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Abstract. In this work, we study the inverse scattering problem of determining an un-
known refractive index from the far-field measurements using the Bayesian approach. Our
aim is to prove the Bernstein-von Mises theorem for this inverse scattering problem when
the unknown coefficient is in a class of piecewise constant functions. We also provide numer-
ical simulations based on the MCMC algorithm combining with a Gibbs-type sampling and
MALA to verify the Bernstein-von Mises theorem.

1. Introduction

In this paper, we apply the Bayes method to the inverse scattering problem having a piece-
wise constant coefficient as the unknown refractive index. Our aim is to prove a Bernstein-von
Mises theorem and uncertainty quantification of the estimation by the posterior mean. To
describe the inverse problem, let q ∈ L∞(Rn) be a complex-valued function satisfying q ≡ 0
in Rn \ B̄, where B is some open ball in Rn (n = 2 or 3). We consider the propagation of an
acoustic wave in Rn scattered by the inhomogeneous medium q. Let uq = uinc + usca

q satisfy

∆uq + k2(1 + q)uq = 0 in Rn, (1.1)

and the Sommerfeld radiation condition

lim
|x|→∞

|x|
n−1
2

(
∂usca

q

∂|x|
− ikusca

q

)
= 0. (1.2)

Assume that uinc is the plane incident field, i.e. uinc = eikx·d with d ∈ Sn−1. Then the
scattered field usca

q satisfies

usca
q (x, d) =

eik|x|

|x|n−1
2

u∞
q (x̂, d) +O(|x|−

n+1
2 ) as |x| → ∞, (1.3)

where x̂ = x/|x|, see for example, [Ser17, Page 232]. The inverse scattering problem is to
determine the perturbation of the refractive index q from the knowledge of the far-field pattern
or scattering amplitude u∞

q (x̂, d) for all x̂, d ∈ Sn−1 at one fixed energy k2. The investigation
of the inverse scattering problem of identifying the inhomogeneity or the obstacle has been
well documented. We refer the reader to [CK19, CC14, CCH22, KG07, NP15] and references
therein for the thorough development of the problem. On the other hand, the book [Che18]
describes related results from the engineer’s viewpoint.

It was known that the far-field pattern u∞
q (x̂, d) uniquely determines the near-field data of

(1.1) on ∂B, which in turn, determines the Dirichlet-to-Neumann map of (1.1) provided k2
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is not an Dirichlet eigenvalue of ∆ + k2(1 + q) on B, for example, see [Nac88]. Combining
this fact and the uniqueness results proved in [SU87, Buk08], one can show that the far-field
pattern u∞

q (x̂, d) for all x̂, d ∈ Sn−1 uniquely determines q, at least when q is essentially
bounded. For the stability, a log-type estimate was derived in [HH01] reflecting the severe
ill-posedness of the inverse problem. However, a Lipschitz stability estimate for the inverse
scattering problem with a piecewise constant refractive index was proved in [Bou13] or in
[AS22] by u∞

q (x̂, d), ∀ x̂, d ∈ Sn−1 or by u∞
q (x̂, d) for finite number of x̂, d, respectively.

A nonparametric Bayesian approach for estimation of the unknown inhomogeneity of the
refractive index q from noisy discrete measurements of the far-field pattern {u∞

q (x̂i, dj)}
for a suitable set of x̂i, dj ∈ Sn−1 was recently studied in [FKW23], where the consis-
tency of the posterior distribution with a contraction rate of (lnN)−δ for some δ > 0
was established, where N is the number of statistical experiments. We remark that the
logarithmic-type contraction rate is due to the severe ill-posedness of the inverse scattering
problem. There is a vast of literature investigating the consistency of the nonparamet-
ric Bayes method for both linear and nonlinear inverse problems. We refer the reader to
[ALS13, ASZ14, GGVDV00, KVDVvZ11, Ray13, Vol13, AN20, GN20, Kek22, MNP21a] and
references therein. Furthermore, two nice monographs [GVdV17, Nic23] contain more ex-
haustive references.

Inspired by the result in [Boh22], where the EIT problem was studied in the case of
piecewise constant conductivities, we will study the statistical guarantees for the inverse
scattering problem when the inhomogeneity q lies in a fixed finite dimensional space. The
goal is to prove the Bernstein-von Mises (BvM) theorem and to establish the estimation of
q by posterior means with optimal convergence guarantees. The optimality is understood in
the sense of the asymptotic minimax optimal variance for estimators of q with square loss.
The BvM theorem implies that credible sets have valid frequentist coverage of true parameter
asymptotically. Under the condition that the unknown parameter q is piecewise constant, the
main theorem can be regarded as a parametric BvM theorem. For more general description
of the parametric BvM theorem, we refer to [VdV00] for further details.

In addition to the theoretical study of the BvM theorem, we also provide a numerical veri-
fication of the theorem in this paper. The key is to sample the posterior distribution obtained
from the Bayes formula and to compute the posterior mean. Our numerical method is based
on the MCMC algorithm combining with a Gibbs-type sampling and MALA (Metropolis-
adjusted Langevin algorithm). The simulations in Section 6 clearly demonstrate that the
posterior mean is an efficient estimator of the unknown piecewise constant inhomogeneity q.
This paper is organized as follows. In Section 2, we formulate the inverse scattering problem

in the statistical setting and state the main results. We then describe the consequences of the
BvM theorem, Theorem 2.4, in Section 3. In Section 4, we prove some analytic aspects of the
inverse scattering problem in the case of piecewise constant inhomogeneity q. In Section 5,
we present the proofs of theorems stated in Section 2. Finally, some numerical simulations
are given in Section 6.

2. General framework and main results

In this section, we will follow the framework introduced in [MNP21b], [NP21], or [Boh22]
to setup the statistical model. Let (X ,A, λ) be a probability space and V be a finite-
dimensional vector space of fixed dimension D with inner product ⟨·, ·⟩V and norm ∥ ·∥V . We
denote L∞(X ) := L∞(X ,A, λ) the bounded measurable functions and L2(X ) := L2(X ,A, λ)
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the space of λ-square integrable functions with corresponding inner product ⟨·, ·⟩L2(X ). On
the other hand, let P be a probability measure on the product space V × X and L2(P ) =
L2(V ×X , P ) the square integrable functions on V ×X with respect to P .

Let Θ be the set of parameters which is a bounded subset of K-dimensional space. The
inverse problem is encoded in a forward map

G : Θ → L2(X ), Θ ∋ θ → Gθ.

We consider the measurement model with Gaussian noise

Yi = Gθ(Xi) + εi, i = 1, · · · , N, (2.1)

whereXi
iid∼ λ and εi

iid∼ ND(0, I), aD-variant normal distribution with mean 0 and covariance
I. Here N denotes the number of experiments. We also assume that {Xi}Ni=1 and {εi}Ni=1 are
drawn independently. Let Pθ be the probability distribution of (Y1, X1) and PN

θ = Pθ⊗· · ·⊗Pθ

the law of the random vector ZN = {(Yi, Xi), i = 1, · · · , N}. We use EN
θ to represent

the corresponding expectation operator. Finally, we denote the sequence of experiments
PN = {PN

θ : θ ∈ Θ}. For N = 1, we write P = P1 = {Pθ : θ ∈ Θ}, which is sometimes called
model or experiment.

Next we put the inverse scattering problem with a piecewise constant medium into the
framework described above. Assume that {x̂j : j ∈ N} ⊂ Sn−1 and {dl : l ∈ N} ⊂ Sn−1

are two dense subsets of Sn−1 (possibly identical). Let S ∈ N be chosen (will be specified
later) and set (S, U) = {(1, · · · , S),Uniform}. We consider two kinds of observation data
corresponding to (2.1). Let q = qθ be determined by θ ∈ Θ and define Gθ through the
far-field pattern u∞

q (x̂, d).

(I) Consider the iid random samples Xi ∈ (X , λ) = (S, U), i = 1, 2, · · · , N . Let us denote

Gθ(Xi)

=
(
Re(u∞

q (x̂Xi
, d1)), Im(u∞

q (x̂Xi
, d1)), · · · ,Re(u∞

q (x̂Xi
, dS)), Im(u∞

q (x̂Xi
, dS))

)T
.

Note that Gθ(Xi) ∈ R2S and thus V = R2S, i.e., D = 2S.

(II) Next, we consider Xi = (X
(1)
i , X

(2)
i ) ∈ (X , λ) = (S ⊗S, U ⊗U), i = 1, · · · , N , and set

Gθ(Xi) =
(
Re(u∞

q (x̂
X

(1)
i
, d

X
(2)
i
)), Im(u∞

q (x̂
X

(1)
i
, d

X
(2)
i
))
)T

.

In this case, Gθ(Xi) ∈ R2 and V = R2, i.e., D = 2.

Now we describe the parameter space Θ. Let {Bi}Ji=1 be non-empty open subsets of B
satisfying Bi ∩Bj = ∅ for i ̸= j and B̄ = ∪J

i=1B̄i. Let l, L,m,M be real numbers with m > 0
and {qi}Ji=1 be complex numbers satisfying

ℓ ≤ Re(qi) ≤ L, m ≤ Im(qi) ≤ M, for i = 1, · · · , J. (2.2)

We then assume the refractive index q =
∑J

i=1 qiχi, where χi is the characteristic function of
Bi and qi satisfies (2.2). In other words, the parameter space is

Θ = ([ℓ, L]× [m,M ])J ⊂ R2J , (2.3)

namely, K = 2J , and θ = ⊗J
i=1(Re(qi), Im(qi)) ∈ Θ.

Let us consider a prior Π on Θ with a continuous and positive Lebesgue density π(θ) ∈
C(Θ, (0,∞)), i.e.,

dΠ(θ) = π(θ)dθ. (2.4)
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By Bayes’ formula, the posterior distribution Π(·|ZN) given the observation data ZN ∈
(V ×X )N is

Π(A|ZN) =

∫
A
eℓN (θ)dΠ(θ)∫

Θ
eℓN (θ)dΠ(θ)

,

for any Borel set A ⊆ Θ, where

ℓN(θ) = ℓN(θ|ZN) = −1

2

N∑
i=1

∥Yi −Gθ(Xi)∥2V ,

is the joint log-likelihood function.
To state main theorems, we would like to describe ”information theoretic” features of the

model P .

Definition 2.1. The model P = {Pθ : θ ∈ Θ} is said to be differentiable in quadratic mean
(DQM) if there exists a linear map (score operator of P at θ)

Aθ : RK → L2(V ×X , Pθ),

such that ∫
V×X

[
dP

1/2
θ+h − dP

1/2
θ − 1

2
Aθ[h]dP

1/2
θ

]2
= o(∥h∥2) as ∥h∥ → 0, (2.5)

where ∥h∥ is any equivalent norm of RK . The information matrix/operator of P at θ is
defined by

Nθ = EPθ [AT
θ Aθ] : RK → RK , i.e., Nθ ∈ RK×K . (2.6)

Remark 2.2. As explained in [Boh22, Remark 4.3], AT
θ (Y,X) = ℓ̇θ(Y,X) and Nθ =

EPθ [ℓ̇θ(Y,X)ℓ̇Tθ (Y,X)]. We refer to [VdV00, (5.38)] for the definition of ℓ̇θ(Y,X).

The first theorem is to prove the invertibility of the information matrix Nθ in our inverse
scattering problem.

Theorem 2.3. Let the model P arise from the statistical scattering experiment (2.1) with
finite dimensional parameters (piecewise constant coefficient described in (2.2)). Then the
information matrix Nθ is invertible.

Next theorem is the main result of the paper, a Bernstein-von Mises theorem for the inverse
scattering problem with the piecewise constant coefficient. Denote L(·) the law of a random
variable in RK and ∥ · ∥TV the total variation of probability measures on RK . Furthermore,
| · | denotes any Euclidean norm in RK .

Theorem 2.4. Let the experiments PN , N ∈ N, arise from the statistical scattering experi-
ment (2.1) with the inhomogeneity q defined by (2.3). Assume that the prior Π on Θ is given
by (2.4) and θ0 ∈ Θ \ ∂Θ. Let the observation data ZN = {(Yi, Xi)}Ni=1 be described in either
(I) or (II) above with a sufficiently large S given in Lemma 4.1. Then, if θ ∼ Π(·|ZN), then∥∥∥L(√

N(θ −Ψθ0,N)|ZN

)
−NK(0,N−1

θ0
)
∥∥∥
TV

PN
θ0−→ 0, as N → ∞, (2.7)

where NK(0,N−1
θ0
) is a K-variate normal distribution with mean 0 and variance N−1

θ0
, and the

re-centering

Ψθ0,N = θ0 +
1

N

N∑
i=1

N−1
θ0
Aθ0(Yi, Xi).
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3. Consequences of Theorem 2.4

We will postpone the proofs of Theorem 2.3 and 2.4 to Section 5. Here we would like to
discuss some interesting consequences of Theorem 2.4. In order to apply Theorem 2.4 to
obtain an uncertainty quantification for estimation of θ, we need to choose a more tractable
centering instead of Ψθ0,N . A natural choice is the posterior mean θ̄N = EΠ[θ|ZN ], which is
computable, for example, via MCMC. In other words, the following holds true:∥∥∥L(√

N(θ − θ̄N)|ZN

)
−NK(0,N−1

θ0
)
∥∥∥
TV

PN
θ0−→ 0, as N → ∞, (3.1)

where, as above, θ ∼ Π(·|ZN). To prove (3.1), it suffices to show that

√
N(EΠ[θ|ZN ]−Ψθ0,N)

PN
θ0−→ 0, as N → ∞, (3.2)

which can be achieved by following the argument in the proof of [MNP21b, Lemma 4.6]
or in Step VII of the proof of [Nic20, Theorem 8]. In carrying out the proof, we need a
consistency theorem with explicit contraction rate for the posterior distribution Π(·|ZN).
This consistency result can be established by using the method in [FKW23]. On the other

hand, since
√
NΨθ0,N

d−→ W , where W := NK(0,N−1
θ0
), it follows from (3.2) that

√
N(θ̄N − θ0)

d−→ W. (3.3)

On the other hand, from (2.7), we can also derive a consistency theorem for the posterior

distribution Π(·|ZN) with the optimal contraction rate 1/
√
N . Precisely, for every sequence

{MN} with MN → ∞ such that

Π(|θ − θ0| > MN/
√
N |ZN)

PN
θ0−→ 0. (3.4)

Indeed, (3.4) can be proved by using (2.7), Prohorov’s theorem, and the CLT applied to
1√
N

∑N
i=1 N

−1
θ0
Aθ0(Yi, Xi).

Another useful application of Theorem 2.4 is the Bayesian uncertainty quantification for
θ and its implication to the frequentist probability coverage of the true parameter. Let
0 < α < 1 be a given confidence level. Define Bayesian credible sets CN and the quantiles
RN by

CN = {θ ∈ Θ : |θ − θ̄N | ≤ RN/
√
N}, Π(CN |ZN) = 1− α.

Observe that the determination of credible sets CN requires only the computation of the
posterior mean θ̄N and the quantiles RN , which can be calculated numerically by an MCMC
method. Following the argument in [Nic23, Sec 4.1.3], let us compute the frequentist coverage
of CN as N → ∞. Denote Φ(t) = Pr(|W | ≤ t). Consequently, Φ is continuous and strictly
increasing. In view of (3.1), we have

Φ(RN) = Φ(RN)− Π(CN |ZN) + (1− α)
PN
θ0−→ (1− α).

The continuity of the inverse Φ−1 yields

RN

PN
θ0−→ Φ−1(1− α).

By Slutsky’s lemma and (3.3), we obtain

Φ−1(1− α)

RN

√
N(θ̄N − θ0)

d−→ W. (3.5)
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Consequently, from (3.5) and the continuity of | · |, it yields

PN
θ0
(θ0 ∈ CN) =PN

θ0
(
√
N |θ0 − θ̄N | ≤ RN)

=PN
θ0

(
Φ−1(1− α)

RN

√
N |θ0 − θ̄N | ≤ Φ−1(1− α)

)
→Φ(ϕ−1(1− α)) = 1− α.

In other words, the posterior credible sets CN are efficient frequentist confidence sets for the
parameter θ0.

4. Some analytic aspects of the inverse scattering problem

In this section, we will review some theoretical aspects of the inverse scattering problem
before proving the theorems stated in Section 3. One of the main goal is to very the DQM
property for the statistical experiment arising from the inverse scattering problem. Let
uq(x, d) be the total field satisfying (1.1) and (1.2). Equivalently, uq can be expressed by the
Lippmann-Schwinger integral equation

uq(x, d) = uinc(x, d) + k2

∫
B

q(y)uq(y, d)Ψ(x− y)dy, (4.1)

where uinc(x, d) = eikx·d and Ψ(x) is the fundamental solution of the Helmholtz operator in
Rn, i.e.,

Ψ(x) =


i

4
H

(1)
0 (k|x|) (n = 2)

eik|x|

4π|x|
(n = 3)

,

where H
(1)
0 (z) is the Hankel function of order 0. The far-field pattern can be explicitly written

as

u∞
q (x̂, d) = Cn

∫
B

e−ikx̂·yq(y)uq(y, d)dy, (4.2)

where uq(x, d) is the solution to (4.1), and the constant Cn depending on only n is given by

Cn =


k2e

iπ
4

√
8πk

(n = 2)

k2

4π
(n = 3)

.

It is not hard to show that for any x̂, d ∈ Sn−1

|u∞
q (x̂, d)| ≤ C∥q∥L∞(B)(1 + ∥q∥L∞(B)), (4.3)

where C > 0 is an absolute constant. Define the forward map

T : L∞(B) → L2(Sn−1 × Sn−1),

by Tq := u∞
q (x̂, d). As mentioned in the Introduction, from [Nac88] and [SU87], we see that

T is injective, (4.4)

i.e., if q1, q2 ∈ L∞(B) and Tq1 = Tq2, then q1 = q2.
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Define L∞
+ (B) = {q ∈ L∞(B) : Im(q) ≥ m > 0 a.e.} and EJ = {q ∈ L∞(B) : q = qθ =∑J

l=1(θl + iθ̃l)χl, (θ1, θ̃1, · · · , θJ , θ̃J) ∈ R2J}, where χl is the characteristic function of Bl and
{Bl}Jl=1 are domains defined in Section 2. From (4.4), it follows that

T |EJ∩L∞
+ (B) is injective. (4.5)

Recall from [Bou13, Lemma 3.3, Lemma 3.4] that the mapping T : L∞
+ (B) → L2(Sn−1×Sn−1)

is differentiable and its Fréchet derivative at q ∈ L∞
+ (B), T ′(q) : L∞(B) → L2(Sn−1 × Sn−1),

is bounded and injective. In fact, from [CK19, Theorem 11.6], the Fréchet derivative T ′(q)
can be expressed explicitly by

T ′(q)h = v∞q,h(x̂, d) for all h ∈ L∞(B),

where v∞q,h is the far field pattern of the radiating solution v = vq,h to

∆v + k2(1 + q)v = −k2huq(·, d) in Rn.

From [BL05, Lemmas 2.2, 2.3, 2.4, 2.6] (or some related results in [FP21]) , we can see that
for all x̂, d ∈ Sn−1

|u∞
q+h(x̂, d)− u∞

q (x̂, d)− (T ′(q)h)(x̂, d)| ≤ C0(1 + ∥q∥L∞(B))∥h∥2L∞(B), (4.6)

and

|u∞
q+h(x̂, d)− u∞

q (x̂, d)| ≤ C ′
0(1 + ∥q∥L∞(B))

2∥h∥L∞(B), (4.7)

for some general constants C0, C
′
0 > 0.

We also prove a (Lipschitz) stability of determining a piecewise constant coefficient q by
some finite measurements of the far-field pattern.

Lemma 4.1. Assume that {x̂i, i ∈ N} and {dl : l ∈ N} are two dense subsets of Sn−1

(possibly identical). Let W be a finite-dimensional subspace of L∞(B) and K ⊂ W ∩ L∞
+ (B)

a convex and compact set. Then, there exists a large enough S0 ∈ N such that if S ≥ S0

∥q1 − q2∥L∞(B) ≤ C1∥
(
u∞
q1
(x̂i, dl)− u∞

q2
(x̂i, dl)

)S
i,l=1

∥2, q1, q2 ∈ K, (4.8)

for some constant C1 > 0. Moreover, for any q ∈ K ⊂ EJ ∩ L∞
+ (B), then for all S ≥ S0,

there exists a constant C2 = C2(S) > 0 such that

∥h∥L∞(B) ≤ C2∥
(
v∞q,h(x̂i, dl)

)S
i,l=1

∥2, for all h ∈ L∞(B). (4.9)

Proof. Estimate (4.8) is proved in [AS22, Theorem 5]. We will prove (4.9) using the idea
in [AS22]. Recall that the far-field pattern is analytic on Sn−1 × Sn−1. Since dim(Sn−1 ×
Sn−1) = 2(n − 1), and 3 > 2(n−1)

2
(if n = 2, 3), H3(Sn−1 × Sn−1) is continuously embedded

into C(Sn−1 × Sn−1), and so it is a reproducing kernel Hilbert space (RKHS) consisting of
continuous functions. Let QS : H3(Sn−1 × Sn−1) → H3(Sn−1 × Sn−1) be the projection onto
ZS defined by

ZS := span{k(x̂i,dl) : i, l = 1, ..., S},
where k(x̂i,dl) ∈ H3(Sn−1×Sn−1) is a reproducing kernel for RKHS H3(Sn−1×Sn−1) satisfying

f(x̂i, dl) = ⟨f, k(x̂i,dl)⟩H3(Sn−1×Sn−1), f ∈ H3(Sn−1 × Sn−1).

By the argument in [AS22, Example 2 and Theorem 7], we have

QS → IH3(Sn−1×Sn−1) (in norm topology), as S → ∞, (4.10)
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and

∥QSf∥H3(Sn−1×Sn−1) ≤ CS

∥∥∥(f(xi, dl))
S
i,l=1

∥∥∥
2
, f ∈ H3(Sn−1 × Sn−1), (4.11)

for some constant CS > 0. In view of (4.10), we can choose a large enough S0 ∈ N such that
for all S ≥ S0, (I − ∥I − QS∥) > 0. By the injectivity of T ′(q) : L∞(B) → L2(Sn−1 × Sn−1)
([Bou13, Lemma 3.4]), there is a constant C > 0 such that

∥T ′(q)h∥L2(Sn−1×Sn−1) ≥ C∥h∥L∞(B), h ∈ L∞(B),

which combining with (4.11) implies

CS∥
(
v∞q,h(x̂i, dl)

)S
i,l=1

∥2 ≥ ∥QST
′(q)h∥H3(Sn−1×Sn−1)

≥ ∥T ′(q)h∥H3(Sn−1×Sn−1) − ∥(I −QS)T
′(q)h∥H3(Sn−1×Sn−1)

≥ (I − ∥I −QS∥)∥T ′(q)h∥H3(Sn−1×Sn−1)

≥ C(I − ∥I −QS∥)∥h∥L∞(B),

and thus (4.9) with C2 = CS[C(I − ∥I −QS∥)]−1. □

Remark 4.2. In the case of piecewise constant refractive index described above, we simply
take W = EJ in Lemma 4.1.

5. Proofs of Theorems

Let the parameter space Θ be defined as in (2.3) and consider q = qθ ∈ EJ with θ ∈ Θ. The
statistical forward map Gθ(X) with X ∈ (X , λ) is defined in either (I) or (II) in Section 2.
It follows directly from (4.3) that G = supθ∈Θ ∥Gθ∥∞ < ∞. For θ in the interior of Θ, the
Fréchet derivative T ′(q) is written by

T ′(q) = Iθ,

where Iθ : RK → L2(X ) is defined in Proposition A.1. In view of (4.6), we see that (A.1)
holds true, i.e., for any x ∈ X and h ∈ RK ,

∥Gθ+h(x)−Gθ(x)− Iθ[h](x)∥V = o(∥h∥) as ∥h∥ → 0.

Moreover, it can be deduce from (4.7) that (A.2) is satisfied as well. Combining all discussions
above, we can conclude that the statistical model P = {Pθ : θ ∈ Θ} satisfies DQM with the
help of Proposition A.1.

Proof of Theorem 2.3. It is readily seen from (4.9) that Iθ is injective. Therefore, in view of
(A.4), the information matrix Nθ is invertible. □

Proof of Theorem 2.4. Theorem 2.4 can be seen as a parametric Bernstein-von Mises theo-
rem. In view of Remark 2.2, Theorem 2.4 is equal to [VdV00, Theorem 10.1]. The invertibility
of the information matrix Nθ is already proved in Theorem 2.3. As explained above, the sta-
tistical experiment P has the DQM property. The prior given in (2.4) is clearly absolutely
continuous at any interior point of Θ. To verify the separation condition [VdV00, (10.2)],
by noting the paragraph before [VdV00, Theorem 10.1], it suffices to use the fact that Θ
is compact, θ → Pθ is continuous, and check the identifiability Pθ, which is satisfied due to
(4.8).

□
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6. Numerical simulations

In this section, we provide numerical simulations to demonstrate the reconstruction of the
piecewise constant inhomogeneous medium q by the Bayes method and to justify the BvM
theorem.

6.1. Set up. We simply consider the case when n = 2. The data in the inverse scattering
problem is the far-field pattern u∞

q which can be explicitly written as

u∞
q (x̂, d) =

k2e
iπ
4

√
8πk

∫
B

e−ikx̂·yq(y)uq(y, d)dy, (x̂, d) ∈ S1 × S1.

We approximately compute the above integral by the Monte Carlo method, where the total
field uq in the integral is the solution to the Lippmann-Schwinger integral equation (4.1). This
integral equation is numerically calculated based on Vainikko’s method [SV01, Vai00, Kre13].
Let S ∈ N and set

x̂j := (cos(2πj/S), sin(2πj/S)) , j = 1, ..., S,

and

dl := (cos(2πl/S), sin(2πl/S)) , l = 1, ..., S.

Then, our statistical experiments is given by

Yi = Gθ(true)(Xi) + ϵi,

and

Xi = (X
(1)
i , X

(2)
i )

iid∼ (S ⊗ S, U ⊗ U),

where (S, U) = {(1, · · · , S),Uniform}, and

εi
iid∼ N(0, σI2),

and θ(true) ∈ R2J is the true parameter. Here, Gθ : S × S → R2 is given by

Gθ(Xi) =
(
Re(u∞

θ (x̂
X

(1)
i
, d

X
(2)
i
), Im(u∞

θ (x̂
X

(1)
i
, d

X
(2)
i
)
)
.

In other words, in this simulation, we only consider the collection of observation data de-
scribed in (II) in Section 2. We believe that the results for this case is enough to justify
our method. Let the prior Π be the uniform distribution on Θ and the observation data
ZN = (Xi, Yi)i=1,...,N , then the posterior distribution Π(θ|ZN) is given by

Π(θ|ZN) ∝ eℓN (θ), (6.1)

where ℓN(θ) is the log-likelihood function given by

ℓN(θ) = − 1

2σ2

N∑
i=1

∥Yi −Gθ(Xi)∥22.

We want to point out that the posterior (6.1) should be multiplied by the characteristic
function of Θ. Fortunately, in the numerical computation, ignoring this term is harmless.
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Algorithm 1 Metropolis–Hastings

Require: Initial guess θ(0), Proposal (2J-dimensional) distribution P , Log-likelihood func-
tion ℓN .

1: for t=0,...,T’ do
2: Sample θ(∗) from P (·|θ(t)).
3: Compute A = A(θ(∗)|θ(t)).
4: Generate a uniform random number u ∈ [0, 1].
5: if u < A then
6: θ(t+1) = θ(∗) (Accept θ(∗))
7: else
8: θ(t+1) = θ(t) (Reject θ(∗))
9: end if
10: end for

11: Correct accepted states, re-named as {θ(t)}t≤T .
12: return A sequence {θ(t)}t≤T .

6.2. Sampling algorithm. Here, we adopt the Metropolis–Hastings algorithm [MRR+53,
Has70, Tie98], which is a popular MCMC method to obtain samples of the posterior dis-
tribution Π(θ|ZN). For completeness, we give the details of this scheme in Algorithm 1.

When parameter space is high-dimensional, it is known that finding a suitable proposal
distribution is difficult as the individual dimension may behave differently. As an alternative
approach, we also use the Gibbs sampling, in which one chooses the candidate for each
dimension iteratively, rather than the one for all dimensions at once [GG84, GS90]. Denoting
θ ∈ R2J by

θ = (θ1, ..., θ2J), θj ∈ R,
we write the details of this scheme in Algorithm 2. The proposal distribution P (·|θt) and the
acceptance probability A in Algorithm 1 and 2 will be specified below.

Here, we consider two cases of P and A:

• Normal distribution, that is,

P (·|θ) = N (θ, hI).

In this case, we employ the acceptance probability A as

A(·|θ) = min{1, eℓN (·)−ℓN (θ)}.

• MALA [Bes94, RT96, RR98], that is,

P (·|θ) = N (θ +
h

2
∇ℓN(θ), hI).

In this case, we employ the acceptance probability A as

A(·|θ) = min{1, eℓN (·)−ℓN (θ)+ 1
2h2

∥·−θ+h2

2
∇θℓN (θ)∥22−

1
2h2

∥θ−·+h2

2
∇·ℓN (·)∥22}.

As above, N (θ,Σ) denotes the multivariate normal distribution with mean θ and covariance
matrix Σ.
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Algorithm 2 Gibbs sampling

Require: Initial guess θ(0), Proposal (one-dimensional) distribution P , Log-likelihood func-
tion ℓN .

1: θ(0,0) = θ(0)

2: for t=0,...,T’ do
3: for j=1,...,2J do

4: Sample θ
(∗)
j from P (·|θ(t,j−1)).

5: Denote by θ(∗) = (θ
(t,j−1)
1 , ..., θ

(t,j−1)
j−1 , θ

(∗)
j , θ

(t,j−1)
j+1 , ..., θ

(t,j−1)
2J ).

6: Compute A = A(θ(∗)|θ(t,j−1)).
7: Generate a uniform random number u ∈ [0, 1].
8: if u < A then
9: θ(t,j) = θ(∗) (Accept θ(∗))
10: else
11: θ(t,j) = θ(t,j−1) (Reject θ(∗))
12: end if
13: end for
14: θ(t+1,0) = θ(t,2J)

15: end for

16: Correct accepted states, re-named as {θ(t)}t≤T .
17: return A sequence {θ(t)}t≤T .

6.3. Visualization. In what follows, we always employ the following parameters:

• Wave number k = 2.5.
• Noise level σ = 0.1.
• Initial guess θ(0) ≡ 0 (both real and imaginary parts are 0).

By using sampling methods described in the previous subsection, we collect a sequence of
samplings form the posterior distribution Π(θ|ZN), denoting its sequence by {θ(t)}0≤t≤T where
T is the number of acceptances.

Figure 1 shows two inhomogeneous refractive indices with four and eight pieces, which
are our ground truths. The dimensions of their parameter space are 2J = 2 × 4 = 8 and
2J = 2× 8 = 16, respectively.

Figures 2, 3, 4, and 5 are the visualizations of sample means given by

θ
(T )

=
1

T + 1

T∑
t=0

θ(t),

In our simulations, we use following four combinations of sampling algorithms and proposal
distributions:

(Algorithm, Proposal) =


(Metropolis–Hastings, Normal distribution)
(Metropolis–Hastings, MALA)
(Gibbs sampling, Normal distribution)
(Gibbs sampling, MALA)

.

For Metropolis–Hastings sampling and Gibbs sampling, we choose h = 0.05 and h = 0.1,
respectively. In the case of four pieces, we take S = 10 and N = 10, while in the case of eight
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(a) Four pieces

(b) Eight pieces

Figure 1. Two ground truth q’s. The first and second columns correspond
to the real and imaginary parts, respectively.

pieces, we take S = 30 and N = 30. The first and second columns in Figures 2, 3, 4, and 5
correspond to the real and imaginary parts of sample means, respectively. The third column
in Figures 2, 3, 4, and 5 represent the mean square error (MSE) between the true parameter
θ(true) and the sample mean up to the current state θ(t) defined by

θ
(t)

=
1

t+ 1

t∑
i=0

θ(t),

i.e., MSE et is given by

et := ∥θ(true) − θ
(t)∥22,

for t = 0, ..., T . From these figures, we can see that the combination of (Algorithm, Proposal)
= (Gibbs sampling, MALA) provides the best reconstruction among other pairs.

The verification of the BvM theorem is shown in Figure 6. Precisely, Figure 6 shows the

histogram of the samples obtained from the law L
(√

N(θ − θ̄N)|ZN

)
, where θ ∼ Π(·|ZN), in

the increasing order of N = 5, 15, 25, 35 and fixed S = 100. From the numerical results above,
we demonstrate the BvM theorem using the combination of Gibbs sampling and MALA and
the case of four pieces (J = 4) for the true parameter q. Each histogram is a one-dimensional
plot showing the projection of the samples onto a certain eigenvector of N−1

θ(true)
∈ R8×8,

which can be computed by (A.4). Here, we only plot three histograms corresponding to
three largest eigenvalues. The blue curve in each figure is the one-dimensional normal with
zero mean whose variance is the eigenvalue of the associated eigenvector for N−1

θ(true)
.
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(a) Four pieces

(b) Eight pieces

Figure 2. (Metropolis–Hastings, Normal distribution)

(a) Four pieces

(b) Eight pieces

Figure 3. (Metropolis–Hastings, MALA)
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(a) Four pieces

(b) Eight pieces

Figure 4. (Gibbs sampling, Normal distribution)

(a) Four pieces

(b) Eight pieces

Figure 5. (Gibbs sampling, MALA)
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(a) N = 5

(b) N = 15

(c) N = 25

(d) N = 35

Figure 6. Demonstration of BvM theorem. Samples are obtained by using
Gibbs sampling and MALA.

Figure 6 indicates that as N increases, the shape of the histogram is getting closer to
the blue curve, which clearly justifies the BvM theorem for the inverse scattering problem
considered in this paper.
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Appendix A. DQM and Information operator

As described above, let P = {Pθ : θ ∈ Θ} be a statistical experiment polluted by Gaussian
noise, arising from the forward map

G : Θ ⊂ RK → L2(X ), θ 7→ Gθ.

The purpose of the section is to show that the differentiability of G implies the DQM property
of P .

Proposition A.1. Let G := supθ∈Θ ∥Gθ∥∞ < ∞ and θ be in the interior of Θ. Assume that
there exists a bounded linear operator Iθ : RK → L2(X ) such that for all x ∈ X

∥Gθ+h(x)−Gθ(x)− Iθ[h](x)∥V = o(∥h∥) as ∥h∥ → 0. (A.1)

Furthermore, suppose that there exist ϵ, B > 0 such that

∥Gθ+h −Gθ∥∞ ≤ B∥h∥ for ∥h∥ < ϵ. (A.2)

Then P satisfies the DQM property at θ defined in Definition 2.1 with the score operator Aθ

given by

Aθ : RK → L2(V ×X , Pθ), Aθ[h](y, x) = ⟨y −Gθ(x), Iθ[h](x)⟩V . (A.3)

The information operator Nθ defined by (2.6) can be described explicitly as

Nθ = E[AT
θ (Y,X)Aθ(Y,X)] where (Y,X) ∼ Pθ.

On the other hand, according to [NP21, Proposition 1], we can see that the information
operator can be expressed by

Nθ = I∗θIθ. (A.4)

Proof of Proposition A.1. Denote

fh(y, x) := log(dP
1/2
θ+h/dP

1/2
θ (y, x))

=
1

2
⟨y,Gθ+h(x)−Gθ(x)⟩V − 1

4
(∥Gθ+h(x)∥2V − ∥Gθ(x)∥2V ).

This proposition is an immediate consequence of the following limit∫
V×X

[
efh − 1− 1

2
Aθ[h]

∥h∥

]2
dPθ → 0 as ∥h∥ → 0. (A.5)

For any (y, x) ∈ V × X , by (A.1) and the chain rule, the integrand in the above integral
vanishes as ∥h∥ → 0. Note that

|efh(y,x) − 1|
∥h∥

≤ e|fh(y,x)|
|fh(y, x)|

∥h∥
.

It is readily seen that

|fh(y, x)| ≤
1

2
∥y∥V ∥Gθ+h(x)−Gθ(x)∥V +

G2

2
∥Gθ+h(x)−Gθ(x)∥V ,

and thus

|fh(y, x)|
∥h∥

≤ 1

2
∥y∥V

∥Gθ+h(x)−Gθ(x)∥V
∥h∥

+
G2

2

∥Gθ+h(x)−Gθ(x)∥V
∥h∥

.
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By (A.1), (A.2), (A.3), and Fernique’s theorem, for any ∥h∥ small,[
efh − 1− 1

2
Aθ[h]

∥h∥

]
∈ L2(Pθ),

which implies (A.5) by the dominated convergence theorem. □

References

[ALS13] Sergios Agapiou, Stig Larsson, and Andrew M Stuart. Posterior contraction rates for the
bayesian approach to linear ill-posed inverse problems. Stochastic Processes and their Applica-
tions, 123(10):3828–3860, 2013.

[AN20] Kweku Abraham and Richard Nickl. On statistical calderón problems. Mathematical Statistics
and Learning, 2(2):165–216, 2020.

[AS22] Giovanni S Alberti and Matteo Santacesaria. Infinite-dimensional inverse problems with finite
measurements. Archive for Rational Mechanics and Analysis, 243:1–31, 2022.

[ASZ14] Sergios Agapiou, Andrew M Stuart, and Yuan-Xiang Zhang. Bayesian posterior contraction
rates for linear severely ill-posed inverse problems. Journal of Inverse and Ill-posed Problems,
22(3):297–321, 2014.

[Bes94] JE Besag. Comments on “representation of knowledge in complex systems “by u. Grenander
and MI Miller: Journal of the Royal Statistical Society B, 56:591592, 1994.

[BL05] Gang Bao and Peijun Li. Inverse medium scattering for the helmholtz equation at fixed fre-
quency. Inverse Problems, 21(5):1621, 2005.

[Boh22] Jan Bohr. A bernstein–von-mises theorem for the calderón problem with piecewise constant
conductivities. Inverse Problems, 39(1):015002, 2022.

[Bou13] Laurent Bourgeois. A remark on lipschitz stability for inverse problems. Comptes Rendus Math-
ematique, 351(5-6):187–190, 2013.

[Buk08] AL Bukhgeim. Recovering a potential from cauchy data in the two-dimensional case. Journal
of Inverse and Ill-Posed Problems, 16(1):19–33, 2008.

[CC14] Fioralba Cakoni and David L Colton. A qualitative approach to inverse scattering theory, vol-
ume 767. Springer, 2014.

[CCH22] Fioralba Cakoni, David Colton, and Houssem Haddar. Inverse scattering theory and transmis-
sion eigenvalues. SIAM, 2022.

[Che18] Xudong Chen. Computational methods for electromagnetic inverse scattering, volume 244. Wi-
ley Online Library, 2018.

[CK19] David Colton and Rainer Kress. Inverse Acoustic and Electromagnetic Scattering Theory, vol-
ume 93. Springer Nature, 2019.

[FKW23] Takashi Furuya, Pu-Zhao Kow, and Jenn-Nan Wang. Consistency of the bayes method for the
inverse scattering problem. Preprint, 2023.

[FP21] Takashi Furuya and Roland Potthast. Inverse medium scattering problems with kalman filter
techniques ii. nonlinear case. arXiv preprint arXiv:2110.09518, 2021.

[GG84] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence,
(6):721–741, 1984.

[GGVDV00] Subhashis Ghosal, Jayanta K Ghosh, and AadW Van Der Vaart. Convergence rates of posterior
distributions. Annals of Statistics, pages 500–531, 2000.

[GN20] Matteo Giordano and Richard Nickl. Consistency of bayesian inference with gaussian process
priors in an elliptic inverse problem. Inverse problems, 36(8):085001, 2020.

[GS90] Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American statistical association, 85(410):398–409, 1990.

[GVdV17] Subhashis Ghosal and Aad Van der Vaart. Fundamentals of nonparametric Bayesian inference,
volume 44. Cambridge University Press, 2017.

[Has70] WK Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, pages 97–109, 1970.



18 FURUYA AND WANG

[HH01] Peter Hähner and Thorsten Hohage. New stability estimates for the inverse acoustic inhomoge-
neous medium problem and applications. SIAM journal on mathematical analysis, 33(3):670–
685, 2001.

[Kek22] Hanne Kekkonen. Consistency of bayesian inference with gaussian process priors for a parabolic
inverse problem. Inverse Problems, 38(3):035002, 2022.

[KG07] Andreas Kirsch and Natalia Grinberg. The factorization method for inverse problems, vol-
ume 36. OUP Oxford, 2007.

[Kre13] R. Kress. Linear Integral Equations, volume 82. Springer Science & Business Media, 2013.
[KVDVvZ11] Bartek T Knapik, Aad W Van Der Vaart, and J Harry van Zanten. Bayesian inverse problems

with gaussian priors. The Annals of Statistics, 39:2626–2657, 2011.
[MNP21a] François Monard, Richard Nickl, and Gabriel P Paternain. Consistent inversion of noisy non-

abelian x-ray transforms. Communications on Pure and Applied Mathematics, 74(5):1045–1099,
2021.

[MNP21b] François Monard, Richard Nickl, and Gabriel P Paternain. Statistical guarantees for bayesian
uncertainty quantification in nonlinear inverse problems with gaussian process priors. The
Annals of Statistics, 49(6):3255–3298, 2021.

[MRR+53] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092, 1953.

[Nac88] Adrian I Nachman. Reconstructions from boundary measurements. Annals of Mathematics,
128(3):531–576, 1988.

[Nic20] Richard Nickl. Bernstein–von mises theorems for statistical inverse problems i: Schrödinger
equation. Journal of the European Mathematical Society, 22(8):2697–2750, 2020.

[Nic23] Richard Nickl. Bayesian Non-linear Statistical Inverse Problems. Zurich Lectures in Advanced
Mathematics. EMS Press, 2023.

[NP15] Gen Nakamura and Roland Potthast. Inverse modeling. IOP Publishing, 2015.
[NP21] Richard Nickl and Gabriel Paternain. On some information-theoretic aspects of non-linear

statistical inverse problems. arXiv preprint arXiv:2107.09488, 2021.
[Ray13] Kolyan Ray. Bayesian inverse problems with non-conjugate priors. Electronic Journal of Sta-

tistics, 7:2516–2549, 2013.
[RR98] Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling of discrete approximations to

langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
60(1):255–268, 1998.

[RT96] Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions
and their discrete approximations. Bernoulli, pages 341–363, 1996.

[Ser17] Valery Serov. Fourier series, Fourier transform and their applications to mathematical physics,
volume 197. Springer, 2017.

[SU87] John Sylvester and Gunther Uhlmann. A global uniqueness theorem for an inverse boundary
value problem. Annals of mathematics, pages 153–169, 1987.

[SV01] J. Saranen and G. Vainikko. Periodic integral and pseudodifferential equations with numerical
approximation. Springer Science & Business Media, 2001.

[Tie98] Luke Tierney. A note on metropolis-hastings kernels for general state spaces. Annals of applied
probability, pages 1–9, 1998.

[Vai00] G. Vainikko. Fast solvers of the lippmann-schwinger equation. In Direct and inverse problems
of mathematical physics, pages 423–440. Springer, 2000.

[VdV00] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.
[Vol13] Sebastian J Vollmer. Posterior consistency for bayesian inverse problems through stability and

regression results. Inverse Problems, 29(12):125011, 2013.



BAYES METHOD 19

Education and Research Center for Mathematical and Data Science, Shimane University,
Matsue, Japan

Email address: takashi.furuya0101@gmail.com

Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 106, Tai-
wan.

Email address: jnwang@math.ntu.edu.tw


	1. Introduction
	2. General framework and main results
	3. Consequences of Theorem 2.4
	4. Some analytic aspects of the inverse scattering problem
	5. Proofs of Theorems
	6. Numerical simulations
	6.1. Set up
	6.2. Sampling algorithm
	6.3. Visualization

	Appendix A. DQM and Information operator
	References

