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Abstract

In the inverse boundary value problems of isotropic elasticity and
complex conductivity, we derive estimates for the volume fraction of
an inclusion whose physical parameters satisfy suitable gap conditions.
In the elasticity case we require one measurement for the lower bound
and another for the upper one. In the complex conductivity case
we need three measurements for the lower bound and three for the
upper. We accomplish this with the help of the “translation method”
which consists of perturbing the minimum principle associated with
the equation by either a null-Lagrangian or a quasi-convex quadratic
form.

1 Introduction

An inverse boundary value problem is the question of identifying the interior
physical properties of an object using measurements taken on the boundary of
the object. One interesting sub-problem, in the case when the object consists
of two homogeneous phases, would be to estimate the volume fraction of one
of those phases. This is known as the size estimate problem. In this paper
we consider the size estimate problem for the isotropic elasticity equation
and for the isotropic complex conductivity equation. In the case of elasticity,
we seek to estimate the size of the inclusion using boundary measurements
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of displacements and tractions. In the case of the complex conductivity
equation, our method will use boundary measurements of potentials and
current densities.

Unlike more general reconstruction procedures, which require a large
number of measurements, size estimate methods usually rely on only a few
measurements. One known approach to deriving size estimates is a PDE
method using quantitative uniqueness estimates, the other, which we use
here, is a variational method which is related to the estimates of effec-
tive properties of the composites. In the case of the conductivity equa-
tion estimates for the size of the inclusion have been derived in the work
of Alessandrini-Rosset [2], Alessandrini-Rosset-Seo [1], Ikehata [5], Kang-
Seo-Sheen [10], Milton [14], and others. The translation method which was
introduced by Murat-Tartar [17], [18], [16] and Lurie-Cherkaev [11], [12], was
used by Kang-Kim-Milton [6], Kang-Milton [8] to obtain lower and upper
bounds for the relative volume of an inclusion. The same approach was also
used to bound the volume fraction of two-phase materials in the 2D elasticity
case [15] and in the shallow shell case [9].

One practical example where size estimates in the complex conductivity
case may be useful is the estimation of the size of tumors or other anomalous
tissue in biological samples. Biological tissue, when probed using alternating
currents, may be modeled using complex conductivities. This is due to the
fact that cell membranes act as capacitors, thus introducing an imaginary
component to the conductivity (see [13]). There are a number of results
known in this case such as the one of Beretta-Francini-Vessella [3], Kang-
Kim-Lee-Li-Milton [7], and Milton-Thaler [19]. We want to point out that [3]
is based on the PDE method, while both [7] and [16] use the variational
approach. To put the current work in perspective, we remark that [7] uses
the translation method for the 2D problem and [16] considers 2D and 3D
problems using the splitting method.

1.1 Main results – elasticity

Let Ω ⊂ R3 be a bounded domain and let C be a two-valued elastic tensor
defined on this domain. We will assume that C is isotropic, i.e., that its
components are

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

where λ and µ are known as the Lamé coefficients. The ellipticity condition
for C in terms of the Lamé coefficients is

λ(x) + 2µ(x) > 0, µ(x) > 0, ∀x ∈ Ω.
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We will make a stronger assumption, namely that

3λ(x) + 2µ(x) > 0, µ(x) > 0, ∀x ∈ Ω.

This is known as the strong convexity condition (see [20, Section 2.9]).
We denote by Ω1 and Ω2 the domains corresponding to the two phases

and will use corresponding lower indices to identify the values the Lamé coef-
ficients and any other quantity derived from them take on these two domains.
We also define the volume fractions f1 := |Ω1|/|Ω| and f2 = |Ω2|/|Ω|. In or-
der to obtain our results it will be necessary to assume that the values of the
Lamé coefficients in the two phases satisfy the gap conditions

µ1 > µ2, 3λ1 + 2µ1 > 3λ2 + 2µ2. (1)

A function u : Ω→ R3 is a solution of the linear elasticity equation with
elastic tensor C provided

∂j(Cijkl∂kul) = 0, i = 1, 2, 3.

We will denote by φi = ui|∂Ω, i = 1, 2, 3, the Dirichlet data of such a solution
(displacement), and by ψi = njCijkl∂kul|∂Ω i = 1, 2, 3, the Neumann data
(traction), where n = (n1, n2, n3)t is the outer normal on ∂Ω. We will consider
two cases:

i) the solution u has Dirichlet data φi = 1√
3
xi, i = 1, 2, 3.

ii) the solution u has Neumann data ψi = ni, i = 1, 2, 3.

Our main result is

Theorem 1.1. There exists constants Ci, Cii ≥ 0, Ci ≤ 1 depending (explic-
itly) on Ω, the values of C and the boundary Dirichlet and Neumann data of
the solutions in case i) for Ci and case ii) for Cii, such that Cii ≤ f1 ≤ Ci.
Furthermore, Ci = 1 only if f1 = 1 and Cii = 0 only if f1 = 0. The explicit
forms of the constants Ci and Cii are the ones appearing in equations (4)
and (5) respectively.

The method of proof is inspired by the work of Kang-Milton [8] for the
3D conductivity equation. In section 2.1 we will ”translate” the minimum
principle for the elasticity equation by a null-Lagrangian, i.e. a quantity that
may be determined form boundary data. We will then extend the class of
fields over which we minimize to obtain inequalities that would lead to an
upper estimate of f1. In section 2.2 we will proceed similarly, except that
in this case we will ”translate” the minimum principle by a quasi-convex
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quadratic. This quadratic form is not determined by the boundary data, but
it’s size can nevertheless be controlled by it. The result will be the lower
estimate on f1.

We would like to compare this to Milton’s result in [14]. With the same
special boundary conditions, Milton also derives bounds of the volume frac-
tion for the two-phase isotropic elasticity in two and three dimensions. Some
of these bounds require multiple measurements, though bounds derived from
single measurements are also derived. The bounds, which are given in im-
plicit form and may be dificult to be put into explicit forms, are obtained
from the bounds of elastic response tensors.

1.2 Main results – complex conductivity

Let Ω ⊂ R3 be a bounded domain and let σ : Ω → {σ1, σ2} ⊂ C be a
conductivity function with two values. For any complex valued quantity a
we will write a′ = Re a and a′′ = Im a. Then, for example, we have

σ = σ′ +
√
−1σ′′.

We will assume that the following gap conditions hold

σ′1 > σ′2 > 0,

σ′21 +σ′′21

σ′1
>

σ′22 +σ′′22

σ′2
.

(2)

As above, let Ω1, Ω2, be the domains of the two phases and let f1 := |Ω1|/|Ω|,
f2 := |Ω2|/|Ω|.

Let u1, u2, u3 be three R-linearly independent solutions of

∇ · (σ∇u) = 0, in Ω. (3)

Denote φj := u′′j |∂Ω, ψj = n · (σ∇u)′|∂Ω, j = 1, 2, 3. We will consider three
cases

i) φj = 0 (i.e. real Dirichlet data) and the matrix(∫
∂Ω

xiψj

)
i,j∈{1,2,3}

is invertible. Since the ψj can be any set of three linearly independent
Neumann data, this condition is generic.
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ii) ψj = 0 (i.e. imaginary Neumann data) and the matrix(∫
∂Ω

niφj

)
i,j∈{1,2,3}

is invertible. Likewise, this condition is generic.

iii) φj = 0, ψj = nj, j = 1, 2, 3. This is a particular instance of the first
case.

Our main theorem is stated as follows.

Theorem 1.2. In each of the three cases, there exist constants c, C ≥ 0,
depending (explicitly) on Ω, σ1, σ2, uj|∂Ω, n·(σ∇uj)|∂Ω such that c ≤ f1 ≤ C.
For the first case the bounds are the ones in (9), for the second case they are
the ones in (10), and for the third case the ones in (11).

This result is obtained using two different versions of the translation
method, adapted from the work of Kang-Milton [8]. In both instances we
begin with a variational principle of Cherkaev-Gibiansky (see [4]). In the first
and second case, we perturb the minimized quantity by a null-Lagrangian.
Extending the class of fields over which we are taking the minimum, we
obtain inequalities that eventually lead to upper and lower bounds for f1.
We carry out the detailed computations in section 3.1 for the first case and
section 3.2 for the second case.

In the third case we perturb the minimum principle by a quasi-convex
quadratic form. This method is explained in detail in section 3.3.

2 Estimates for elasticity

2.1 Upper bound

Using the notation

〈 · 〉 :=
1

|Ω|

∫
Ω

· dx,

we define
W = 〈∇u : C : ∇u〉 = 〈∂iujCijkl∂kul〉.

It is known that
W = min

u|∂Ω=φ
〈∇u : C : ∇u〉.

We note that, using integration by parts,

W =
1

|Ω|

∫
∂Ω

uinjCijkl∂kul,
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that is, W is determined by the Dirichlet data φ and the Neumann data ψ.
We denote by T the tensor with coefficients

Tijkl = δijδkl − δilδjk.

Note that, for u that shares the same Dirichlet data as u,

(∇T : ∇u)j = −∂iTijkl∂kul = −∂j∂kuk + ∂i∂jui = 0,

and therefore

〈∇u : T : ∇u〉 =
1

|Ω|

∫
∂Ω

niui∂kuk − niuk∂kui =
1

|Ω|

∫
∂Ω

ui(ni∂k − nk∂i)uk.

As the vector vj := niδjk − nkδij satisfies njvj = 0, we conclude that ni∂k −
nk∂i is a tangential derivative. It follows that 〈∇u : T : ∇u〉 is determined
by the boundary data φ, i.e. it is a null-Lagrangian.

We define, for c > 0,

Wc := 〈∇u : C : ∇u〉+ c〈∇u : T : ∇u〉.

Since the extra term is determined by φ, we have that

Wc = min
u|∂Ω=φ

(〈∇u : C : ∇u〉+ c〈∇u : T : ∇u〉) .

Any 3× 3 matrice may be written in vector form by ordering the pairs of
indices (ij) as follows: (11), (21), (31), (12), . . . . Then ∇u becomes

v :=
(
∂1u1 ∂2u1 ∂3u1 ∂1u2 ∂2u2 ∂3u2 ∂1u3 ∂2u3 ∂3u3

)t
.

Using this notation we can write

Wc = v · Lv,

where

L =



λ+ 2µ 0 0 0 λ+ c 0 0 0 λ+ c
0 µ 0 µ− c 0 0 0 0 0
0 0 µ 0 0 0 µ− c 0 0
0 µ− c 0 µ 0 0 0 0 0

λ+ c 0 0 0 λ+ 2µ 0 0 0 λ+ c
0 0 0 0 0 µ 0 µ− c 0
0 0 µ− c 0 0 0 µ 0 0
0 0 0 0 0 µ− c 0 µ 0

λ+ c 0 0 0 λ+ c 0 0 0 λ+ 2µ


.
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Let J be the orthogonal matrix

J :=



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0


.

Then, we have

J tLJ =



λ+ 2µ λ+ c λ+ c 0 0 0 0 0 0
λ+ c λ+ 2µ λ+ c 0 0 0 0 0 0
λ+ c λ+ c λ+ 2µ 0 0 0 0 0 0
0 0 0 µ µ− c 0 0 0 0
0 0 0 µ− c µ 0 0 0 0
0 0 0 0 0 µ µ− c 0 0
0 0 0 0 0 µ− c µ 0 0
0 0 0 0 0 0 0 µ µ− c
0 0 0 0 0 0 0 µ− c µ


.

The upper left block is of particular interest. We denote it by

B :=

λ+ 2µ λ+ c λ+ c
λ+ c λ+ 2µ λ+ c
λ+ c λ+ c λ+ 2µ

 .

This block may be fully diagonalized by conjugation with the orthogonal
matrix

S =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

 ,

that is

C := StBS =

2µ− c 0 0
0 2µ− c 0
0 0 3λ+ 2µ+ 2c

 .

Here we may also note that each block

(
µ µ− c

µ− c µ

)
can be diagonalized

by
1√
2

(
1 1
1 −1

)t(
µ µ− c

µ− c µ

)
1√
2

(
1 1
1 −1

)
=

(
2µ− c 0

0 c

)
.
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We see then that as long as 0 < c < 2µ, then L > 0. By (1), the condition is
that 0 < c < 2µ2.

If u : Ω→ R3 is such that u|∂Ω = φ, then

〈∂iuj〉 =
1

|Ω|

∫
∂Ω

niφj.

It then follows that
Wc ≥ min

〈v〉=〈v〉
〈v · Lv〉 > 0.

Let v̂ be an element for which the minimum is realized. Then for any ϕ s.t.
〈ϕ〉 = 0,

〈ϕ · Lv̂〉 =
1

2

d

dt

∣∣∣∣
t=0

〈(v̂ + tϕ) · L(v̂ + tϕ)〉 = 0,

so there must be a constant m ∈ R9 such that

(Lv̂)(x) = µ, x ∈ Ω.

Let L1 and L2 be the values L takes on Ω1 and Ω2 respectively. Clearly v̂ is
constant on Ω1 and Ω2. It follows that

Wc ≥ min
f1v1+f2v2=〈v〉

(f1v1 · L1v1 + f2v2 · L2v2) ,

where v1,v2 ∈ R9 are constants. By [7, Lemma 3.1] we conclude that

Wc ≥ 〈v〉 · 〈L−1〉−1〈v〉,

where
〈L−1〉 = f1L−1

1 + f2L−1
2 .

Since C is diagonal it is easy to determine that

〈C−1〉−1
11 = 〈C−1〉−1

22 = (2µ2 − c)
(

1− f1
2(µ1 − µ2)

2µ1 − c

)−1

,

and

〈C−1〉−1
33 = (3λ2 + 2µ2 + 2c)

(
1− f1

3(λ1 − λ2) + 2(µ1 − µ2)

3λ1 + 2µ1 + 2c

)−1

,

the other matrix elements being zero.
If we choose Dirichlet data φj = 1√

3
xj|∂Ω, then we have 〈∂iuj〉 = 1√

3
δij.

Then
Wc ≥ 〈v〉 · 〈L−1〉−1〈v〉 = 〈C−1〉−1

33 .
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If we take the limit as c↗ 2µ2, we obtain the inequality

f1 ≤
3λ1 + 2µ1 + 4µ2

3(λ1 − λ2) + 2(µ1 − µ2)

(
1− 1

T

)
, (4)

where

T :=
limc↗2µ2 Wc

3λ2 + 6µ2

.

With the choice of Dirichlet data we are making, by the minimum prin-
ciple, we have

W2µ2 ≤
1

3
(〈I3×3 : C : I3×3〉+ 2µ2〈I3×3 : T : I3×3〉) ≤ 3λ1 + 2µ1 + 4µ2,

with equality attained only if f1 = 1. Then we have that

1− 1

T
≤ 3(λ1 − λ2) + 2(µ1 − µ2)

3λ1 + 2µ1 + 4µ2

,

and it follows that the upper bound in (4) satisfies

3λ1 + 2µ1 + 4µ2

3(λ1 − λ2) + 2(µ1 − µ2)

(
1− 1

T

)
≤ 1,

with equality attained only if f1 = 1. The bound is therefore non-trivial.

Remark 2.1. Here we have used one solution with specifically chosen Dirich-
let boundary data, but a similar bound may be obtained for almost any solu-
tion. To see this, note that there is an orthonormal basis in which limc↗2µ2〈L−1〉−1

is 

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 〈C−1〉−1

33 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 2µ2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2µ2 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2µ2


.

Then in this basis we would have

〈C−1〉−1
33 〈v〉23 ≤ W2µ2 − 2µ2

(
〈v〉25 + 〈v〉27 + 〈v〉29

)
,

which would produce the same type of bound as (4), as long as 〈v〉3 6= 0.
However, in this case, there is no guarantee that the upper bound obtained
for this data is non-trivial.
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2.2 Lower bound

Let

α := − λ

2µ(3λ+ 2µ)
, β :=

1

4µ
,

and D be the (compliance) tensor with components

Dijkl = αδijδkl + β(δikδjl + δilδjk).

We note that α and β also satisfy the strong convexity conditions, and that

β1 < β2, 3α1 + 2β1 < 3α2 + 2β2.

Let J := C : ∇u, then

J = J t, ∇J = 0,

D : J =
1

2

(
∇u+ (∇u)t

)
,

and therefore we have

W = 〈∇u : C : ∇u〉 = 〈J : D : J〉.

If J is symmetric, satisfies ∇J = 0 and Jn|∂Ω = ψ, then clearly

〈(J − J) : D : J〉 = Tr 〈(J − J)∇u〉 = 0.

It then follows easily that

W = min
∇J=0,Jn|∂Ω=ψ

〈J : D : J〉.

In this section we assume that the solution u has Neumann data ψj = nj. In
this case

〈Jij〉 =
1

|Ω|

∫
∂Ω

xinkJkj =
1

|Ω|

∫
∂Ω

xiψj = δij.

The tensors Λh, Λs, Λa defined below are orthogonal projections acting
on M3×3. Their components are

Λh
ijkl =

1

3
δijδkl,

Λs
ijkl =

1

2
(δikδjl + δilδjk)−

1

3
δijδkl,

Λa
ijkl =

1

2
(δikδjl − δilδjk).
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With this notation we notice that

D = (3α + 2β)Λh + 2βΛs.

Let
T′ := 2Λs − Λh.

It can be shown (see [8]) that

P : T′ : P ≥ 0, ∀ P of rank at most 2.

Using methods borrowed from homogenization theory, in [8, (4.20)] it is
shown that, when we choose boundary data as we have done,

g := min
∇J=0, Jn|∂Ω=ψ

〈J : T′ : J〉 = −3.

We define

W ′
c := 〈J : (D− cT′) : J〉 = 〈J :

[
(3α + 2β + c)Λh + 2(β − c)Λs

]
: J〉,

where c > 0. We can estimate W ′
c from above by

W ′
c ≤ min

∇J=0, Jn|∂Ω=ψ
〈J : D : J〉−c min

∇J=0, Jn|∂Ω=ψ
〈J : T′ : J〉 ≤ 〈I3×3 : D : I3×3〉+3c

≤ 3(3α2 + 2β2 + c).

Now if Jn|∂Ω = ψ, then 〈J〉 = 〈J〉. Therefore

W ′
c ≥ min

〈J〉=〈J〉

〈
(3α + 2β + c)J : Λh : J + 2(β − c)J : Λs : J

〉
> 0,

as long as c < β1. In this case we may drop the second term to obtain

W ′
c ≥

1

3
min
〈J〉=〈J〉

〈
(3α + 2β + c)(Tr J)2

〉
.

By Jensen’s inequality we have

〈
(3α + 2β + c)(Tr J)2

〉
≥ (3α1 + 2β1 + c)

1

f1

(
1

|Ω|

∫
Ω1

Tr J

)2

+ (3α2 + 2β2 + c)
1

f2

(
1

|Ω|

∫
Ω2

Tr J

)2

.

Let

z :=
1

|Ω|

∫
Ω1

Tr J ∈ [0, 3].
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Then

W ′
c ≥

1

3

[
(3α1 + 2β1 + c)

1

f1

z2 + (3α2 + 2β2 + c)
1

f2

(3− z)2

]
,

and minimizing over z ∈ [0, 3] we have that

W ′
c ≥

3
f1

3α1+2β1+c
+ f2

3α2+2β2+c

.

Taking the limit c↗ β1, we may rewrite this estimate as(
1 + f1

3(α2 − α1) + 2(β2 − β1)

3(α1 + β1)

)−1

≤ T ′,

where

T ′ :=
W ′
β1

3(3α2 + 2β2 + β1)
≥ 1,

with equality holding only when f1 = 0. We conclude that

f1 ≥
3(α1 + β1)

3(α2 − α1) + 2(β2 − β1)

(
1

T ′
− 1

)
. (5)

As we have observed above, this lower bound is non-trivial and equals zero
only when f1 = 0.

3 Estimates for complex conductivity

3.1 The first case – real general Dirichlet data

We adopt some notations from [7] and [8]. Define

ei := −∇ui, ji := σei = −σ∇ui,

ei =: e′i +
√
−1e′′i , ji =: j′i +

√
−1j′′i , σ =: σ′ +

√
−1σ′′,

E := (Eij)ij, Eij := −∂iuj, J := σE,

E =: E′ +
√
−1E′′, J =: J′ +

√
−1J′′,

V :=

(
J′

E′′

)
.

Let d be a 6× 6 matrix given by

d =

(
d11I3×3 d12I3×3
d21I3×3 d22I3×3

)
:=

1

σ′

(
I3×3 σ′′I3×3
σ′′I3×3 (σ′2 + σ′′2)I3×3

)
12



and denote
A := 〈VtdV〉.

It is easy to check that (
e′i
j′′i

)
= d

(
j′i
e′′i

)
,

and therefore, using integration by parts,

Aij = 〈
(

j′i
e′′i

)
·d
(

j′j
e′′j

)
〉 = 〈

(
j′i
e′′i

)
·
(

e′j
j′′j

)
〉 =

1

|Ω|

∫
∂Ω

(
u′jn · (σ∇ui)′ + u′′i n · (σ∇uj)′′

)
.

We see then that A is determined by boundary measurements for the three
solutions we are considering.

Furthermore, notice that for any

V =

(
J′

E′′

)
,

it holds that

VtdV =
1

σ′
(J′ + σ′′E′′)t(J′ + σ′′E′′) + σ′(E′′)tE′′ ≥ 0, (6)

meaning positive-definite. We again use the tensor T with components

Tijkl = δijδkl − δilδjk.

Then

〈E′′ : T : E′′〉 =
1

|Ω|

∫
∂Ω

niu
′′
i ∂ku

′′
k − niu′′k∂ku′′i =

1

|Ω|

∫
∂Ω

u′′i (ni∂k − nk∂i)u′′k.

As remarked above, ni∂k − nk∂i is a tangential derivative. We can then
conclude that 〈E′′ : T : E′′〉 is determined by the boundary data φj for any
E′′ as in (8). Thus, T defines a null Lagrangian for our problem. We also
note that

P : T : P ≥ −Tr (P tP ), ∀P ∈M3×3. (7)

For any k, l, let Ikl be the 3 × 3 matrix given by Ikl := (δikδjl)ij, then
(E′′Ikl)ij = −∂iu′′kδjl and ∂iTijkl(E

′′Imn)kl = 0. The tensor M with compo-
nents

Mijkl := 〈(E′′Iij) : T : (E′′Ikl)〉 = 〈(E′′Iij)αβTαβγδ(E′′Ikl)γδ〉
= 〈∂ju′′i ∂lu′′k − ∂lu′′i ∂ju′′k〉

13



can also be determined from boundary measurements. For anyK ∈M3×3(R),
let bi be the product of the normalized eigenvector of KKt and the associated
singular value of K, then KKt =

∑3
i=1 bi(bi)t. In view of the variational

principle of Cherkaev and Gibiansky [4], we have that

WK := Tr 〈KtVtdVK〉 = Tr (KtAK) =
3∑
i=1

(bi)tAbi = min
V∈C1

Tr 〈KtVtdVK〉,

where Tr stands for the trace of a matrix. Here the admissible space C1 is
given by

C1 =

{
V =

(
J′

E′′

)
: E ′′ij = −∂iu′′j , ∂iJ ′ij = 0, u′′j |∂Ω = φj, J

′
ijni|∂Ω = ψj

}
.

(8)
We also have that

〈(E′′K) : T : (E′′K)〉 = K : M : K.

Next, we ”translate” WK by a null Lagrangian

Wc,K := Tr 〈KtVtdVK〉+ c〈(E′′K) : T : (E′′K)〉
= Tr (KtAK) + cK : M : K.

By (6), (7) we have that for any V

Tr 〈VtdV〉+ c〈E′′ : T : E′′〉 ≥ 1

σ′
(J′+ σ′′E′′) : (J′+ σ′′E′′) + (σ′ − c) E′′ : E′′,

and it is positive as long as 0 < c < σ′. Taking (2) into consideration, this
condition reduces to

0 < c < σ′2.

Also notice that

Wc,K = min
V∈C1

(
Tr 〈KtVtdVK〉+ c〈(E′′K) : T : (E′′K)〉

)
.

As we have done above, we will put 3 × 3 matrices in vector form by
ordering the pairs of indices (ij) as follows: (11), (21), (31), (12), . . . . K
would then become

k :=
(
k11 k21 k31 k12 k22 k32 k13 k23 k33

)t
.

14



Extending this idea to 6× 3 matrices, V becomes

v :=


j′1
j′2
j′3
e′′1
e′′2
e′′3

 ,

while VK becomes

vK :=


k11j

′
1 + k21j

′
2 + k31j

′
3

k12j
′
1 + k22j

′
2 + k32j

′
3

k13j
′
1 + k23j

′
2 + k33j

′
3

k11e
′′
1 + k21e

′′
2 + k31e

′′
3

k12e
′′
1 + k22e

′′
2 + k32e

′′
3

k13e
′′
1 + k23e

′′
2 + k33e

′′
3

 .

With this notation we have

WK = k ·

 A 03×3 03×3

03×3 A 03×3

03×3 03×3 A

k

and
Wc,K = k · Dck,

where

Dc :=

 A 03×3 03×3

03×3 A 03×3

03×3 03×3 A

+ cM

and M is defined via k ·Mk := K : M : K. Equivalently, we can write

Wc,K = 〈vK · LvK〉 = min
V∈C1
〈vK · LvK〉,

where

L =



d11 0 0 0 0 0 0 0 0 d12 0 0 0 0 0 0 0 0
0 d11 0 0 0 0 0 0 0 0 d12 0 0 0 0 0 0 0
0 0 d11 0 0 0 0 0 0 0 0 d12 0 0 0 0 0 0
0 0 0 d11 0 0 0 0 0 0 0 0 d12 0 0 0 0 0
0 0 0 0 d11 0 0 0 0 0 0 0 0 d12 0 0 0 0
0 0 0 0 0 d11 0 0 0 0 0 0 0 0 d12 0 0 0
0 0 0 0 0 0 d11 0 0 0 0 0 0 0 0 d12 0 0
0 0 0 0 0 0 0 d11 0 0 0 0 0 0 0 0 d12 0
0 0 0 0 0 0 0 0 d11 0 0 0 0 0 0 0 0 d12

d21 0 0 0 0 0 0 0 0 d22 0 0 0 c 0 0 0 c
0 d21 0 0 0 0 0 0 0 0 d22 0 −c 0 0 0 0 0
0 0 d21 0 0 0 0 0 0 0 0 d22 0 0 0 −c 0 0
0 0 0 d21 0 0 0 0 0 0 −c 0 d22 0 0 0 0 0
0 0 0 0 d21 0 0 0 0 c 0 0 0 d22 0 0 0 c
0 0 0 0 0 d21 0 0 0 0 0 0 0 0 d22 0 −c 0
0 0 0 0 0 0 d21 0 0 0 0 −c 0 0 0 d22 0 0
0 0 0 0 0 0 0 d21 0 0 0 0 0 0 −c 0 d22 0
0 0 0 0 0 0 0 0 d21 c 0 0 0 c 0 0 0 d22



.
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3.1.1 Construction of a lower bound for Wc,K

Note that Wc,K is completely determined by the boundary measurements
provided c and K are given. Here we would like to derive a lower bound for
Wc,K . If V ∈ C1 integrating by parts we get

〈E ′′ij〉 = − 1

|Ω|

∫
∂Ω

niφj, 〈J ′ij〉 =
1

|Ω|

∫
∂Ω

xinkJ
′
kj =

1

|Ω|

∫
∂Ω

xiψj.

Let J′,E′′ be any 3× 3 matrix-valued functions. We define the set

C2 =

{
V =

(
J′

E′′

)
: 〈V〉 = 〈V〉

}
Then it is easily seen that C1 ⊂ C2 and

Wc,K ≥ min
〈v〉=〈v〉

〈vK · LvK〉 > 0,

the second inequality holding provided 0 < c < σ′2. Let V̂ =

(
Ĵ′

Ê′′

)
∈ C2 be

an element for which the minimum is realized. Then

0 =
d

dt

∣∣∣∣
t=0

〈(v̂ + tψ)K · L(v̂ + tψ)K〉 = 2〈ψK · Lv̂K〉

for any ψ s.t. 〈ψ〉 = 0. There is therefore a constant µ ∈ R18 s.t.

(Lv̂K)(x) = µ, x ∈ Ω.

We denote by L1 and L2 the values L takes on Ω1 and Ω2 respectively. Clearly
v̂K is constant on Ω1 and Ω2. It follows that

Wc,K ≥ min
f1v1+f2v2=〈vK〉

(f1v1 · L1v1 + f2v2 · L2v2) ,

where v1,v2 ∈ R18 are constants. We can use, for example, [7, Lemma 3.1]
to conclude

Wc,K ≥ 〈vK〉 · 〈L−1〉−1〈vK〉,

where
〈L−1〉 = f1L−1

1 + f2L−1
2 .
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3.1.2 Matrix manipulations

In this subsection, we will derive an interval bound for f1. Let J be the
orthogonal matrix

J =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


Then, denoting d1 := d11, d2 := d12, d3 := d22,

J tLJ =



d1 0 0 d2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 d1 0 0 d2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 d1 0 0 d2 0 0 0 0 0 0 0 0 0 0 0 0
d2 0 0 d3 c c 0 0 0 0 0 0 0 0 0 0 0 0
0 d2 0 c d3 c 0 0 0 0 0 0 0 0 0 0 0 0
0 0 d2 c c d3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d1 0 d2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d1 0 d2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d2 0 d3 −c 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 d2 −c d3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 d1 0 d2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d1 0 d2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 d2 0 d3 −c 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 d2 −c d3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 d1 0 d2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d1 0 d2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 d2 0 d3 −c
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d2 −c d3


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In order to investigate 〈L−1〉−1, we may consider the individual blocks
separately. Let

B =


d1 0 0 d2 0 0
0 d1 0 0 d2 0
0 0 d1 0 0 d2

d2 0 0 d3 c c
0 d2 0 c d3 c
0 0 d2 c c d3


be the first of the diagonal blocks. We define another orthogonal matrix

S =



1√
2

0 1√
6

0 1√
3

0

− 1√
2

0 1√
6

0 1√
3

0

0 0 − 2√
6

0 1√
3

0

0 1√
2

0 1√
6

0 1√
3

0 − 1√
2

0 1√
6

0 1√
3

0 0 0 − 2√
6

0 1√
3


.

Then

C := StBS =


d1 d2 0 0 0 0
d2 d3 − c 0 0 0 0
0 0 d1 d2 0 0
0 0 d2 d3 − c 0 0
0 0 0 0 d1 d2

0 0 0 0 d2 d3 + 2c

 .

The inverse of C is

C−1 =



d3−c
1−cd1

− d2

1−cd1
0 0 0 0

− d2

1−cd1

d1

1−cd1
0 0 0 0

0 0 d3−c
1−cd1

− d2

1−cd1
0 0

0 0 − d2

1−cd1

d1

1−cd1
0 0

0 0 0 0 d3+2c
1+2cd1

− d2

1+2cd1

0 0 0 0 − d2

1+2cd1

d1

1+2cd1


=:

 X1 02×2 02×2

02×2 X2 02×2

02×2 02×2 X3


We will write

δ1 :=
1

σ′2
, δ2 :=

σ′′2
σ′2
, δ3 :=

σ′22 + σ′′22

σ′2
,
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∆1 :=
1

σ′1
, ∆2 :=

σ′′1
σ′1
, ∆3 :=

σ′21 + σ′′21

σ′1
.

We want to look into what happens when c ↗ 1/δ1 = σ′2. So we can write
X1, X2, X3 as

X1 = X2 =
1

1− cd1

(
d2

2

d1
+ 1−cd1

d1
−d2

−d2 d1

)
,

X3 =

(
d2

2+3

3d1
+ 2d2

3d1(1+2cd1)
(1− cd1) −d2

3
− 2d2

3(1+2cd1)
(1− cd1)

−d2

3
− 2d2

3(1+2cd1)
(1− cd1) d1

3
+ 2d1

3(1+2cd1)
(1− cd1)

)
.

Then

det〈X1〉 =

[
f 2

2 +
f1f2

δ1 −∆1

[δ1(∆3δ1 − 1) + δ2(∆1δ2 − δ1∆2)]

]
(1−cδ1)−1+O(1−cδ1)

and

〈X1〉−1 =

[
f2 + f1

δ1(∆3δ1 − 1) + δ2(∆1δ2 − δ1∆2)

δ1 −∆1

]−1
(
δ1 δ2

δ2
δ2
2

δ1

)
+O(1−cδ1).

In the case of X3, we can see that det〈X3〉 > 0 and satisfies

det〈X3〉 = f 2
2

1

3
+ f 2

1

δ1

2∆1 + δ1

+ f1f2
1

3(2∆1 + δ1)
[∆1(δ2

2 + 3) + (∆3δ1 + 2)δ1 − 2∆2δ1δ2] +O(1− cδ1)

=
1

3
+ f1

1

3(2∆1 + δ1)
[∆1(δ2

2 − 1) + ∆3δ
2
1 − 2∆2δ1δ2]

+ f 2
1

1

3(2∆1 + δ1)
[2δ1 −∆1(δ2

2 + 1)−∆3δ
2
1 + 2∆2δ1δ2] +O(1− cδ1)

=:
1

3

[
1 + f1α + f 2

1β
]

+O(1− cδ1)

and

〈X3〉−1 =
[
1 + f1α + f 2

1β
]−1

×

 δ1 − f1
δ1(δ1−∆1)

2∆1+δ1
δ2 − f1

(
δ2 − 3∆2δ1

2∆1+δ1

)
δ2 − f1

(
δ2 − 3∆2δ1

2∆1+δ1

)
δ2
2+3

δ1
− f1

(
δ2
2+3

δ1
− 3∆3δ1+2

2∆1+δ1

)+O(1− cδ1),
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where

α =
1

(2∆1 + δ1)
[∆1(δ2

2 − 1) + ∆3δ
2
1 − 2∆2δ1δ2],

β =
1

(2∆1 + δ1)
[2δ1 −∆1(δ2

2 + 1)−∆3δ
2
1 + 2∆2δ1δ2].

We would like to remark that since det〈X3〉 > 0, then 1 + f1α + f 2
1β > 0.

It would be convenient to have β < 0. To see that this is indeed so, we
can estimate

(2∆1 + δ1)
β

δ1

= 2−∆1δ3 −∆3δ1 + 2∆2δ2 ≤ 2 + ∆2
2 + δ2

2 −∆1δ3 −∆3δ1

= ∆1∆3 + δ1δ3 −∆1δ3 −∆3δ1 = (∆3 − δ3)(∆1 − δ1).

Since by (2), δ1 > ∆1 and ∆3 > δ3, it follows that indeed β < 0. Similarly

(2∆1 +δ1)
α

δ1

= ∆1δ3−
2∆1

δ1

+∆3δ1−2∆2δ2 ≥ ∆1δ3 +∆3δ1−∆2
2−δ2

2−
2∆1

δ1

= ∆1δ2+∆3δ1+2−δ1δ3−∆1∆3−
2∆1

δ1

= 2(1−∆1

δ1

)+(δ1−∆1)(∆3−δ3) > 0.

Now since 〈J′〉 is invertible, we may choose K = 1√
3
〈J′〉−1. Then

〈vK〉 =
1√
3

(
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

)t
and

〈vK〉 · 〈L−1〉−1〈vK〉 =

(
1
0

)
· 〈X3〉−1

(
1
0

)
.

Let

T :=
1

δ1

lim
c↗1/δ1

Wc, 1√
3
〈J′〉−1 ,

γ :=
(δ1 −∆1)

2∆1 + δ1

> 0,

then we have

T ≥ 1− γf1

1 + αf1 + βf 2
1

.

Equivalently,

1 + (α +
γ

T
)f1 + βf 2

1 ≥
1

T
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and since β < 0 we get the bounds

−(α + γ
T

) +
√

(α + γ
T

)2 − 4β[1− T−1]

2β
< f1

<
−(α + γ

T
)−

√
(α + γ

T
)2 − 4β[1− T−1]

2β
. (9)

Note that since we take φj = 0, in this case M = 0. Then

Wc, 1√
3
〈J′〉−1 = min

V∈C1
Tr 〈 1√

3
(〈J′〉−1)tVtd V

1√
3
〈J′〉−1〉

≤ 1

3
Tr 〈(〈J′〉−1)t

(
〈J′〉
03×3

)t
d

(
〈J′〉
03×3

)
〈J′〉−1〉

= Tr 〈
(

I3×3
03×3

)
d

(
I3×3
03×3

)
〉 ≤ δ1.

It follows that T < 1, which means that the lower bound in (9) is not negative.

Remark 3.1. It appears that the upper bound in (9) is not neccesarily non-
trivial. In fact, in the particular case of real conductivities it always is trivial.

3.2 The second case – imaginary Neumann data

In this section, we suppose that ψj = 0, i.e. that the Neumann data is purely
imaginary. We may choose K = 1√

3
〈E′′〉−1 since the matrix 〈E ′′〉 is invertible.

Then

〈vK〉 =
1√
3

(
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

)t
and

〈vK〉 · 〈L−1〉−1〈vK〉 =

(
0
1

)
· 〈X3〉−1

(
0
1

)
.

Let

T̃ :=
δ1

δ1δ3 + 2
lim

c↗1/δ1
Wc, 1√

3
〈E′′〉−1 ,

γ̃ := 1− (3δ1(∆3δ1 + 2)

(δ1δ3 + 2)(2∆1 + δ1)
< 0,

then we have

T̃ ≥ 1− γ̃f1

1 + αf1 + βf 2
1

,
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and we get the bounds

−(α + γ̃

T̃
) +

√
(α + γ̃

T̃
)2 − 4β[1− T̃−1]

2β
< f1

<
−(α + γ̃

T̃
)−

√
(α + γ̃

T̃
)2 − 4β[1− T̃−1]

2β
. (10)

Remark 3.2. In the case of real conductivities, the lower bound in (10) is
negative, hence trivial. The upper one reduces to (see also [8])

f1 ≤
1

γ

(
1− 1

T̃

)
,

and since in that case

T̃ ≤ δ1 + 2∆1

3∆1

,

it follows that the upper bound is nontrivial, i.e.

1

γ

(
1− 1

T̃

)
≤ 1.

Since all the quantities that appear in the upper bound of (10) depend contin-
uously on the values σ1 and σ2, it follows that at least for certain cases with
non-real conductivities, (10) does also provides non-trivial upper bounds.

Remark 3.3. A particular case of the boundary data considered in this sec-
tion is ψj = 0, φj = 1√

3
xj|∂Ω. We then see that the case treated here is

analogous to the one treated in section 2.1 for the elasticity case.

3.3 The third case – special boundary data

In this section, we derive another interval bound of the volume fraction.
We will use special boundary conditions such that φj = 0 and ψj = nj,
which implies 〈J′〉 = I3×3. As pointed out in [8], there is no null-Lagragian
corresponding to three-dimensional current fields. As in [8] and section 2.2
above, we translate the energy by a quasi-convex quadratic form. As above
we use the tensor

T′ = 2Λs − Λh.

We define, for positive c,

W ′
c := min

V∈C1

(
Tr 〈VtdV〉 − c〈J′ : T′ : J′〉

)
,

22



which is bounded from above by

W ′
c ≤ Tr A− c min

V∈C1
〈J′ : T′ : J′〉 = Tr A− cg ≤ 3(δ1 + c).

Now, we can estimate

W ′
c ≥ min

V∈C2

(
Tr 〈VtdV〉 − c〈J′ : T′ : J′〉

)
= min

V∈C2

〈
J′ : ((d11 + c)Λh + (d11 − 2c)Λs + d11Λa) : J′

+J′ : (d12Λh + d12Λs + d12Λa) : E′′ + E′′ : (d21Λh + d21Λs + d21Λa) : J′

+E′′ : (d22Λh + d22Λs + d22Λa) : E′′
〉

= min
V∈C2
〈1
3

[
1

σ′
(Tr J′ + σ′′Tr E′′)2 + σ′(Tr E′′)2 + c(Tr J′)2

]
+

[
1

σ′
(Λs : J′ + σ′′Λs : E′′):2 + σ′(Λs : E′′):2 − 2c(Λs : J′):2

]
〉,

where A:2 := A : A. Let X = Λs : J′, Y = Λs : E′′. Then

(X + σ′′Y ):2 + σ′2Y :2 − 2cσ′X :2

=

(√
1− 2cσ′X +

σ′′√
1− 2cσ′

Y

):2

+

(
σ′2 − 2cσ′

1− 2cσ′
σ′′2
)
Y :2,

and this is non-negative provided c ≤ σ′

2(σ′2+σ′′2)
. This holds provided c ≤

σ′1
2(σ′21 +σ′′21 )

. With this condition

W ′
c ≥ min

V∈C2
〈1
3

[
1

σ′
(Tr J′ + σ′′Tr E′′)2 + σ′(Tr E′′)2 + c(Tr J′)2

]
〉.

Using Jensen’s inequality, we get

〈(Tr J′)2〉 ≥ 1

f1

(
1

|Ω|

∫
Ω1

Tr J′
)2

+
1

f2

(
1

|Ω|

∫
Ω2

Tr J′
)2

,

〈σ′(Tr E′′)2〉 ≥ σ′1
f1

(
1

|Ω|

∫
Ω1

Tr E′′
)2

+
σ′2
f2

(
1

|Ω|

∫
Ω2

Tr E′′
)2

,

and

〈 1

σ′
(Tr J′ + σ′′Tr E′′)2〉 ≥ 1

σ′1f1

(
1

|Ω|

∫
Ω1

Tr J′ + σ′′1Tr E′′
)2

+
1

σ′2f2

(
1

|Ω|

∫
Ω2

Tr J′ + σ′′2Tr E′′
)2

.
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Let

X1 =
1

f1|Ω|

∫
Ω1

Tr J′, X2 =
1

f2|Ω|

∫
Ω2

Tr J′,

Y1 =
1

f1|Ω|

∫
Ω1

Tr E′′, Y2 =
1

f2|Ω|

∫
Ω2

Tr E′′,

Z1 =

(
X1

Y1

)
, Z2 =

(
X2

Y2

)
,

L′ = 1

σ′

(
1 + cσ′ σ′′

σ′′ (σ′2 + σ′′2)

)
.

Then, applying again [7, Lemma 3.1 ], we obtain

W ′
c ≥

1

3
min

f1Z1+f2Z2=
(
〈Tr J′〉
〈Tr E′′〉

) (f1Z1 · L′1Z1 + f2Z2 · L′2Z2)

≥ 1

3

(
〈Tr J′〉
〈Tr E′′〉

)
· 〈L′−1〉−1

(
〈Tr J′〉
〈Tr E′′〉

)
.

Note that

L′−1 =
1

1 + cd3

(
d3 −d2

−d2 d1 + c

)
,

so we see that

det〈L′−1〉 =
1

1 + cδ3

[
1 +

α′

1 + c∆3

f1 +
β′

1 + c∆3

f 2
1

]
,

where
α′ = δ3(∆1 + c) + ∆3(δ1 − c)− 2δ2∆2 − 2,

β′ = 2 + 2δ2∆2 − δ3∆1 −∆3δ1.

We have seen already that β′ < 0. Then

〈L′−1〉−1 = (1 + cδ3)

[
1 +

α′

1 + c∆3

f1 +
β′

1 + c∆3

f 2
1

]−1

×
( δ1+c

1+cδ3
(1− f1) + ∆1+c

1+c∆3
f1

δ2
1+cδ3

(1− f1) + ∆2

1+c∆3
f1

δ2
1+cδ3

(1− f1) + ∆2

1+c∆3
f1

δ3
1+cδ3

(1− f1) + ∆3

1+c∆3
f1

)
.

With boundary conditions we are considering, 〈Tr J′〉 = 3, 〈E′′〉 = 0, so

W ′
1

2∆3

≤ Tr A +
3

2∆3

≤ 3

(
δ1 +

1

2∆3

)
,
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and

W ′
1

2∆3

≥ 3

(
δ1 +

1

2∆3

)[
1 +

2α′

3
f1 +

2β′

3
f 2

1

]−1

×
[
1− f1

(
1− (2∆3∆1 + 1)(2∆3 + δ3)

3∆3(2∆3δ1 + 1)

)]
.

Let

T ′′ :=
Tr A + 3

2∆3

3
(
δ1 + 1

2∆3

) ≤ 1,

α′′ :=
2

3

[
δ3(∆1 +

1

2∆3

) + ∆3(δ1 −
1

2∆3

)− 2δ2∆2 − 2

]
,

β′′ :=
2

3
[2 + 2δ2∆2 − δ3∆1 −∆3δ1] ,

γ′′ := 1− (2∆3∆1 + 1)(2∆3 + δ3)

3∆3(2∆3δ1 + 1)
.

With this notation

1 + (α′′ +
γ′′

T ′′
)f1 + β′′f 2

1 ≥
1

T ′′
,

and since β′′ < 0 we get the bounds

−(α′′ + γ′′

T ′′
) +

√
(α′′ + γ′′

T ′′
)2 − 4β′′[1− T ′′−1]

2β′′
< f1

<
−(α′′ + γ′′

T ′′
)−

√
(α′′ + γ′′

T ′′
)2 − 4β′′[1− T ′′−1]

2β′′
. (11)

Note that since T ′′ ≤ 1, the lower bound is again nonnegative.
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