deflating all nonphysical zeros.

Our numerical simulations indicate that half of the positive eigenvalues of the QEP are

densely distributed in some interval near the origin. The QJD method with partial

locking technique is proposed to compute such densely distributed eigenvalues of the

QEP. In order to accelerate convergence, we also develop a so-called non-equivalence

deflation technique combined with QJD to deflate the part of computed eigenvalues to

infinity while keeping the other eigenvalues unchanged. Numerical results demonstrate

that the deflation technique makes the convergence efficiently. The locking technique

outperforms the deflation technique in timing only when eigenvalues of the QEP are

typically clustering together in our model. Numerical results also illustrate that the

eigenvalue curves can be approximated by the nonlinear functions so that we can apply
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these nonlinear functions to estimate the eigenvalues for a given constant ε(x, y).
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