
STRICT MONOTONICITY OF EIGENVALUES AND
UNIQUE CONTINUATION FOR SPECTRAL

FRACTIONAL ELLIPTIC OPERATORS

PU-ZHAO KOW AND JENN-NAN WANG

Abstract. In this paper we consider the eigenvalue problem for
a weighted spectral fractional second order elliptic operator in a
bounded domain. We show that any eigenvalue is strictly mono-
tone with respect to the weight function if the corresponding eigen-
function satisfies the unique continuation property from a measur-
able set of positive Lebesgue measure.

1. Introduction

In this paper we will investigate the relation between the monotonic-
ity of eigenvalues and the unique continuation property for the spectral
fractional elliptic operator. To motivate our study, we first briefly state
the result for the elliptic operator. Consider the weighted eigenvalue
problem in a bounded domain Ω ⊂ Rn with Lipschitz boundary ∂Ω:

(1.1)

{
Au = µm(x)u in Ω,

u = 0 on ∂Ω,

where A is a second order elliptic operator given by

Au = −
n∑

i,j=1

∂j(aij(x)∂iu) + a0(x)u

with a0(x) ≥ 0 and (aij(x)) ∈ L∞(Ω) satisfying aij(x) = aji(x), the
ellipticity condition

(1.2) Λ1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ2|ξ|2, 0 < Λ1,Λ2.
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Assume that a0,m(x) ∈ Lr(Ω) for some r > n/2. It is known that the
eigenvalues of (1.1), depending on m, form a countable sequence:

· · · ≤ µ−2(m) ≤ µ−1(m) < 0 < µ1(m) ≤ µ2(m) ≤ · · · .

If m is non-negative (or non-positive), then this sequence is bounded
below (or bounded above). In view of the variational characterization of
eigenvalues, we can observe that each µk, k ∈ Z \ {0}, is nonincreasing
in the weight function m, i.e., if m(x) ≤ m̂(x) a.e., then µk(m̂) ≤
µk(m). It was proved in [FG92] that µk(m) is strictly decreasing in
m if and only if the corresponding eigenfunction enjoys the unique
continuation property from a set of positive measure. We say that
µk(m) is strictly monotonically decreasing in m if m(x) ≤ m̂(x) a.e.
and {x : m̂(x)−m(x) > 0} has positive measure, then µk(m̂) < µk(m).
For the corresponding eigenfunction uk(x), we say that uk(x) has the
measurable unique continuation property (MUCP) if u = 0 identically
in Ω whenever uk(x) = 0 in E ⊂ Ω with the Lebesgue measure of E,
|E| > 0. A similar result was proved for the biharmonic operator ∆2

in [TCRD12].
The equivalence of strict monotonicity of eigenvalues and MUCP

was further extended to nonlocal operators in [FI19] where the authors
considered the eigenvalue problem

(1.3)

{
LKu = µm(x)u in Ω,

u = 0 in Rn \ Ω,

where LK is a nonlocal operator of the following general form

(1.4) LKu(x) = p.v.

∫
Rn

(u(x)− u(y))K(x− y) dy,

where the kernel K satisfies

(K1) ρ(x)K ∈ L1(Rn), where ρ(x) = min{|x|2, 1};
(K2) K(x) ≥ α|x|−(n+2s) for all x ∈ Rn \ {0} and s ∈ (0, 1);
(K3) K(−x) = K(x) for all x ∈ Rn \ {0}.

In particular, when K(x) = |x|−(n+2s), LK is known to be the fractional
Laplacian and (1.3) is the eigenvalue problem for the regional fractional
Laplacian. Since LK is nonlocal, to define LKu(x) for x ∈ Ω, u = 0 in
Rn \ Ω serves as the zero Dirichlet condition.

The main theme of this work is to establish the equivalence of strict
monotonicity of eigenvalues and MUCP for the spectral elliptic oper-
ator. To define the operator, let us denote the second order elliptic
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operator

Lu(x) = −
n∑

i,j=1

∂j(aij(x)∂iu(x)).

It is a standard result that there exists a sequence of positive Dirich-
let eigenvalues and orthonormal eigenfunctions {λk, φk}∞k=0 with φk ∈
H1

0 (Ω) for L in Ω. For s ∈ (0, 1), we define the spectral fractional
elliptic operator

(1.5) Lsu(x) :=
∞∑
k=0

λskukφk(x) in Ω,

where u(x) =
∑∞

k=0 ukφk ∈ H1
0 (Ω), i.e., uk = (u, φk). We also consider

spectral fractional elliptic operator Lγ with the fractional power γ ∈
R+ \ N (see the precise definition of Lγ in Section 2). In this work,
we will not discuss the classical case where γ ∈ N. Let µk(m) be the
eigenvalue of

Lγψk(x) = µk(x)m(x)ψk(x) in Ω

with the corresponding eigenfunction ψk(x) belonging to a certain func-
tion space (see Section 3). We then prove that µk is strictly monoton-
ically decreasing in m if and only if ψk enjoys MUCP in Ω. We want
to point out the spectral elliptic operator Lγ can not be written in the
form of LK in (1.4) with a suitable kernel K. One can easily observe
that if such kernel K exists for Lγ, then it cannot satisfy Property (K2)
of K given above. In other words, our result here does not follow from
that in [FI19].

Even though Lγ is defined in a bounded domain Ω, it is a nonlocal
operator. The proof of the uniqueness continuation property is highly
nontrivial. However, it was shown in [ST10] that Ls for s ∈ (0, 1) can
be expressed as the Dirichlet-to-Neumann map of an extension problem
in the spirit of the fractional Laplacian (−∆)s established in [CS07].
The operator in the extension problem is a local, but degenerate, elliptic
operator. Combining [ST10] and [Yan13], the spectral fractional elliptic
operator Lγ can also be described as the Dirichlet-to-Neumann map of
an extension problem. Having established the extension problem for
Lγ, we can prove the MUCP using some results from [GR19] involving
Carleman estimates.

The paper is organized as follows. In Section 2, we discuss the def-
inition of the spectral fractional elliptic operator Lγ in detailed. We
also describe the corresponding extension problem, especially the case
of γ > 1. In Section 3, we state and prove main results of the paper.
We will discuss the unique continuation property for Lγ in Section 4.
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2. The Fractional Operator Lγ

Let Ω be a bounded Lipschitz domain in Rn. We now give a formal
definition of Lγ for γ ∈ R+ \ N. Let bγc be the integer part of γ and
s := γ − bγc, that is, we write

γ = bγc+ s with bγc ∈ Z≥0 and s ∈ (0, 1).

To consider the fractional elliptic operator of higher power, we need to
impose a higher regularity on the coefficients, namely,

(2.1) (aij) ∈ C2bγc,1(Ω).

Before giving the precise definition of Lγ, we first discuss some special
Sobolev spaces [Gr16]. For s > 0, we define the space Hs(Ω) as the
restriction of Hs(Rn) to Ω. Let us denote

H̃s(Ω) =



u ∈ Hs(Ω), 0 < s < 1/2,

u ∈ Hs(Ω), u = 0 on ∂Ω, 1/2 < s < 5/2,

u ∈ Hs(Ω), u = Lu = · · · = Lku = 0 on ∂Ω, 2k + 1/2 < s < 2k + 5/2,

u ∈ Hs(Ω), u = Lu = · · · = Lk−1u = 0 on ∂Ω, Lku ∈ H1/2(Rn) with suppu ∈ Ω,

s = 2k + 1/2.

Now we define Lγ for γ ∈ R+ \ N as

(2.2) Lγu(x) :=
∞∑
k=0

λγk(u, φk)φk(x) in Ω

for u ∈ dom(Lγ) = H̃2γ(Ω). Thus, we have Lγ : dom(Lγ) → L2(Ω).
We can see that for u ∈ dom(Lγ)

Lγu =
∞∑
k=0

λγk(u, φk)φk =
∞∑
k=0

λ
s+bγc−1
k (u, λkφk)φk =

∞∑
k=0

λ
s+bγc−1
k (Lu, φk)φk

=
∞∑
k=0

λ
s+bγc−2
k (Lu, λkφk)φk =

∞∑
k=0

λ
s+bγc−2
k (L2u, φk)φk = · · ·

=Ls(Lbγcu).

On the other hand, we also have that for u ∈ dom(Lγ)

Lγu =
∞∑
k=0

λγk(u, φk)φk =
∞∑
k=0

λ
bγc
k (u, λskφk)φk =

∞∑
k=0

λ
bγc
k (Lsu, φk)φk = Lbγc(Lsu),

which immediately implies

(2.3) Lγu = Ls(Lbγcu) = Lbγc(Lsu).
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3. An Eigenvalue Problem: Strict Monotonicity and
Unique Continuation

For γ ∈ R+ \ N we consider the eigenvalue problem

(3.1)

{
Lγu = µm(x)u in Ω,

u ∈ dom(Lγ),

where m ∈ L∞(Ω). We are interested in the connection between the
strict monotonicity of the eigenvalues µ(m) and the weight function m.
The classical case γ = 1 was studied by de Figueredo and Gossez in
[FG92].

We first discuss the existence of discrete eigenvalues of (3.1). Since
m is an indefinite weight, we will follow the approach used in [Fig82]
(or [FI19]). In view of (2.3), Lγ is a self-adjoint operator in L2(Ω) with
domain dom(Lγ). The eigenvalue problem (3.1) can be expressed in
the variational form:

(3.2) a[u, v] = µ

∫
Ω

muv, for all v ∈ dom(Lγ), u ∈ dom(Lγ),

where a[·, ·] : dom(Lγ) × dom(Lγ) → R is the bilinear form (inner
product) defined by

a[u, v] :=

∫
Ω

(Lγu(x))v(x) dx.

Clearly, ‖u‖γ = a[u, u]1/2 induces a norm on dom(Lγ). However,
dom(Lγ) is, in general, not complete in ‖ · ‖γ. Thus, we need to con-
sider a suitable extension of Lγ. Since Lγ is semibounded, Lγ can be
extended in the Friedrichs sense to H, the completion of dom(Lγ) in
‖ · ‖γ. Observe that

(3.3) a[u, v] =

∫
Ω

(Lγ/2u)(Lγ/2v) dx

for u, v ∈ dom(Lγ). Thus, we have

H = H̃γ(Ω).

To abuse the notation, we still denote its Friedrichs extension by Lγ.
Note that the Friedrichs extension of Lγ remains self-adjoint on H̃γ(Ω).

For fixed u ∈ H̃γ(Ω), the map v 7→
∫

Ω

muv is a bounded linear

functional in H̃γ(Ω). By the Riesz-Fréchet representation theorem,
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there exists a unique element in H̃γ(Ω), says Tu, such that

(3.4) a[Tu, v] =

∫
muv for all v ∈ H̃γ(Ω).

We can see that T is self-adjoint and bounded in H̃γ(Ω). We can
further prove that

Lemma 3.1. The operator T : H̃γ(Ω)→ H̃γ(Ω) is compact.

Proof. Let {un} be a bounded sequence in H̃γ(Ω). Then there exists a
subsequence, still denoted {un}, such that

un → u weakly in H̃γ(Ω).

The compact embedding of H̃γ(Ω) ↪→ L2(Ω) (see, for example, [DPV12]),
implies

un → u strongly in L2(Ω).

Substituting u = un − u and v = Tun − Tu in (3.4), we obtain

‖Tun − Tu‖2
γ ≤ ‖m‖L∞(Ω)‖Tun − Tu‖L2(Ω)‖un − u‖L2(Ω) → 0.

�

Consequently, T has a set of countably many real eigenpairs {λ̃k, uk}
in which λ̃k can only accumulate at 0. Therefore, from (3.3), we have
that∫

Ω

mukvdx = a[Tuk, v] = λ̃ka[uk, v] = λ̃k

∫
Ω

(Lγ/2uk)(L
γ/2v)dx,

i.e., ∫
Ω

(Lγ/2uk)(L
γ/2v)dx = µk

∫
Ω

mukvdx

for all v ∈ H̃γ(Ω), where µk = 1/λ̃k. In other words, the eigenvalue
problem (3.1) has a double sequence of eigenvalues

· · · ≤ µ−2 ≤ µ−1 < 0 < µ1 ≤ µ2 ≤ · · · ,

with the corresponding eigenfunctions {uk} in the weak sense. How-
ever, since µkmuk ∈ L2(Ω), we have that Lγuk ∈ L2(Ω), which implies
that uk ∈ H̃2γ(Ω)(= dom(Lγ)). In other words, (µk, uk) solves (3.1) in
the strong sense.

Repeating the arguments in [Fig82] (or in [FI19]), we can derive the
following variational characterization of eigenvalues. For the sake of
completeness, we will provide its proof in Appendix A.
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Proposition 3.2. The sequence of eigenvalues

· · · ≤ µ−2 ≤ µ−1 < 0 < µ1 ≤ µ2 ≤ · · · ,

can be characterized by

1

µn(m)
= max

Fn
inf

{∫
Ω

mu2 : ‖u‖γ = 1, u ∈ Fn
}
,

1

µ−n(m)
= min

Fn
sup

{∫
Ω

mu2 : ‖u‖γ = 1, u ∈ Fn
}
,(3.5)

where Fn varies over all n-dimensional subspaces of H̃γ(Ω). In partic-
ular, we have

(3.6)
1

µk(m)
=

∫
Ω

mu2
k with ‖uk‖γ = 1.

Following exactly the same argument as in [Fig82], we obtain the
following result, which shows some properties of the eigenvalues.

Proposition 3.3. Let Ω± := {x ∈ Ω : m(x) ≷ 0}, then
(i) |Ω+| = 0 =⇒ there is no positive µn.
(ii) |Ω−| = 0 =⇒ there is no negative µ−n.
(iii) |Ω+| > 0 =⇒ there is a sequence of positive µn → +∞.
(iv) |Ω−| > 0 =⇒ there is a sequence of negative µ−n → −∞.

Here, | · | denotes the Lebesgue measure of the set.

Proposition 3.4. Let m, m̂ ∈ L∞(Ω) such that m(x) ≤ m̂(x) for
x ∈ Ω. For a given n ∈ Z \ {0}, if the eigenvalues µn(m) and µn(m̂)
exist, then µn(m) ≥ µn(m̂).

Proposition 3.5. µn(m) is a continuous function of m in the norm
of L∞(Ω).

Proposition 3.4 and Proposition 3.5 are immediate consequences of
(3.6).

Now we use ≤6≡ to denote that the inequality holds a.e. with strict
inequality on a set of positive measure. The following results can be
easily proved following the ideas in [FG92].

Proposition 3.6. Let m and m̂ be two weights with m ≤6≡ m̂. For any
j ∈ N, if the eigenfunction associated with µj(m) satisfies the MUCP,
then the strict inequality µj(m) > µj(m̂) holds.

Proposition 3.7. Let m be a given weight. Assume that µ(m) is an
eigenvalue of (3.1) and the corresponding eigenfunction u(m) does not
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satisfy the MUCP. Denote N = {x ∈ Ω : u(x) = 0}. Note that
|N | > 0. Then for any weight m̂ satisfying

{x ∈ Ω : |m̂(x)−m(x)| > 0} ⊆ N ,

we obtain that u(m) is also an eigenfunction of some eigenvalue µ(m̂)
of (3.1) with weight m̂ and µ(m̂) = µ(m).

Remark 3.8. Observe that µj(m) = −µ−j(−m), we can obtain an ana-
logue result for negative eigenvalues.

Remark 3.9. Proposition 3.7 implies that for some j ∈ N, if the eigen-
function corresponding to µj(m) does not satisfy the MUCP, then
µj(m) = µ`(m̂) for some ` ∈ N.

To make the paper self contained, we present the proofs of Proposi-
tion 3.6 and 3.7 here.

Proof of Proposition 3.6. By Proposition 3.2, there exists Fj ⊂ dom(Lγ)
with dim(Fj) = j such that

(3.7)
1

µj(m)
= inf

u∈Fj ,‖u‖γ=1

∫
Ω

m|u|2.

Pick any u ∈ Fj with ‖u‖γ = 1.
Case 1. If u achieves the infimum in (3.7), then u is an eigenfunction

corresponding to µj(m), and by the MUCP assumption, we
have that u > 0 a.e. and thus

1

µj(m)
=

∫
Ω

m|u|2 <
∫

Ω

m̂|u|2.

Case 2. If u does not achieve the infimum in (3.7), then we have

1

µj(m)
<

∫
Ω

m|u|2 ≤
∫

Ω

m̂|u|2.

In view of both cases, we conclude that

1

µj(m)
<

∫
Ω

m̂|u|2, for all u ∈ Fj with ‖u‖γ = 1.

Since dim(Fj) = j <∞, by a compactness argument, we then obtain

1

µj(m)
< inf

u∈Fj ,‖u‖γ=1

∫
Ω

m̂|u|2 ≤ max
Fj

inf
u∈Fj ,‖u‖γ=1

∫
Ω

m̂|u|2 =
1

µj(m̂)
,

which leads to the desired result. �



SPECTRAL FRACTIONAL ELLIPTIC OPERATORS 9

Proof of Proposition 3.7. Let u ∈ dom(Lγ) be an eigenfunction associ-
ated with eigenvalue µ(m) which vanishes on a set of positive measure
N . In other words, we have and

Lγu = µ(m)mu = µ(m)m̂u in Ω,

that is, µ(m) is an eigenvalue of (3.1) with weight m̂.
�

4. Remark on Unique Continuation Property

In this section, we would like to discuss the MUCP for the spectral
fractional operator Lγ. Following the exactly same ideas in Appendix
A2 of [GR19] and [ST10], Lγu with u ∈ dom(Lγ) can be determined
by an extension problem. Firstly, we recall that the heat semigroup of
L is defined by

(4.1) e−tLu :=
∞∑
k=0

e−tλk(u, φk)φk(x).

Also, we define the operator

Lb := x−bn+1(∂xn+1x
b
n+1∂xn+1 − xbn+1L)

and the iterated operator

Ljb := (Lb)
j for j ∈ N.

Proposition 4.1. Let γ ∈ R+ \ N and let u ∈ dom(Lγ). Then the
Caffarelli-Silvestre-type extension of u(x), ũ(x, xn+1), satisfies the sys-
tem
(4.2)

L
bγc+1
1−2s ũ(x, xn+1) = 0 in Ω× (0,∞),

lim
xn+1→0

ũ(x, xn+1) = u(x) for all x ∈ Ω,

lim
xn+1→0

Lk1−2sũ(x, xn+1) = cn,γ,kL
ku(x) in Ω, for all k = 1, · · · , bγc,

Lkũ(x, xn+1) = 0 on ∂Ω× (0,∞), for all k = 0, · · · , bγc,

lim
xn+1→0

x1−2s
n+1 ∂n+1L

bγc
1−2sũ(x, xn+1) = cn,γL

γu(x) in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1L

k
1−2sũ(x, xn+1) = 0 in Ω, for all k = 0, · · · , bγc − 1.

In fact, ũ(x, xn+1) can be expressed explicitly by

ũ(x, xn+1) := cγx
2γ
n+1

∫ ∞
0

e−tLu(x)e−
x2n+1

4t
dt

t1+γ
∈ C2(bγc+1),1(Ω× (0,∞)).
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On the other hand, the extension solution ũ(x, xn+1) can also be writ-
ten as

ũ(x, xn+1) := c̃γ

∫ ∞
0

e−tLLγu(x)e−
x2n+1

4t
dt

t1−γ
.

Setting ũ0(x, xn+1) := ũ(x, xn+1), we can rewrite system (4.2) as the
following one
(4.3)

L1−2sũbγc = 0 in Ω× (0,∞),

L1−2sũj = ũj+1 in Ω× (0,∞), for all j = 0, · · · , bγc − 1,

lim
xn+1→0

ũj(x
′, xn+1) = cn,γ,jL

ju(x) in Ω, for all j = 0, · · · , bγc,

ũj = 0 on ∂Ω× (0,∞), for all j = 0, · · · , bγc.
lim

xn+1→0
x1−2s
n+1 ∂n+1ũbγc = cn,γL

γu in Ω,

lim
xn+1→0

x1−2s
n+1 ∂n+1ũj = 0 in Ω, for all j = 0, · · · , bγc − 1.

All boundary conditions in (4.2) and (4.3) hold in L2 sense.
In [GR19], the authors study the fractional operator Lγ in Rn for

γ ∈ R+ \N, where the fractional operator Lγ is defined in terms of the
spectral decomposition. Precisely, we write

(Lf, g) =

∫ ∞
0

λdEf,g(λ), for all f ∈ dom(L), g ∈ L2(Rn),

where dom(L) = {f ∈ L2(Rn) :
∫∞

0
λ2dEf,f (λ) < ∞} and dEf,g(λ) is

the spectral measure corresponding to L. The fractional operator Lγ
is now defined by

(Lγf, g) =

∫ ∞
0

λγdEf,g(λ), for all f ∈ dom(Lγ), g ∈ L2(Rn),

where dom(Lγ) = {f ∈ L2(Rn) :
∫∞

0
λ2γdEf,f (λ) <∞}. The extension

problem related to Lγu for u ∈ dom(Lγ) is similar to (4.2) and (4.3)
except that Ω is replaced by Rn and no boundary restrictions

Lkũ(x, xn+1) = 0 on ∂Ω× (0,∞), for all k = 0, · · · , bγc
and

ũj = 0 on ∂Ω× (0,∞), for all j = 0, · · · , bγc
are required.

In [GR19, Theorem 4], relying on the extension problem, the MUCP
is established for the equation

(4.4) |Lγu| ≤
bγc∑
j=0

|qj(x)||∇ju| in Rn
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under suitable assumptions on aij(x) and qj. Besides of the extension
problem, another key ingredient in the proof of MUCP for (4.4) is
the Carleman estimate for the extension problem. Since the extension
problem is local, the same Carleman estimate can be used to prove the
MUCP for

(4.5) Lγu = q(x)u in Ω

with q ∈ L∞(Ω). To state the MUCP result for (4.5), we first give the
assumptions imposed on aij:
(C1) (aij) : Ω → Rn×n is symmetric, strictly positive definite and

bounded;
(C2) (aij) ∈ C2bγc,1(Ω,Rn×n

sym ) with
∑2bγc+1

k=1 ‖∇kaij‖L∞(Ω) � δ for
some sufficiently small parameter δ > 0;

(C3) aij(0) = δij.
Repeating the proof of Theorem 4 in [GR19], we can prove that

Theorem 4.2 (MUCP for spectral fractional operator Lγ). Let u ∈
dom(Lγ) satisfy

Lγu(x) = q(x)u(x) in Ω,

where ajk satisfies the conditions (C1)–(C3) and q ∈ L∞(Ω). If there
exists a measurable set E ⊂ Ω with |E| > 0 such that u = 0 in E, then
u ≡ 0 in Ω.

For other UCP results for the fractional operators, we refer the reader
to [FF14], [Rül15], [Yu17], etc. and references therein.
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Appendix A. The Min-Max Principle of Eigenvalues of
Compact Operators

In this section, we shall prove the min-max principle in Proposition
3.2. The content of this section can be found in [Fig82] or [FG92]. Let
H be a Hilbert space, and T : H → H be a compact symmetric linear
operator. First of all, we recall a well-known facts about the compact
linear operators.

Proposition A.1 (Existence of orthonormal eigenfunctions). If

λn = sup{(Tx, x) : ‖x‖ = 1, x ⊥ φ1, · · · , φn−1} > 0,
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then there exists φn ∈ H with ‖φn‖ = 1 and φn ⊥ φ1, · · · , φn−1 such
that

(Tφn, φn) = λn and Tφn = λnφn.

Similarly, if

λ−n = sup{(Tx, x) : ‖x‖ = 1, x ⊥ φ−1, · · · , φ−(n−1)} < 0,

then there exists φ−n ∈ H with ‖φ−n‖ = 1 and φ−n ⊥ φ−1, · · · , φ−(n−1)

such that

(Tφ−n, φ−n) = λ−n and Tφ−n = λ−nφ−n.

Using Proposition A.1, we can obtain the following min-max princi-
ple.

Proposition A.2. For each positive integer n, λ±n can be character-
ized as

λn = max
Fn

inf{(Tx, x) : ‖x‖ = 1, x ∈ Fn},(A.1)

λ−n = min
Fn

sup{(Tx, x) : ‖x‖ = 1, x ∈ Fn},(A.2)

where the maximum (minimum) is taken over all subspaces Fn of H
with dim(Fn) = n.

Proof. Here we only prove (A.1). The proof of (A.2) is similar.
Given any subspace Fn of H with dim(Fn) = n, choose x ∈ Fn

with ‖x‖ = 1 and x ⊥ φ1, · · · , φn−1. By Proposition A.1, we have
(Tx, x) ≤ λn. By arbitrariness of such x, we reach

inf{(Tx, x) : ‖x‖ = 1, x ∈ Fn} ≤ λn for all subspace Fn of H with dim(Fn) = n.

This implies

(A.3) sup
Fn

inf{(Tx, x) : ‖x‖ = 1, x ∈ Fn} ≤ λn.

By Proposition A.1, we can choose F̃n := span{φ1, · · · , φn}. For each
x ∈ F̃ with ‖x‖ = 1, we can write

x =
n∑
i=1

xiφi with
n∑
i=1

x2
i = 1.

For such x, we have

(Tx, x) =
n∑
i=1

x2
iλi ≥

n∑
i=1

x2
iλn = λn.

This shows that the supremum in (A.3) is attained by F̃n. So we can
write "max" rather than "sup". �
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