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Abstract

In this work, we study the interior transmission eigenvalues for elas-
tic scattering in an inhomogeneous medium containing an obstacle. This
problem is related to the reconstruction of the support of the inhomo-
geneity without the knowledge of the embedded obstacle by the far-field
data or the invisibility cloaking of an obstacle. Our goal is to provide an
efficient numerical algorithm to compute as many positive interior trans-
mission eigenvalues as possible. We consider two cases of medium jumps:
Case 1, where C0 = C1, ρ0 6= ρ1, and Case 2, where C0 6= C1, ρ0 = ρ1
with either Dirichlet or Neumann boundary conditions on the boundary of
the embedded obstacle. The partial differential equation (PDE) problem
is reduced to a generalized eigenvalue problem (GEP) for matrices by the
finite element method (FEM). We will apply the Jacobi-Davidson (JD)
algorithm to solve the GEP. Case 1 requires special attention because of
the large number of zero eigenvalues, which depends on the discretization
size. To compute the positive eigenvalues effectively, it is necessary to
deflate the zeros to infinity at the beginning of the algorithm.

Keywords — Interior transmission eigenvalues, elastic waves, Jacobi-Davidson
method, nonequivalence deflation.

1 Introduction

In this paper, we study the interior transmission eigenvalue problem (ITEP)
for elastic waves propagating outside of an obstacle. Our aim is to design an
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efficient numerical algorithm to compute as many transmission eigenvalues as
possible for time-harmonic elastic waves. LetD and Ω be open bounded domains
in R2 with smooth boundaries ∂D and ∂Ω, respectively. Assume that D ⊂
Ω. Let u(x) = [u1(x), u2(x)]> be a two-dimensional vector representing the
displacement vector, and let its infinitesimal strain tensor be given by ε(u) =
((∇u)T + ∇u)/2. We consider the linear elasticity; that is, the stress tensor
σC(u) is defined by ε(u) via Hook’s law:

σC(u) = Cε(u),

where C is the elasticity tensor. The elasticity tensor C = (Cijkl), 1 ≤ i, j, k, l ≤
2, is a fourth-rank tensor satisfying two symmetry properties:

Cijkl = Cklij (major symmetry),

Cijkl = Cjikl (minor symmetry).
(1)

We require that C satisfies the strong convexity condition: there exists a κ > 0
such that for any symmetric matrix A

CA : A ≥ κ|A|2, ∀ x ∈ Ω. (2)

In the following, for any two matrices A, B, we denote A : B =
∑
ij aijbij and

|A|2 = A : A. The elastic body is called isotropic if

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

where µ and λ are called Lamé coefficients. In other words, for an isotropic
elastic body, the stress-strain relation is given by

σC(u) = 2µε(u) + λtr(ε(u))I = 2µε(u) + λdivuI,

where I stands for the identity matrix. It is not difficult to check that the
convexity condition (2) is equivalent to

µ(x) > 0, λ(x) + µ(x) > 0. (3)

The core of the ITEP is to find ω2 ∈ C such that there exists a nontrivial
solution (u,v) ∈ [H1(Ω)]2 × [H1(Ω \D)]2 of

∇ · σC0
(u) + ρ0ω

2u = 0 in Ω, (4a)

∇ · σC1
(v) + ρ1ω

2v = 0 in Ω \D, (4b)

Bv = 0 on ∂D, (4c)

u = v on ∂Ω, (4d)

σC0
(u)ν = σC1

(v)ν on ∂Ω, (4e)

where C0, C1 are elasticity tensors, ρ0, ρ1 are density functions, and ν is the
outer normal of ∂Ω. Here, we define the boundary operator B on ∂D

Bv = v|∂D or Bv = σC1
(v)ν|∂D, (5)
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where, to abuse the notation, ν denotes the unit normal on ∂D pointing into
the interior of D. Recall that σC1(v)ν represents the traction acting on ∂D or
∂Ω.

The investigation of the ITEP (4) is motivated by the following practical
problem. Let us assume that ρ0 is a positive constant and supp(C0 − C1) ⊂
Ω \D, supp(ρ1 − ρ0) ⊂ Ω \D. We can regard (C1 −C0, ρ1 − ρ0) as a ”coated”
material near ∂D. We now take any solution û of

∇ · σC0
(û) + ρ0ω

2û = 0 in R2

as an incident field and consider the incident field û scattered by the object D
and the inhomogeneity of the material, that is, (C1, ρ1). In particular, when
ρ0 = 1 and C0 is isotropic with constant Lamé coefficients λ and µ, the typical
incident field û =: ûin

e (x) with e = p or s is given by

ûin
p (x) = ξeikpx·ξ or ûin

s (x) = ξ⊥eiksx·ξ

where ξ ∈ Ω := {‖ξ‖2 = 1} and kp := ω/
√
λ+ 2µ and ks := ω/

√
µ represent the

compressional and shear wave numbers, respectively. Let v be the total field
satisfy

∇ · σC1(v) + ρ1ω
2v = 0 in R2 \D.

Then, if ω2 is an interior transmission eigenvalue of (4) and u|Ω = û|Ω, then
the obstacle and the inhomogeneity (C1 −C0, ρ1 − ρ0) would be nonscattered
objects at ω2 when the incident field is û. Consequently, if our aim is to detect
D and the inhomogeneity (C1 −C0, ρ1 − ρ0) by the scattering information, we
have to avoid the interior transmission eigenvalues.

On the other hand, a more interesting implication of this investigation is to
”cloak” the domain D from the elastic waves with suitable coated materials.
Now, we regard the incident field û as a source of seismic waves, i.e., p-waves
or s-waves. If ω2 is an interior transmission eigenvalue of (4), then D with
coated material C1, ρ1 will be ”invisible” from the seismic waves propagating
at frequency ω.

The study of the ITEP originates from the validity of some qualitative ap-
proaches to the inverse scattering problems in an inhomogeneous medium, such
as the linear sampling method [12] and the factorization method [18]. In recent
years, the ITEP has attracted much attention in the study of direct/inverse
scattering problems for acoustic and electromagnetic waves in inhomogeneous
media [3, 4, 5, 6, 13, 14, 15, 19, 23]. For the investigation of the ITEP for elastic
waves in the case of D = ∅, there are a few theoretical results [2, 1, 9, 11, 10].
Recently, theoretical results on the discreteness and the existence of interior
transmission eigenvalues of (4) were proven in [7].

The purpose of this paper is to develop a numerical method to compute the
transmission eigenvalues of elastic waves (4). To put this work in perspective,
we mention only some results related to the ITEP for elastic waves. As far
as we know, two works have studied the computation of the ITEP for elastic
waves in the case of D = ∅, see [8] and [16]. In [16], a numerical method
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was presented to compute a few smallest positive transmission eigenvalues of
(4). The ITEP was reformulated as locating the roots of a nonlinear function
whose values are generalized eigenvalues of a series of self-adjoint fourth-order
problems. After discretizing the fourth-order eigenvalue problems using H2-
conforming finite elements, a secant-type method was employed to compute the
roots of the nonlinear function. In [8], a numerical method based on the ideas
in [21, 22] was proposed to compute many interior transmission eigenvalues for
the elastic waves. In this paper, not only was the case of different densities
considered but also the case of different elasticity tensors. The strategy used in
[21, 22, 8] is as follows. One first discretizes (4) by the finite element method
(FEM). Then, the ITEP is transformed into a generalized eigenvalue problem
(GEP). By some ingenious observations, this GEP can be reduced to a quadratic
eigenvalue problem (QEP) and, at the same time, unwanted eigenvalues (0 or
∞ eigenvalues) can be removed. One then applies a quadratic Jacobi-Davidson
(JD) method with nonequivalence deflation to compute the eigenvalues of the
resulting QEP. Contrary to the results obtained in [16], the method implemented
in [8] is able to locate a large number of positive transmission eigenvalues of (4).

The paper is organized as follows. In Section 2, we describe the discretization
of the ITEP using the FEM. The discretization reduces the PDE problem to a
GEP. We will apply the JD method to locate positive eigenvalues of the GEP.
However, the existence of zero eigenvalues of the GEP will hinder our task.
Thus, in Section 3, we discuss a nonequivalence deflation technique to remove
the zero eigenvalues. In Section 4, we describe our numerical algorithm based
on the JD method in detail. Section 5 contains all numerical simulations and
remarks. We conclude the paper with a summary in Section 6.

2 Discretization and the GEP

We first review the discretization of the ITEP (4) based on the standard piece-
wise linear FEM (see [14] for details). Let

Sh = The space of continuous piecewise linear functions on Ω;

SDh = The subspace of functions in Sh that have vanishing DOF on Ω \D;
SIh = The subspace of functions in Sh that have vanishing DOF on D̄ ∪ ∂Ω;
SΣ
h = The subspace of functions in Sh that have vanishing DOF in D ∪ (Ω \ D̄) ∪ ∂Ω;
SBh = The subspace of functions in Sh that have vanishing DOF in Ω,

where DOF is the degrees of freedom. Let {ψi}nD
i=1, {φi}nI

i=1, {θi}mΣ
i=1, and

{ξi}mB
i=1, denote standard nodal bases for the finite element spaces of SDh , SIh,
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SΣ
h , and SBh , respectively. We then set

[
Ψ1,Ψ2, · · · ,Ψ2nD

]
=

[
ψ1 ψ2 · · · ψnD

ψ1 ψ2 · · · ψnD

]
,

[
Φ1,Φ2, · · · ,Φ2nI

]
=

[
φ1 φ2 · · · φnI

φ1 φ2 · · · φnI

]
,

[
Ξ1,Ξ2, · · · ,Ξ2mB

]
=

[
ξ1 ξ2 · · · ξmB

ξ1 ξ2 · · · ξmB

]
,

[
Θ1,Θ2, · · · ,Θ2mΣ

]
=

[
θ1 θ2 · · · θmΣ

θ1 θ2 · · · θmΣ

]
,

and

u = uDh + uIh + uBh + uΣ
h =

2nD∑
j=1

uDj Ψj +

2nI∑
j=1

uIjΦj +

2mB∑
j=1

wjΞj +

2mΣ∑
j=1

uΣ
j Θj

v = vIh + vBh + vΣ
h =

2nI∑
j=1

vIjΦj +

2mB∑
j=1

wjΞj +

2mΣ∑
j=1

vΣ
j Θj

Here we take into account the boundary condition u = v on ∂Ω and set uBh =
vBh . Expressed by the nodal bases, u and v have different dimensions. We will
discuss FEM for the Dirichlet and Neumann data separately.

2.1 Dirichlet condition: v = 0 on ∂D

For the zero Dirichlet condition, we take vΣ
j = 0. Applying the standard piece-

wise linear FEM and using the integration by parts, we obtain
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2nI∑
j=1

uIj (σC0(Φj),∇Φi)Ω +

2mB∑
j=1

wj (σC0(Ξj),∇Φi)Ω +

2mΣ∑
j=1

uΣ
j (σC0(Θj),∇Φi)Ω

= λ

2nI∑
j=1

uIj (ρ0Φj ,Φi)Ω +

2mB∑
j=1

wj (ρ0Ξj ,Φi)Ω +

2mΣ∑
j=1

uΣ
j (ρ0Θj ,Φi)Ω

 ,

i = 1, · · · , 2nI ,
2nD∑
j=1

uDj (σC0(Ψj),∇Ψi)Ω +

2mΣ∑
j=1

uΣ
j (σC0(Θj),∇Ψi)Ω

= λ

2nD∑
j=1

uDj (ρ0Ψj ,Ψi)Ω +

2mΣ∑
j=1

uΣ
j (ρ0Θj ,Ψi)Ω

 , i = 1, · · · , 2nD,

2nI∑
j=1

uIj (σC0(Φj),∇Ξi)Ω +

2mB∑
j=1

wj (σC0(Ξj),∇Ξi)Ω − (σC0(u)ν,Ξi)∂Ω

= λ

2nI∑
j=1

uIj (ρ0Φj ,Ξi)Ω +

2mB∑
j=1

wj (ρ0Ξj ,Ξi)Ω

 , i = 1, · · · , 2mB , (6)

and

2nI∑
j=1

uIj (σC0(Φj),∇Θi)Ω +

2nD∑
j=1

uDj (σC0(Ψj),∇Θi)Ω +

2mΣ∑
j=1

uΣ
j (σC0(Θj),∇Θi)Ω

= λ

2nI∑
j=1

uIj (ρ0Φj ,Θi)Ω +

2nD∑
j=1

uDj (ρ0Ψj ,Θi)Ω +

2mΣ∑
j=1

uΣ
j (ρ0Θj ,Θi)Ω

 ,

i = 1, · · · , 2mΣ,
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where λ = ω2. Likewise for v but with vΣ
j = 0, we have

2nI∑
j=1

vIj (σC1
(Φj),∇Φi)Dc +

2mB∑
j=1

wj (σC1
(Ξj),∇Φi)Dc

= λ

2nI∑
j=1

vIj (ρ1Φj ,Φi)Dc +

2mB∑
j=1

wj (ρ1Ξj ,Φi)Dc

 , i = 1, · · · , 2nI , (7)

and

2nI∑
j=1

vIj (σC1
(Φj),∇Ξi)Ω +

2mB∑
j=1

wj (σC1
(Ξj),∇Ξi)Ω − (σC1

(v)ν,Ξi)∂Ω

= λ

2nI∑
j=1

vIj (ρ1Φj ,Ξi)Ω +

2mB∑
j=1

wj (ρ1Ξj ,Ξi)Ω

 , i = 1, · · · , 2mB , (8)

where ν is the unit outer normal of ∂Ω and Dc = Ω \ D̄. Finally, taking
into account boundary conditions (4d), (4e), applying the linear FEM to the
difference equation between u and v in Dc, and performing the integration by
parts again, using (6)-(8), we can derive for i = 1, · · · ,mB ,

2nI∑
j=1

(
uIj (σC0(Φj),∇Ξi)Ω − v

I
j (σC1(Φj),∇Ξi)Ω

)
+

2mB∑
j=1

wj
(
(σC0(Ξj),∇Ξi)Ω − (σC1(Ξj),∇Ξi)Ω

)

= λ

2nI∑
j=1

(
uIj (ρ0Φj ,Ξi)Ω − v

I
j (ρ1Φj ,Ξi)Ω

)
+

2mB∑
j=1

wj
(
(ρ0Ξj ,Ξi)Ω − (ρ1Ξj ,Ξi)Ω

) ,

i = 1, · · · , 2mB . (9)

For clarity, we define the stiffness matrices and mass matrices as in Table 1.

Additionally, we set uI =
[
uI1, · · · , uI2nI

]>
, uD =

[
uD1 , · · · , uD2nD

]>
, w =[

w1, · · · , w2mB

]>
, uΣ =

[
uΣ

1 , · · · , uΣ
2mΣ

]>
, and vI =

[
vI1 , · · · , vI2nI

]>
. Then,

the discretization gives rise to a generalized eigenvalue problem (GEP)

Kz = λMz, (10)

K =


KI

0 0 0 KIΣ
0 KIB

0

0 −KI
1 0 0 KIB

1

0 0 KD
0 KDΣ

0 0
(KIΣ

0 )> 0 (KDΣ
0 )> KΣ

0 0
(KIB

0 )> (KIB
1 )> 0 0 KB

0 −KB
1

 , (11)
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Matrix Dimension Definition

Stiffness Matrix

KI
` � 0 2nI × 2nI (KI

` )ij = (σC`
(Φj),∇Φi)Ω

KD
` � 0 2nD × 2nD (KD

` )ij = (σC`
(Ψj),∇Ψi)Ω

KB
` � 0 2mB × 2mB (KB

` )ij = (σC`
(Ξj),∇Ξi)Ω

KΣ
` � 0 2mΣ × 2mΣ (KΣ

` )ij = (σC`
(Θj),∇Θi)Ω

KIB
` 2nI × 2mB (KIB

` )ij = (σC`
(Ξj),∇Φi)Ω

KIΣ
` 2nI × 2mΣ (KIΣ

` )ij = (σC`
(Θj),∇Φi)Ω

KDΣ
0 2nD × 2mΣ (KDΣ

0 )ij = (σC0
(Θj),∇Ψi)Ω

K̃Σ
` 2mΣ × 2mΣ (K̃Σ

` )ij = (σC`
(Θj),∇Θi)Dc

Mass Matrix

M I
` � 0 2nI × 2nI (M I

` )ij = (ρ`Φj ,Φi)Ω

MD
` � 0 2nD × 2nD (MD

` )ij = (ρ`Ψj ,Ψi)Ω

MB
` � 0 2mB × 2mB (MB

` )ij = (ρ`Ξj ,Ξi)Ω

MΣ
` � 0 2mΣ × 2mΣ (MΣ

` )ij = (ρ`Θj ,Θi)Ω

M IB
` 2nI × 2mB (M IB

` )ij = (ρ`Ξj ,Φi)Ω

M IΣ
` 2nI × 2mΣ (M IΣ

` )ij = (ρ`Θj ,Φi)Ω

MDΣ
0 2nD × 2mΣ (MDΣ

0 )ij = (ρ0Θj ,Ψi)Ω

M̃Σ
` 2mΣ × 2mΣ (M̃Σ

` )ij = (ρ`Θj ,Θi)Dc

Table 1: Stiffness and mass matrices with ` = 0, 1
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M =


M I

0 0 0 M IΣ
0 M IB

0

0 −M I
1 0 0 M IB

1

0 0 MD
0 MDΣ

0 0
(M IΣ

0 )> 0 (MDΣ
0 )> MΣ

0 0
(M IB

0 )> (M IB
1 )> 0 0 MB

0 −MB
1

 , z =


uI

−vI
uD

uΣ

w

 .

2.2 Neumann condition: σC1(v)ν = 0 on ∂D

We now consider the homogeneous Neumann condition. The equations for u
remain the same. For v, using the integration by parts and the boundary
condition σC1(v)ν = 0 on ∂D, we have

2nI∑
j=1

vIj (σC1
(Φj),∇Φi)Ω +

2mB∑
j=1

wj (σC1
(Ξj),∇Φi)Ω +

2mΣ∑
j=1

vΣ
j (σC1

(Θj),∇Φi)Dc

= λ

2nI∑
j=1

vIj (ρ1Φj ,Φi)Ω +

2mB∑
j=1

wj (ρ1Ξj ,Φi)Ω +

2mΣ∑
j=1

vΣ
j (ρ1Θj ,Φi)Dc

 ,

i = 1, · · · , 2nI , (12)

to replace the equation (7) and additionally we have

2nI∑
j=1

vIj (σC1
(Φj),∇Θi)Ω +

2mΣ∑
j=1

vΣ
j (σC1

(Θj),∇Θi)Dc

= λ

2nI∑
j=1

vIj (ρ1Φj ,Θi)Ω +

2mΣ∑
j=1

vΣ
j (ρ1Θj ,Θi)Dc

 , i = 1, · · · , 2mΣ.

Similarly, taking into account the boundary conditions on ∂Ω, applying the
linear FEM to the difference equation between u and v, and performing the

integration by parts, we obtain equation (9). With vΣ =
[
vΣ

1 , · · · , vΣ
2mΣ

]>
,

expressing the system in the matrix form gives the following GEP

Kz = λMz, (13)

K =



KI
0 0 0 KIΣ

0 KIB
0 0

0 −KI
1 0 0 KIB

1 KIΣ
1

0 0 KD
0 KDΣ

0 0 0
(KIΣ

0 )> 0 (KDΣ
0 )> KΣ

0 0 0
(KIB

0 )> (KIB
1 )> 0 0 KB

0 −KB
1 0

0 (KIΣ
1 )> 0 0 0 K̃Σ

1

 , (14)
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M =



M I
0 0 0 M IΣ

0 M IB
0 0

0 −M I
1 0 0 M IB

1 M IΣ
1

0 0 MD
0 MDΣ

0 0 0
(M IΣ

0 )> 0 (MDΣ
0 )> MΣ

0 0 0
(M IB

0 )> (M IB
1 )> 0 0 MB

0 −MB
1 0

0 (M IB
1 )> 0 0 0 M̃Σ

1

 , z =


uI

−vI
uD

uΣ

w
vΣ

 .

3 Solving GEPs

In this section, we will attempt to solve GEPs (10) and (13). In each case of
the boundary condition on ∂D, we consider two situations where (i) C0 = C1

and ρ0 6= ρ1 (Case 1) and where (ii) C0 6= C1 and ρ0 = ρ1 (Case 2). We discuss
the two cases separately.

3.1 Case 1 with Dirichlet condition

In this case, KB
0 = KB

1 , KI
0 = KI

1 , KIB
0 = KIB

1 , and the stiffness matrix K of
(10) becomes

K =


KI

0 0 0 KIΣ
0 KIB

0

0 −KI
0 0 0 KIB

0

0 0 KD
0 KDΣ

0 0
(KIΣ

0 )> 0 (KDΣ
0 )> KΣ

0 0
(KIB

0 )> (KIB
0 )> 0 0 0

 .
We would like to implement the Jacobi-Davidson (JD) method to solve (10). To
make the numerical method effective, it is important to remove the null space
of K as much as possible, which corresponds to zero eigenvalue (unphysical) of
(10). To this end, we consider the linear system:

KI
0 0 0 KIΣ

0 KIB
0

0 −KI
0 0 0 KIB

0

0 0 KD
0 KDΣ

0 0
(KIΣ

0 )> 0 (KDΣ
0 )> KΣ

0 0
(KIB

0 )> (KIB
0 )> 0 0 0




u1

−u1

u3

u4

u5

 =


0
0
0
0
0

 . (15)

The second equation of (15) reads

KI
0u1 +KIB

0 u5 = 0. (16)

By (16) and the first equation of (15), we have

KIΣ
0 u4 = 0.

Since, in general, nI � mΣ, it is reasonable to assume that KIΣ
0 is of full rank

and thus u4 = 0. Using the third and fourth equations of (15), we immediately
obtain

u3 = 0 and (KIΣ
0 )>u1 = 0.
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Combining this and (16) gives

A
[
u1

u5

]
:=

[
KI

0 KIB
0

(KIΣ
0 )> 0

] [
u1

u5

]
= 0. (17)

Note that the dimension of A is (2nI + 2mΣ)× (2nI + 2mB). So the nullity
of A is at most 2(mB −mΣ). Let [u>1 ,u

>
5 ] 6= 0 satisfy (17), then

u1

−u1

0
0
u5

 (18)

is a null vector of K, i.e., a solution of (15).
Next, we need an important deflation technique to deflate eigenvalues (in-

cluding zero eigenvalues) that have been computed to∞. Suppose that we have
computed

KX0 =MX0Λ0, X0 ∈ Rs×r, Λ0 ∈ Rr×r, and s = 2(2nI + nD +mΣ +mB),

that is, (X0,Λ0) is an eigenpair of (K,M). Let Y0 be chosen so that Y >0 MX0 =
Ir. We then define

K̃ = K − αMX0Y
>
0 M,

M̃ =M−MX0Y
>
0 M,

where α 6∈ Spec(Λ0). Then we can show that

Theorem 1.

Spec(K̃,M̃) = (Spec(K,M) \ Spec(Λ0)) ∪ {∞}rk=1,

where Spec(K̃,M̃) denotes the set of eigenvalues of the linear pencil K̃ − λM̃.

Proof. It suffices to compute

det(K̃ − λM̃) = det(K − λM− (α− λ)MX0Y
>
0 M)

= det(K − λM)det(Is − (α− λ)(K − λM)−1MX0Y
>
0 M).

(19)

Recall that KX0 = MX0Λ0. We obtain (K − λM)X0 = MX0(Λ0 − λIr) and
thus

(K − λM)−1MX0 = X0(Λ0 − λIr)−1.

Substituting this relation into (19) leads to

det(K̃ − λM̃) = det(K − λM)det(Is − (α− λ)X0(Λ0 − λIr)−1Y >0 M)

= det(K − λM)det(Λ0 − λIr)−1det(Λ0 − λIr − (α− λ)Ir)

= det(K − λM)det(Λ0 − λIr)−1det(Λ0 − αIr),
(20)

where we have used the identity det(Is+AB) = det(Ir+BA), where A ∈ Rs×r,
B ∈ Rr×s, in the second equality above. The theorem follows easily from
(20).
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In our numerical algorithm, we first use Theorem 1 to deflate the zero eigen-
values to ∞ and compute a number of positive eigenvalues (from the smallest)

of the associated matrix pair (K̃,M̃). Since the zero eigenvalues have been de-
flated, it will be quite effective to compute those small positive eigenvalues. We
could continue deflating the computed eigenvalues to ∞. However, we will not
do so due to the sparsity of matrices K,M. Note that the deflation process will
destroy the sparsity of K,M. To keep the deflated matrices K̃,M̃ as sparse as
possible, after computing a number of positive eigenvalues, we first restore those
eigenvalues that have been deflated to ∞ back to the matrix pair and deflate
the positive eigenvalues that were just computed.

3.2 Case 1 with Neumann condition

Here, the stiffness matrix K of (13) becomes

K =



KI
0 0 0 KIΣ

0 KIB
0 0

0 −KI
0 0 0 KIB

0 KIΣ
0

0 0 KD
0 KDΣ

0 0 0
(KIΣ

0 )> 0 (KDΣ
0 )> KΣ

0 0 0
(KIB

0 )> (KIB
0 )> 0 0 0 0

0 (KIΣ
0 )> 0 0 0 K̃Σ

0

 . (21)

We want to point out that K̃Σ
1 here is evaluated in terms of the elasticity tensor

C0 since we have C1 = C0. Similarly, we want to find the null space of K as
much as possible. For this purpose, we want to consider the linear system

KI
0 0 0 KIΣ

0 KIB
0 0

0 −KI
0 0 0 KIB

0 KIΣ
0

0 0 KD
0 KDΣ

0 0 0
(KIΣ

0 )> 0 (KDΣ
0 )> KΣ

0 0 0
(KIB

0 )> (KIB
0 )> 0 0 0 0

0 (KIΣ
0 )> 0 0 0 K̃Σ

0




u1

−u1

u3

u4

u5

u6

 =


0
0
0
0
0
0

 . (22)

By the first and second equations of (22), we have

KIΣ
0 (u4 − u6) = 0.

Reasoning as above, we can assume that KIΣ
0 is of full rank and hence u4−u6 =

0, i.e., u4 = u6. It follows from the last equation of (22) that

(KIΣ
0 )>u1 = K̃Σ

0 u4. (23)

Substituting (23) into the fourth equation of (22) and combining its third equa-
tion gives [

KD
0 KDΣ

0

(KDΣ
0 )> (KΣ

0 + K̃Σ
0 )

] [
u3

u4

]
=

[
0
0

]
. (24)
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Since the matrix in (24) is symmetric and its diagonal matrices are positive-
definite, its rank is most likely small if it is singular. Therefore, we can take
u3 = u4 = 0 and (23) leads to (KIΣ

0 )>u1 = 0. Using the first or the second
equation again, we thus conclude that

A
[
u1

u5

]
:=

[
KI

0 KIB
0

(KIΣ
0 )> 0

] [
u1

u5

]
= 0. (25)

Hence if [u>1 ,u
>
5 ] 6= 0 satisfies (25), then

u1

−u1

0
0
u5

0


is a null vector of K in (21). Having discovered most of null vectors of K, we then
solve the GEP (13) by the JD method with the deflation technique described
as before.

3.3 Case 2 with Dirichlet condition

In this case, we have M I
1 = M I

0 , M IB
1 = M IB

0 , MB
1 = MB

0 and the mass matrix
M is reduced to

M =


M I

0 0 0 M IΣ
0 M IB

0

0 −M I
0 0 0 M IB

0

0 0 MD
0 MDΣ

0 0
(M IΣ

0 )> 0 (MDΣ
0 )> MΣ

0 0
(M IB

0 )> (M IB
0 )> 0 0 0

 .
This reduced mass matrix has exactly the same form as K in (11). Arguing as
above, we find the null space ofM, which corresponds to∞ eigenvalues of (10).
Since we are interested in locating first 500 positive eigenvalues, we do not need
to carry out this step in the JD method.

3.4 Case 2 with Neumann condition

Similar to the case above, we have M I
1 = M I

0 , M IB
1 = M IB

0 , MB
1 = MB

0 ,

M IΣ
1 = M IΣ

0 , and M̃Σ
1 = M̃Σ

0 . Thus, the mass matrix becomes

M =



M I
0 0 0 M IΣ

0 M IB
0 0

0 −M I
0 0 0 M IB

0 M IΣ
0

0 0 MD
0 MDΣ

0 0 0
(M IΣ

0 )> 0 (MDΣ
0 )> MΣ

0 0 0
(M IB

0 )> (M IB
0 )> 0 0 0 0

0 (M IB
0 )> 0 0 0 M̃Σ

0

 ;

13



while the stiffness matrix K is given by (14). This case can be treated similarly
as in Subsection 3.3.

4 Numerical strategies

We want to apply the JD method and the deflation technique to solve the GEP:
L(λ)z := (K − λM)z = 0. Roughly speaking, we will apply the JD method

to the deflated pencil L̃(λ) := K̃ − λM̃. In Case 1, we first deflate the zero
eigenvalues to infinity and then apply the JD method to the deflated system to
locate a small group of positive eigenvalues (15-20 positive eigenvalues). In Case
2, we begin with the direct implementation of the JD method to L(λ) and locate
a small group of positive eigenvalues. Before continuing with the JD method, we
first deflate these eigenvalues to infinity. However, we would not keep deflating
found eigenvalues to infinity because that will destroy the sparsity of the system.
It is important to restore the previously deflated eigenvalues (including the zero
eigenvalues in Case 1) before further deflation. In doing so, we always perturb
L(λ) by matrices of lower ranks.

To make the paper self contained, we outline the JD method here (also see
[24]). Let Vk = [v1, · · · ,vk] be a given orthogonal matrix and let (θk,uk), θk 6=
0, be a Ritz pair (an approximate eigenpair) of L̃(λ), i.e., uk = Vksk and (θk, sk)

is an eigenpair of V Tk L̃(λ)Vk, namely,

V Tk L̃(θk)Vksk = 0 (26)

with ‖sk‖ = 1. Since V Tk L̃(θk)Vk is of lower rank, (26) can be solved by a usual
eigenvalue solver.

Starting from the Ritz pair (θk,uk), we aim to find a correction direction
t⊥uk such that

L̃(λ)(uk + t) = 0. (27)

Let
rk = L̃(θk)uk (28)

be the residual vector of L̃(λ) corresponding to the Ritz pair (θk,uk). To solve
t in (27), we rewrite and expand (27)

L̃(λ)t = −L̃(λ)uk = −rk + (L̃(θk)− L̃(λ))uk

= −rk + (λ− θk)M̃uk.
(29)

Using the fact that

u>k rk = u>k L̃(θk)uk = s>k V
>
k L̃(θk)Vksk = 0,

we multiply

(
I − M̃uku

>
k

u>k M̃uk

)
on both sides of (29) to eliminate the term (λ−θk)

and get (
I − M̃uku

>
k

u>k M̃uk

)
L̃(λ)t = −rk. (30)

14



Next, applying the orthogonal projection (I − uku
>
k ) and approximating L̃(λ)

by L̃(θk), we then have the following correction equation:(
I − M̃uku

>
k

u>k M̃uk

)
L̃(θk)(I − uku

>
k )t = −rk with t⊥uk. (31)

In designing a stopping criterion in the JD method, we will check the resid-
ual of L(θk)wk because of the consideration of efficiency, where (θk,wk) is a
Ritz pair of L(λ) related to (θk,uk). Moreover, in the deflation process (see
Theorem 1), we need to make use of the eigenpairs of the original pencil L(λ).

Therefore, it is required to transform the Ritz pair (θk,uk) of L̃(λ) to a Ritz

pair (θk,wk) of L(λ). Recall that L̃(λ) = K̃ − λM̃, where

K̃ = K − αMX0Y
>
0 M,

M̃ =M−MX0Y
>
0 M,

where

KX0 =MX0Λ0, X0 ∈ Rs×r, Λ0 ∈ Rr×r, s = 2(2nI + nD +mΣ +mB),

Y0 satisfies Y >0 MX0 = Ir, and α 6∈ Spec(Λ0).

Theorem 2. Let (θ,u), θ 6= 0 and θ 6∈ Spec(Λ0)∪{α}, be an eigenpair of L̃(λ),

i.e., L̃(θ)u = 0. Then (θ,w) is an eigenpair of L(λ), where

w = u−X0q (32)

and q = (α− θ)(Λ0 − θIr)−1Y >0 Mu.

Proof. Assume that (θ,u) satisfy

L̃(θ)u = (K̃ − θM̃)u = 0. (33)

Consider w = u−X0q, where q ∈ Rr×1 will be determined later. We now write
(33) as

(K − αMX0Y
>
0 M)(w +X0q) = θ(M−MX0Y

>
0 M)(w +X0q). (34)

In view of (34), Kw = θMw if and only if

KX0q− αMX0Y
>
0 Mu =MX0Λ0q− αMX0Y

>
0 Mu

= θMX0q− θMX0Y
>
0 Mu,

i.e.,
MX0(Λ0 − θIr)q = (α− θ)MX0Y

>
0 Mu. (35)

Multiplying Y >0 on both sides of (35) and using Y >0 MX0 = Ir, one obtains that

q = (α− θ)(Λ0 − θIr)−1Y >0 Mu.

15



By Theorem 2, if we have found a Ritz pair (θk,uk) of L̃(λ) in the JD
algorithm, we then transform uk into wk using (32) and check the stopping
criterion to determine whether (θk,wk) is a good approximation of the eigen-
pair for L(λ). We summarize our method in the following two algorithms. In
Algorithm 1, we perform the deflation. Algorithm 2 describes the JD method
(with partial deflation).

Algorithm 1 Deflated stiffness and mass matrices

Input: Stiffness matrix K, Mass matrix M, eigenvectors X1 with associated
eigenvalues Λ0, and a α not in Λ0

Output: Deflated stiffness matrix K̃, deflated mass matrix M̃, and an addi-
tional matrix Y0

1: Compute Y0 =MX1;
2: Decompose Y0 = UDV > by svd;
3: Update Y0 = V D−1U>;
4: Compute K̃ = K − αMX0Y

>
0 M and M̃ =M−MX1Y

>
0 M;
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Algorithm 2 Jacobi-Davidson with partial deflation

Input: Stiffness matrix K, mass matrix M, the initial projected matrix V ,
expected eigenvalue number p, and deflated number l

Output: (λj ,xj) satisfying L(λj)xj ≡ (K − λjM)xj = 0 for j = 1, · · · , p
1: if (Case 1) then

2: Use Algorithm 1 to deflate zero eigenvalues and obtain matrices K̃ and
M̃;

3: Set X0 = X1 and Θ = Λ0;
4: else
5: Set K̃ = K and M̃ =M;
6: Set X0 = [ ] and Θ = [ ];
7: end if
8: for (j = 1, · · · , p) do

9: Compute WK = K̃V , WM = M̃V , HK = V ∗WK, and HM = V ∗WM;
10: while (the desired eigenpair does not converge) do
11: Compute (θ, s) with ‖s‖2 = 1 such that (HK − θHM)s = 0;

12: Compute u = V s, p = L̃′(θ)u, and r = L̃(θ)u;
13: Solve a correction vector t ⊥ u from the correction equation;
14: Orthogonalize t against V and set v = t/‖t‖2;

15: Compute wK = K̃v, wM = M̃v and expand

HK =

[
HK V ∗wK

v∗WK v∗wK

]
, HM =

[
HM V ∗wM

v∗WM v∗wM

]
;

16: Expand V =
[
V v

]
, WK =

[
WK wK

]
, and WM =

[
WM wM

]
;

17: end while
18: Set λj = θ and zj = u;
19: Compute xj = zj −X0q where q = (α− λj)(Θ− λjIr)−1Y >0 Mzj ;
20: if (j ≤ l) then

21: Set X0 =
[
X0 xj

]
and Θ =

[
Θ 0
0 λj

]
;

22: else

23: Set X0 =
[
X0(:, 2 : l) xj

]
and Θ =

[
Θ(2 : l, 2 : l) 0

0 λj

]
;

24: end if
25: Use Algorithm 1 to obtain new deflated matrices K̃ and M̃;
26: Update the initial matrix V ;
27: end for
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Before presenting our numerical results in the next section, we would like
to validate the GEP deduced from the FEM. In other words, the eigenvalues
of the GEP are indeed approximations of the interior transmission eigenvalues.
To this end, we compare the theoretical computation for the radially symmetric
transmission eigenfunctions obtained in [7] with the eigenvalues of the GEP.
For simplicity, we only consider the result of Case 1 with the zero Dirichlet
boundary condition. According to [7], Ω is a disk of radius 1 and the embedded
obstacle D is a disk of radius 0.5. The parameters are set to µ = λ = 1, ρ0 = 1
and ρ1 = 0.5. Note that the symmetry is in the sense of u = u2

1 + u2
2 and

v = v2
1 + v2

2 . The comparison is given in Table 2. We also demonstrate that
the eigenfunctions computed from the GEP are indeed radially symmetric, as
shown in Figures 1 and 2.

ω Values obtained in [7] Values obtained from GEP
1 9.8599 9.8792
2 19.1916 19.3240
3 26.7594 27.1291
4 36.0246 36.8537

Table 2: Comparison of eigenvalues obtained in [7] and computed from the GEP
for Case 1 with Dirichlet boundary condition.

Figure 1: Eigenfunctions u (left sub-figure) and v (right sub-figure) correspond-
ing to the eigenvalue ω = 9.8792. Here u and v are radially symmetric described
by u = u(r)er and v = v(r)er, where er is the unit vector directed at the radial
direction.
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Figure 2: Eigenfunctions u (left sub-figure) and v (right sub-figure) correspond-
ing to the eigenvalue ω = 19.3240.

5 Numerical results

In our numerical simulations, we consider an isotropic elasticity system. We
test our method for four different embedded obstacles inside the domain of the
circle centered at the origin with radius 6; i.e., Ω = {(x, y) : x2 + y2 < 62}.
The dimensions of the four obstacles are shown in Table 4. Standard triangular
meshes with equal mesh lengths of approximately 0.04 are generated in the
FEM. The number of points for each part is also shown in Table 3. Since we are
dealing with an elasticity system in the plane, the dimensions of the stiffness and
mass matrices in Table 3 are doubled. The size of each matrix is approximately
300, 000 × 300, 000. The parameters for Case 1 are µ0 = λ0 = 1, µ1 = λ1 = 1,
ρ0 = 5, and ρ1 = 1, while those for Case 2 are µ0 = λ0 = 2, µ1 = λ1 = 1,
and ρ0 = ρ1 = 1. All computations were carried out in MATLAB R2020a.
Additionally, the hardware configurations used were two serves equipped with
Intel 32-Core Xeon E5-2650 2.60 GHz CPUs with 125.72 GB and Intel Octa-
Core Xeon E5520 2.27 GHz CPUs with 70.79 GB.

The major step in our paper [8] is to transform the GEP to a QEP in which
the zero eigenvalues are deflated to infinity. Unfortunately, the same approach
fails in the GEP considered here, so we must solve the GEP directly. To explain
the difficulty of finding positive eigenvalues of the GEP by the JD method,
we demonstrate the distribution of eigenvalues for a toy model in Figures 3
(Case 1) and 4 (Case 2), where the size of the matrix is 1850 × 1850. In both
cases, positive eigenvalues are surrounded by complex eigenvalues. However, in
Case 1 (Figure 3), there exist a large number of zero eigenvalues (the larger the
matrix is, the larger the number of zeros). Therefore, to compute the positive
eigenvalues, we must first deflate the zero eigenvalues to infinity (Algorithm 1)
and apply the JD method to the deflated matrices. Moreover, in both cases,
positive eigenvalues are surrounded by complex eigenvalues, and we also need
to deflate them to find our desired eigenvalues.
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Disc Ellipse Square Dumbbell

mB 948 948 948 948
nI 71593 76140 69114 69571
mΣ 315 315 400 434
nD 9068 4531 11442 11097

Total 81924 81934 81904 82050
GEP sizes 307034 316148 302036 303242

Table 3: Meshes for different obstacles (the mesh size h of FEM is approximately
0.04).

Disc {(x, y) : x2 + y2 ≤ 22}
Ellipse {(x, y) : x2/4 + y2 ≤ 1}
Square {(x, y) : −2 ≤ x ≤ 2,−2 ≤ y ≤ 2}

Dumbbell {(x, y) : |x| ≤ 1, |y| ≤ 1} ∪ {(x, y) : (x± 2)2 + y2 = 2}

Table 4: Dimensions of embedded obstacles.
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Figure 3: Left figure is the distribution eigenvalues of the GEP corresponding
to the Case 1 with square obstacle and Dirichlet boundary condition. Right
figure is the distribution of real eigenvalues near zero.
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Figure 4: Left figure is the distribution of eigenvalues of the GEP corresponding
to the Case 2 with square obstacle and Dirichlet boundary condition. Right
figure is the distribution of real eigenvalues near zero.

5.1 Distribution of positive eigenvalues

The simulation results for the Dirichlet and the Neumann boundary conditions
on ∂D are described in more detail below. Recall that in Case 1, we choose µ0 =
λ0 = 1, µ1 = λ1 = 1, ρ0 = 5, ρ1 = 1, and in Case 2, we take µ0 = λ0 = 2, µ1 =
λ1 = 1, and ρ0 = ρ1 = 1. In Figure 5, we plot the first 50 positive eigenvalues
for Case 1 with either the Dirichlet or the Neumann boundary condition on the
obstacles. Figure 6 is the plot of the first 50 positive eigenvalues for Case 2 with
either the Dirichlet or the Neumann boundary condition. We also compare the
first positive eigenvalues for all the scenarios discussed here; see Table 5.

-0.5 0 0.5 1 1.5 2 2.5 3

circle
square
ellipse
dumbbell

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

circle
square
ellipse
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Figure 5: The first 50 positive eigenvalues for Case 1 with the Dirichlet condition
(left figure) and the Neumann condition (right figure).
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Figure 6: The first 50 positive eigenvalues for Case 2 with the Dirichlet condition
(left figure) and the Neumann condition (right figure).

Obstacle Case 1, Dirichlet Case 1, Neumann Case 2, Dirichlet Case 2, Neumann
Circle 0.15978 0.15963 0.40922 0.39211
Square 0.15593 0.15578 0.16898 0.16303
Ellipse 0.16367 0.16352 0.28138 0.28958

Dumbbell 0.15328 0.15311 0.03727 0.02973

Table 5: Values of first positive eigenvalue for four obstacles.

5.2 Interior transmission eigenvalues and near invisibility

As we mentioned in the Introduction, the study of the interior transmission
eigenvalues is closely related to the development of some reconstruction meth-
ods. On the other hand, the interior transmission eigenvalues are also connected
to invisible cloaking. Such connections were studied extensively for acoustic and
electromagnetic waves in [17] and [20]. Roughly speaking, one hopes to make
the obstacle invisible (more precisely, the obstacle does not perturb the field
corresponding to the background equation) by applying layer isotropic media
outside of the obstacle. Similar results for elastic scattering have yet to be in-
vestigated. Here, we present some numerical observations that, we hope, can
provide some insights into the problem for future study.

We plot the eigenfunctions corresponding to the first positive eigenvalues
for all cases. We first show the results for Case 1. The eigenfunctions (u,v)
corresponding to the first positive eigenvalue for four different obstacles with
Dirichlet boundary conditions are given in Figure 7. Figure 8 shows the corre-
sponding results for the Neumann condition.
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Figure 7: The eigenfunctions associated with the first positive eigenvalues for
four obstacles with Dirichlet condition (Case 1). In each subfigure (grouped by
2 × 2 plots corresponding to different shape of obstacle), the upper left, upper
right, lower left, lower right plots correspond to the values of u1, u2, v1, and v2,
respectively.
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Figure 8: The eigenfunctions associated with the first positive eigenvalues for
four obstacles with Neumann condition (Case 1). In each subfigure (grouped by
2 × 2 plots corresponding to different shape of obstacle), the upper left, upper
right, lower left, lower right plots correspond to the values of u1, u2, v1, and v2,
respectively.
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Similar plots for Case 2 with either Dirihclet or Neumann conditions are
given in Figure 9 and 10, respectively.

Figure 9: The eigenfunctions associated with the first positive eigenvalues for
four obstacles with Dirichlet condition (Case 2). In each subfigure (grouped by
2 × 2 plots corresponding to different shape of obstacle), the upper left, upper
right, lower left, lower right plots correspond to the values of u1, u2, v1, and v2,
respectively.
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Figure 10: The eigenfunctions associated with the first positive eigenvalues for
four obstacles with Neumann condition (Case 2). In each subfigure (grouped by
2 × 2 plots corresponding to different shape of obstacle), the upper left, upper
right, lower left, lower right plots correspond to the values of u1, u2, v1, and v2,
respectively.
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To interpret Figures 7, 8, 9, and 10, let u = [u1, u2]> be a solution of the
elasticity system without obstacle D in Ω. Ideally, to achieve invisibility, we
expect that the existence of the obstacle does not perturb the field u outside
of D. In the case of changing only the density function outside of D; i.e.,
C0 = C1, where ρ0 6= ρ1, the field v = [v1, v2]> in Ω\ D̄ is clearly different from
the background field u (Figures 7 and 8). Those numerical simulations strongly
suggest that changing only the density in Ω \ D̄ is unlikely to make an obstacle
invisible.

The situation changes dramatically if we apply a different elasticity tensor
outside of D, which is Case 2. Figures 9 and 10 clearly indicate that the back-
ground field in Ω \ D̄ is not perturbed by the existence of an obstacle. We
observe this phenomenon regardless of the shape of the obstacle or the bound-
ary condition on boundary ∂D. Even though we show the numerical results for
only the first positive eigenvalues, we believe that the same phenomenon holds
for other positive eigenvalues. In other words, if an incident field, e.g., plane
waves or Herglotz waves, can be approximated arbitrarily closely by the lin-
ear span of the eigenfunctions corresponding to the positive eigenvalues for the
background equation, then the embedded obstacle will produce a small scattered
field; that is, the obstacle will be nearly invisible. Consequently, our simulation
results provide strong evidence that the invisibility of the obstacle D can most
likely be achieved by applying an appropriate elasticity tensor outside of D. Of
course, ideally, one would like to find a universal elasticity tensor with such an
obstacle that is invisible for all frequencies. However, this is still a challenging
open problem.

6 Conclusions

In this work, we study the computation of interior transmission eigenvalues for
elastic waves containing an obstacle. This problem is inspired by the inverse
problem of determining the support of the inhomogeneity and the invisibility
cloaking of an obstacle. Using the FEM, we transform the continuous ITEP
into a GEP for matrices. We then develop numerical strategies based on the
JD method to locate the first 50 positive eigenvalues of the GEP. Notably, in
the case of different density functions, we must first deflate zero eigenvalues to
infinity to find positive eigenvalues effectively.

The numerical results for Case 2 show some interesting phenomena about
the transmission eigenfunction (u,v). It can be observed from Figure 9, 10 that
the existence of an obstacle does not perturb the field u in Ω \ D̄. We hope
that this observation can pave the way to the study of invisibility cloaking of
an obstacle in elastic waves.
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