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Abstract. In this work, we consider the inverse scattering problem of determining an
unknown refractive index from the far-field measurements using the nonparametric Bayesian
approach. We use a collection of large “samples”, which are noisy discrete measurements
taking from the scattering amplitude. We will study the frequentist property of the posterior
distribution as the sample size tends to infinity. Our aim is to establish the consistency
of the posterior distribution with an explicit contraction rate in terms of the sample size.
We will consider two different priors on the space of parameters. The proof relies on the
stability estimates of the forward and inverse problems. Due to the ill-posedness of the
inverse scattering problem, the contraction rate is of a logarithmic type. We also show that
such contraction rate is optimal in the statistical minimax sense.
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1. Introduction

In this work, we study the Bayes method for solving the inverse medium scattering prob-
lem. Our aim is to prove the consistency property of the posterior distribution. Let the re-
fractive index n ≥ 0 and 1−n be a compactly supported function in R3 with supp(1−n) ⊂ D,
where D is an open bounded smooth domain, and having suitable regularity, which will be
specified later. Let u = uinc + uscan satisfy

∆u+ κ2nu = 0 in R3, (1.1a)

and

lim
|x|→∞

|x|
(
∂uscan
∂|x|

− iκuscan

)
= 0. (1.1b)
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Assume that uinc is the plane incident field, i.e. uinc = eiκx·θ with θ ∈ S2. Then the scattered
field uscan satisfies

uscan (x, θ) =
eiκ|x|

|x|
u∞n (θ′, θ) + o(|x|−1) as |x| → ∞, (1.1c)

where θ′ = x/|x|, see for example, [Ser17, Page 232]. The inverse scattering problem is to
determine the medium perturbation 1 − n from the knowledge of the scattering amplitude
u∞n (θ′, θ) for all θ′, θ ∈ S2 at one fixed energy κ2.

It was known that the scattering amplitude u∞n (θ′, θ) uniquely determines the near-field
data of (1.1a) on ∂D, which in turn, determines the Dirichlet-to-Neumann map of (1.1a)
provided κ2 is not an Dirichlet eigenvalue of −∆ on D, for example, see [Nac88]. Combining
this fact and the uniqueness results proved in [SU87], one can show that the scattering
amplitude u∞n (θ′, θ) for all θ′, θ ∈ S2 uniquely determines n, at least when n is essentially
bounded. For the stability, a log-type estimate was derived in [HH01].

In this paper, we would like to apply the Bayes approach to the inverse scattering problem.
To describe the method, we first introduce the measurement model. Let µ be the uniform
distribution on S2 × S2, i.e., µ = dω/|S2|2, where dω is the product measure on S2 × S2,
that is,

∫
S2×S2 dω = |S2|2. We also write µ = dξ and hence

∫
S2×S2 dξ = 1. Consider the

iid random variables Xi ∼ µ, i = 1, 2, · · · , N with N ∈ N. In other words, {Xi}Ni=1 is a
sequence of independent samples of µ on S2 × S2. Denote

G(n)(Xi) = u∞n (θ′, θ), (1.2)

where (θ′, θ) is a realization of Xi. The observation of the scattering amplitude G(n)(Xi)
is polluted by the measurement noise which is assumed to be a Gaussian random variable.
Since G(n)(Xi) is a complex-valued function, we treat it as a R2-valued function. For
convenience, we slightly abuse the notation by writing

G(n)(Xi) =

(
Re{G(n)(Xi)}
Im{G(n)(Xi)}

)
.

Consequently, the statistical model of the scattering problem is given as

Yi = G(n)(Xi) + σWi, Wi
iid∼ N (0, I2), i = 1, · · · , N, (1.3)

where σ > 0 is the noise level, I2 is the 2 × 2 unit matrix. We also assume that W (N) :=
{Wi}Ni=1 and X(N) := {Xi}Ni=1 are independent.
The theme of this paper is to consider the inference of n from the observational data

(Y (N), X(N)) with Y (N) = {Yi}Ni=1 by the Bayes method. In particular, we are interested in
the asymptotic behavior of the posterior distribution induced from a large class of Gaussian
process priors on n as N → ∞. The aim is to establish the statistical consistency theory
of recovering n in (1.1c) with an explicit convergence rate as the number of measurements
N increases, i.e. the contraction rate of the posterior distribution to the “ground truth” n0

when the observation data is indeed generated by n0. Gaussian process priors are often used
in applications in which efficient numerical simulations can be carried out based on modern
MCMC algorithms such as the pCN (preconditioned Crank-Nicholson) method [CRSW13].

The study of inverse problems in the Bayesian inversion framework has recently attracted
much attention since Stuart’s seminal article [Stu10] (also see [DS17]). The setting of the
problem considered in this paper is closely related to the ones studied in [GN20] and [Kek22].
In [GN20], Gaussian process priors were used in the Bayesian approach to study the recovery
of the diffusion coefficient in the elliptic equation by measuring the solution at randomly
chosen interior points with uniform distribution. It was shown that the posterior distribution
concentrates around the true parameter at a rate N−λ for some λ > 0 as N → ∞, where
N is the number of measurements (or sample size). Previously, (frequentist) consistency of
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Bayesian inversion in the elliptic PDE considered in [GN20] was derived in [Vol13]. However,
the contraction rates obtained in [Vol13] were only implicitly given. Based on the method
in [GN20], similar results were proved in [Kek22] for the parabolic equation where the aim
is to recover the absorption coefficient by the interior measurements of the solution. For
further results on the Bayesian inverse problems in the non-linear settings, we refer the
reader to other interesting papers [Abr19, NS17, NS19, MNP21, Nic20, NP21, NW20]. On
the other hand, for linear inverse problems, the statistical guarantees of nonparametric
Bayesian methods with Gaussian priors have been extensively studied and well understood,
see for example [ALS13, KLS16, KvdVvZ11, MNP19, Ray13] and references therein.

The ideas used in proving the consistency of the Bayesian inversion for the inverse scat-
tering problem studied here are similar to those used in [GN20] and [Kek22] in which main
ideas are from [MNP21]. Unlike the polynomial contraction rates derived in [GN20], [Kek22],
the posterior distribution Π(·|Y (N), X(N)) of n|(Y (N), X(N)) contracts at the true refractive
index n0 as N → ∞ with a logarithmic rate. The logarithmic rate is due to the ill-posedness
of the inverse scattering medium problem by the knowledge of the scattering amplitude at
one fixed energy, see [HH01].

This paper is organized as follows. In Section 2, we describe the statistical model arising
from the scattering problem. We state main consistency theorems with contraction rates
assuming re-scaled Gaussian processes priors and re-scaled Gaussian sieve priors. The proofs
of theorems are given in Section 3. In Appendix A, we derive some estimates for the forward
scattering problem, and in Appendix B, we prove the optimality of the logarithmic stability
estimate in the inverse medium scattering problem based on Mandache’s idea. Similar
instability estimate was also derived in [Isa13]. To make the paper self contained, we present
our own proof and slightly refine the estimate obtained in [Isa13].

2. The statistical inverse scattering problem

2.1. Some function spaces and notations. Throughout this paper, we shall use the
symbol ≲ and ≳ for inequalities holding up to a universal constant. For two real sequences
(aN) and (bN), we say that ≃ if both aN ≲ bN and bN ≲ aN for all sufficiently large N . For
a sequence of random variables ZN and a real sequence (aN), we write ZN = OP(aN) if for
all ε > 0 there exists 1 ≤ Mε < ∞ such that for all N large enough, P(|ZN | ≥ MεaN) < ε.
Denote L(Z) the law of a random variable Z. Let Ct

c(O) with t ≥ 0 denote the Hölder space
of order t with compact supports in the bounded smooth domain O.

Let D be a bounded smooth domain in R3, let s ≥ 0 be an integer and we consider the
Hilbert space

Hs(D) =
{
f ∈ L2(D) : Djf ∈ L2(D) for all |j| ≤ s

}
,

with scalar product ⟨f, g⟩Hs(D) =
∑
|j|≤s

⟨Djf,Djg⟩L2(D).

For non-integer s, Hs(D) is defined in terms of the interpolation, see [LM72]. It is known
that the restriction operator to D is a continuous linear map of Hs(R3) to Hs(D) [LM72,
(8.6)]. The space Hs

0(D) is the completion of C∞
c (D) with respect to Hs(D). Also, for

s > 1/2 with s ̸= Z + 1/2, the zero extension of f ∈ Hs
0(D) (extension of f by 0 outside

of D) is a continuous map Hs
0(D) → Hs(R3) [LM72, Theorem 11.4]. Let K be a compact

subset, define Hs
K = {f ∈ Hs(R3) : supp(f) ⊆ K}. In fact, we have

Hs
D
⊂ Hs

0 for all s ≥ 0 and equality (up to equivalent norms) holds when s /∈ Z+
1

2
,

see [McL00, Theorem 3.29 and Theorem 3.33].
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We now define the space of parameters. For M0 > 1 and s > 3
2
, let

F s
M0

=

{
n ∈ Hs(D) : 0 < n < M0, n|∂D = 1,

∂jn

∂νj

∣∣∣∣
∂D

= 0 for all 1 ≤ j ≤ s− 1

}
,

where the traces are defined in the sense of [LM72, Theorem 8.3]. For each n ∈ F s
M0

we
extend n ≡ 1 in R3 \ D, still denoted by n. Then it is clear that supp(1 − n) ⊂ D. Note
that for n ∈ F s

M0
, we only put the restriction on the size of n, but not on the Hs(D)-norm

of u. As in [NvdGW20, GN20, AN19, Kek22], we will consider a re-parametrization of F s
M0

.
We consider the link function Φ satisfying

(i) Φ : (−∞,∞) → (0,M0), Φ(0) = 1, Φ′(z) > 0 for all z;
(ii) for any k ∈ N

sup
−∞<z<∞

|Φ(k)(z)| <∞.

One example to satisfy (i) and (ii) is the logistic function

Φ(z) =
M0

M0 + (M0 − 1)(e−z − 1)
, −∞ < z <∞.

As pointed out in [NvdGW20, Section 3], by utilizing a characterization of the space Hs
0(D)

(see e.g. [LM72, Theorem 11.5]), one can show that the parameter space can be realized as

F s
M0

= {n = Φ(F ) : F ∈ Hs
0(D)} . (2.1)

We end this subsection by emphasizing that our link function is different to those in
[NvdGW20, GN20, AN19, Kek22], see (i).

2.2. An abstract statistical model. For each forward map G : (0,M0) → R2, we define
the reparametrized forward map by

G(F ) = G(Φ(F )) for all F ∈ Hs
0(D), (2.2a)

and consider the following random design regression model

Yi = G(F )(Xi) + σWi, Wi
iid∼ N(0, I2), i = 1, · · · , N. (2.2b)

Assume that G satisfies

S1 := sup
F∈Hs

0(D)

∥G(F )∥L∞(S2×S2) <∞, (2.2c)

and for each F1, F2 ∈ (H1(D))∗ one has

∥G(F1)− G(F2)∥L2(S2×S2) ≤ S2(1 + ∥F1∥2Ct(D) ∨ ∥F2∥2Ct(D))∥F1 − F2∥(H1(D))∗ , (2.2d)

for some constant S2 > 0 and t ≥ 1. The statistical model (2.2b) with conditions (2.2c)
and (2.2d) falls into the general framework described in [GN20]. We want to remark that
the uniform boundedness of the forward map G (condition (2.2c)) in [GN20, NvdGW20]
(elliptic boundary value problem) or in [Kek22] (parabolic initial-boundary value problem)
is ensured by the positivity assumption of the coefficient and the bound S1 is determined
by the fixed boundary value or the fixed initial and boundary values. Due to these facts,
the ranges of the link functions used in [GN20, NvdGW20] and [Kek22] do not required to
have finite upper bounds. In the scattering problem, the boundedness requirement of the
forward map (2.2c) cannot be guaranteed by the sign restriction of the potential. In this
case, we choose a link with finite range (like Φ given above) to ensure (2.2c).
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Remark 2.1. In view of (1.2) and (2.1), one notes that the statistical model (1.3) fits into
the framework of (2.2b). For the inverse scattering problem studied here, if the forward
map G(n) is defined by the far-field pattern (1.2) with refractive index n ∈ F s

M0
with s > 3

2
,

from (A.9) we see that (2.2c) satisfies with S1 = S1(D, κ,M0). From (A.14) we have

∥G(F1)− G(F2)∥L2(S2×S2)

≤ C(1 + ∥Φ(F1)∥C1(D) ∨ ∥Φ(F2)∥C1(D))∥Φ(F1)− Φ(F2)∥(H1(D))∗ ,

where C = C(D, k,M0). By using (ii) and [NvdGW20, Lemma 29], we have

∥Φ(Fj)∥C1(D) ≲ 1 + ∥Fj∥C1(D) for all j = 1, 2,

and

∥Φ(F1)− Φ(F2)∥(H1(D))∗ ≲ (1 + ∥F1∥C1(D) ∨ ∥F2∥C1(D))∥F1 − F2∥(H1(D))∗ ,

therefore we see that (2.2d) satisfies with S2 = S2(D, κ,M0) with t = 1.

Observe that the random vectors (Yi, Xi) are iid with laws PiF . It turns out the Radon-
Nikodym derivative of PiF is given by

pF (y, ξ) =
dPiF

dy × dξ
=

1

2πσ2
e−

(y−G(F )(ξ))T (y−G(F )(ξ))

2σ2 . (2.3)

By slightly abusing the notation, now we define PNF = ⊗N
i=1PiF the joint law of the random

vectors (Yi, Xi)
N
i=1. Moreover, EiF , ENF denote the expectation operators in terms of the laws

PiF ,PNF , respectively.
In the Bayesian approach, let Π be a Borel probability measure on the parameter space

Hs
0(D) supported in the Banach space C(D). From the continuity property of (F, (y, ξ)) →

pF (y, ξ), the posterior distribution Π(·|Y (N), X(N)) of F |(Y (N), X(N)) is given by

Π(B|Y (N), X(N)) =

∫
B
eℓ

(N)(F ) dΠ(F )∫
C(D)

eℓ(N)(F ) dΠ(F )
for all Borel set B ⊂ C(D), (2.4a)

where the log-likelihood function is written as

ℓ(N)(F ) = − 1

2σ2

N∑
i=1

(Yi − G(F )(Xi))
T (Yi − G(F )(Xi)) . (2.4b)

Finally, we end this subsection by referring to the monograph [Nic23] for a nice introduction
on the above preliminaries.

2.3. Statistical convergence rates. In this work we would like to show that the posterior
distribution arising from certain priors concentrates near sufficiently regular ground truth
Φ(F0), and derive a bound on the rate of contraction, assuming that the observation data
(Y (N), X(N)) are generated through the model (2.2a)–(2.2d) of law PNF0

.

2.3.1. Rescaled Gaussian priors. We now describe explicitly Gaussian priors introduced in
[GN20] (also see [Kek22]).

Assumption 2.2. Let s > t+3/2, t ≥ 1, and H be a Hilbert space continuously embedded
into Hs

0(D), and let Π′ be a centered Gaussian Borel probability measure on the Banach
space C0

c (D) that is supported on a separable measurable linear subspace of Ct
c(D). Assume

that the reproducing kernel Hilbert space (RKHS) of Π′ equals to H.
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Here, we refer to [GN21, Definition 2.6.4] for the definition of the RKHS, and we refer
to [GN20, Example 25] for an example satisfies Assumption 2.2. For each s given in As-
sumption 2.2, let Π′ be given in Assumption 2.2 and F ′ ∼ Π′, we consider the rescaled
prior

ΠN ≡ ΠN [s] = L(FN) with FN =
1

N3/(4s+10)
F ′. (2.5)

Again, ΠN defines a centered Gaussian prior on C(D) and its RKHS HN is still H but with
the norm

∥F∥HN
= N3/(4s+10)∥F∥H, (2.6)

for all F ∈ H. We now introduce the main device in our proof, concerning the posterior con-
traction with an explicit rate around F0, whose proof can be found in [GN20, Theorem 14].

Theorem 2.3. Let (H,Π′) satisfies Assumption 2.2 with integer s, let ΠN ≡ ΠN [s] be
the rescaled prior given in (2.5), let ΠN(·|Y (N), X(N)) be the posterior distribution given in
(2.4a) with Π = ΠN . Assume that F0 ∈ H and the observation (Y (N), X(N)) to be generated
through model (2.2b)–(2.2d) of law PNF0

. If we denote δN = N−(s+1)/(2s+5), then for any
K > 0, there exists a large L > 0, depending on σ, F0, K, s, t,D, S1, S2, such that

ΠN

(
F : ∥G(F )− G(F0)∥L2(S2×S2) > LδN |Y (N), X(N)

)
= OPN

F0

(
e−KNδ

2
N

)
as N → ∞.

(2.7a)

In addition, there exists a large L′ > 0, depending on σ,K, s, t, such that

ΠN

(
F : ∥F∥Ct > L′|Y (N), X(N)

)
= OPN

F0

(
e−KNδ

2
N

)
as N → ∞. (2.7b)

We now apply Theorem 2.3 to the inverse scattering problem considered here. Relying on
the contraction rate (2.7a) and the regularization property (2.7b) and taking account of the
stability estimate of G−1 (see Theorem A.1), we can show that the posterior distribution
arising from the statistical inverse scattering model (1.3) contracts around n0 in the L∞-risk
using ideas from [MNP21]. In light of the link function, we define the push-forward posterior
on the refractive index n by

Π̃N(·|Y (N), X(N)) := L(n) with n = Φ ◦ F : F ∼ ΠN(·|Y (N), X(N)).

By the push-forward map, we can rewrite (2.7a) and (2.7b) in terms of n. That is, we have
that for N → ∞ that

Π̃N

(
n : ∥G(n)−G(n0)∥L2(S2×S2) > LδN |Y (N), X(N)

)
= OPN

n0
(e−KNδ

2
N ), (2.8a)

and

Π̃N

(
n : ∥n∥Ct > L′|Y (N), X(N)

)
= OPN

n0
(e−KNδ

2
N ), (2.8b)

where the second estimate can be derived from the estimates proved in [NvdGW20,
Lemma 29] (see also [GN20, (27)]). Here L depends on σ, n0, K, s, t,D, κ,M0 and L

′ depends
on σ,K, s, t, κ,M0.

Theorem 2.4. Let t ≥ 2 and s > t + 3/2 be integers, and fix a real parameter M0 > 1.
We further assume that ϵ is any constant satisfying 0 < ϵ < 2t−3

2t+3
. Let ΠN(·|Y (N), X(N)),

F0 ∈ H and δN = N−(s+1)/(2s+5) be given in Theorem 2.3. The ground truth refrac-
tive index is n0 = Φ ◦ F0 ∈ F s

M0
. Then for any K > 0, there exists a constant

C = C(σ, n0, K, s, t,D, κ, ϵ,M0) > 0 such that

Π̃N

(
n : ∥n− n0∥L∞(D) > C(lnN)−

2t−3
2t+3

+ϵ|Y (N), X(N)
)
= OPN

n0
(e−KNδ

2
N ), (2.9)

as N → ∞.
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It is clear that we can replace ∥n − n0∥L∞(D) by ∥n − n0∥L2(D) in (2.9). Unlike the
polynomial rate proved in [GN20, Theorem 5], we obtain a logarithmic contraction rate in
(2.9), which is due to a log-type stability estimate of G−1. To obtain an estimator of the
unknown coefficient n, in view of the link function Φ, it is often convenient to derive an
estimator of F . The posterior mean F̄N := EΠ[F |Y (N), X(N)] of ΠN(·|Y (N), X(N)), which
can be approximated numerically by an MCMC algorithm, is the most natural choice of
estimator. In light of Theorem 2.4, we can also prove a contraction rate for the convergence
F̄N to F0.

Theorem 2.5. Assume that the hypotheses of Theorem 2.4 hold. Then, there exists a
C̃ = C̃(σ, n0, K, s, t,D, κ, ϵ,M0) > 0 such that

PNF0

(
∥F̄N − F0∥L∞ > C̃(lnN)−

2t−3
2t+3

+ϵ
)
→ 0 as N → ∞. (2.10)

Corollary 2.6. Assume that the hypotheses of Theorem 2.4 hold. Then there exists a
sufficiently large C̃ ′ = C̃ ′(σ, n0, K, s, t,D, κ, ϵ,M0) > 0 such that

PNn0

(
∥Φ ◦ F̄N − n0∥L∞ > C̃ ′(lnN)−

2t−3
2t+3

+ϵ
)
→ 0 as N → ∞. (2.11)

The logarithmic contraction rates obtained in Theroem 2.4, Theorem 2.5, and Corol-
lary 2.6 inherit from the log-type estimate of the inverse scattering problem. Nonetheless,
in the next theorem, we will show that this contraction rate for the estimator n̂ := Φ ◦ F̄N
is optimal is the statistical minimax sense, at least up to the exponent of lnN . We first
define a parameter space. Let s > 3/2 be an integer, β > 0, and define

F̂ s
β = {n = 1 + q : q ∈ Hs

B1/2
(R3) with ∥q∥Hs ≤ β}.

Theorem 2.7. For integer s > 3/2, there exists β = β(s) > 0 such that for any δ > 5s
3
and

ε ∈ (0, 1), we have

inf
ñ

sup
n∈F̂s

β

PNn
(
∥ñ− n∥L∞ >

1

2
(lnN)−δ

)
> 1− ε, (2.12)

for all N large enough, where the infimum is taken over all measurable functions ñ = ñ(Y,X)
of the data (Y,X) ∼ PNn .

2.3.2. High-dimensional Gaussian sieve priors. From computational perspective, it is useful
to consider sieve priors that are finite-dimensional approximations of the function space sup-
porting the prior. Here we will use a randomly truncated Karhunen-Loéve type expansion in
terms of Daubechies wavelets considered in [GN20, Appendix B] or [GN21, Chapter 4]. Let
{Ψℓr : ℓ ≥ −1, r ∈ Z3} be the (3-dimensional) compactly supported Daubechies wavelets,
which forms an orthonormal basis of L2(R3). Let K be a compact subset in D and let
Rℓ =

{
r ∈ Zd : supp (Ψℓr) ∩ K ̸= ∅

}
. Let K′ be another compact subset in D such that

K′ ⊊ K, and let χ ∈ C∞
c (D) be a cut-off function with χ = 1 on K′. Let s > 1 + 3/2 and

consider the prior

Π′
J ≡ Π′

J [s] = L(χFJ), FJ =
∑

−1≤ℓ≤J
r∈Rℓ

2−ℓsFℓrΨℓr, Fℓr
iid∼ N (0, 1), (2.13)

where J ∈ N is the truncation level. In fact Π′
J defines a centered Gaussian prior that is

supported on the finite-dimensional space

HJ = span{χΨℓr, : −1 ≤ ℓ ≤ J, r ∈ Rℓ} ⊂ C(D),

with RKHS norm satisfying [GN20, (B2)]. As above, we consider the “re-scaled” prior ΠN

defined in (2.5) with F ′ ∼ Π′
J .
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In analogy to Theorem 2.3, we will derive a contraction rate for the statistical model
(2.2b) with the prior ΠN defined above. As in Theorem 2.3, we obtain the same contraction
rate in the L2-prediction risk of the regression function.

Theorem 2.8. Let s > t + 3/2 with integer t ≥ 1 and ΠN ≡ ΠN [s] be the “re-scaled”
prior defined in (2.5) with priors F ′ ∼ Π′

JN
≡ Π′

JN
[s] where 2JN ≃ N1/(2s+5). Denote

ΠN(·|Y (N), X(N)) the posterior distribution arising from the noisy discrete measurements
(Y (N), X(N)) of (2.2b). Let F0 ∈ Hs

K(D) and δN = N−(s+1)/(2s+5). Then for any K > 0,
there exists a large L > 0, depending on σ, F0, K, s,D, S1, S2, such that

ΠN(F : ∥G(F )− G(F0)∥L2(S2×S2) > LδN |Y (N), X(N)) = OPN
F0
(e−KNδ

2
N ) as N → ∞, (2.14)

and for sufficiently large L′ > 0, depending on σ,K, s, t, we have

ΠN(F : ∥F∥Ct > L′|Y (N), X(N)) = OPN
F0
(e−KNδ

2
N ) as N → ∞. (2.15)

The proof of Theorem 2.8 only requires minor modification from the proof of Theorem 2.3,
and all necessary modifications are listed in [GN20, Section 3.2]. Therefore we omit the
details. Having established Theorem 2.8, similar to [GN20, Proposition 7], Theorem 2.4
and Theorem 2.5 can be directly extended to the case of Gaussian sieve priors.

Remark 2.9. As in [GN20], it is likely to extend the results for the Gaussian sieve priors
with deterministic truncation level to randomly truncated ones, where the truncation level
J itself is an appropriate random number. However, due to the log-type stability estimate
of the inverse scattering problem, such extension is highly nontrivial. We will discuss the
Bayes method with randomly truncated sieve priors for the inverse scattering problem in
another paper.

3. Proofs of Theorems

The main theme of this section is to prove Theorem 2.4, Theorem 2.5 and Theorem 2.7.

Proof of Theorem 2.4. For each M > 0 satisfies ∥1− n∥Ht(D) ∨ ∥1− n0∥Ht(D) ≤M , one has
the stability estimate of G−1 in Theorem A.1:

∥n− n0∥L∞(D) ≤ C[− ln−(∥G(n)−G(n0)∥L2(S2×S2))]
−α, (3.1)

where α = 2t−3
2t+3

− ϵ > 0 and C = C(D, t, κ,M, ϵ).
If ∥n∥Ct(D) ≤M ′ for some M ′ ≥M0, since t is an integer, then ∥1− n∥Ht(D) ≤ CM ′ with

C = C(t,D). We now set the constant M = (CM ′) ∨ ∥1 − n0∥Ht(D). In view of (2.8a),
(2.8b), and (3.1), for any K > 0, there exists large constants L,M ′ and L′ (L′ is determined
by L and M ′) such that

Π̃N

(
n : ∥n− n0∥L∞(D) > | ln(LδN)|−α|Y (N), X(N)

)
≤ Π̃N

(
n : ∥G(n)−G(n0)∥L2(S2×S2) > L′δN |Y (N), X(N)

)
+ Π̃N

(
n : ∥n∥Ct(D) > M ′|Y (N), X(N)

)
= OPN

n0
(e−KNδ

2
N ),

which conclude our result. □

Having proved Theorem 2.4, we then establish Theorem 2.5 using the contraction rate in
Theorem 2.4 and the link function Φ.
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Proof of Theorem 2.5. We proof the theorem by modifying some ideas in [GN20, Theo-
rem 6]. By the Jensen’s inequality , it suffices to prove that there exists a large C̃ > 0 such
that

PNF0

(
EΠ[∥F − F0∥L∞|Y (N), X(N)] > C̃(lnN)−

2t−3
2t+3

+ϵ
)
→ 0 as N → ∞.

For a large M > 0 to be chosen later, we write

EΠ[∥F − F0∥L∞|Y (N), X(N)] = EΠ[∥F − F0∥L∞1∥F∥Ct≤M |Y (N), X(N)]

+ EΠ[∥F − F0∥L∞1∥F∥Ct>M |Y (N), X(N)].
(3.2)

Part I: Estimating EΠ[∥F − F0∥L∞1∥F∥Ct>M |Y (N), X(N)]. By using Cauchy-Schwartz
inequality, it is easy to see that

EΠ[∥F − F0∥L∞1∥F∥Ct>M |Y (N), X(N)]

≤
√
EΠ[∥F − F0∥2L∞|Y (N), X(N)]

√
ΠN(F : ∥F∥Ct > M |Y (N), X(N)).

(3.3)

Let B > 0 be a constant to be determined later. By using (2.7b), one can choose a sufficiently
large M =M(σ,B, s, t) > 0 such that

PNF0

(
EΠ[∥F − F0∥2L∞|Y (N), X(N)]ΠN(F : ∥F∥Ct > M |Y (N), X(N)) > (lnN)−

2(2t−3)
2t+3

+2ϵ
)

≤ PNF0

(
EΠ[∥F − F0∥2L∞|Y (N), X(N)]e−BNδ

2
N > (lnN)−

2(2t−3)
2t+3

+2ϵ
)
+ o(1).

We now define BN by

BN =

{
F : E1

F0

[
log

pF0(Y1, X1)

pF (Y1, X1)

]
≤ δ2N ,E1

F0

[
log

pF0(Y1, X1)

pF (Y1, X1)

]2
≤ δ2N

}
, (3.4)

By using [GN20, Lemma 16 and Lemma 23], we have

ΠN(BN) ≥ ae−ANδ
2
N for some a,A > 0.

Let ν(·) = ΠN (· ∩ BN) /ΠN (BN) and set the event

CN =

{∫
BN

N∏
i=1

pF
pF0

(Yi, Xi) dν(F ) ≥ e−2Nδ2N

}
. (3.5)

By [GN21, Lemma 7.3.2], we can show that

PNF0
(CN) → 1 (i.e. PNF0

(CcN) → 0) as N → ∞. (3.6)

By using the properties (3.6) of CN , we obtain

PNF0

(
EΠ[∥F − F0∥2L∞|Y (N), X(N)]e−BNδ

2
N > (lnN)−

2(2t−3)
2t+3

+2ϵ
)

≤ PNF0

(∫
C(D)

∥F − F0∥2L∞
∏N

i=1 pF/pF0(Yi, Xi) dΠN(F )

Π(BN)
∫
BN

∏N
i=1 pF/pF0(Yi, Xi) dν(F )

e−BNδ
2
N > (lnN)−

2(2t−3)
2t+3

+2ϵ, CN

)
+ o(1)

≤ PNF0

(∫
C(D)

∥F − F0∥2L∞

N∏
i=1

pF
pF0

(Yi, Xi) dΠN(F ) > (lnN)−
2(2t−3)
2t+3

+2ϵae(B−A−2)Nδ2N

)
+ o(1),
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which is bounded from above, using Markov’s inequality and Fubini’s theorem, by

(lnN)
2(2t−3)
2t+3

−2ϵa−1e−(B−A−2)Nδ2N

∫
C(D)

∥F − F0∥2L∞ENF0

(
N∏
i=1

pF
pF0

(Yi, Xi)

)
dΠN(F )

= (lnN)
2(2t−3)
2t+3

−2ϵa−1e−(B−A−2)Nδ2N

∫
C(D)

∥F − F0∥2L∞ dΠN(F ).

(3.7)

By using Fernique’s theorem (see e.g. [GN21, Exercises 2.1.1, 2.1.2 and 2.1.5]) one has
EΠN∥F∥2L∞ <∞. Taking B > A+ 2, from (3.7) we conclude

PNF0

(
EΠ[∥F − F0∥L∞1∥F∥Ct>M |Y (N), X(N)] > (lnN)−

(2t−3)
2t+3

+ϵ
)
→ 0. (3.8)

Part II: Estimating EΠ[∥F − F0∥L∞1∥F∥Ct≤M |Y (N), X(N)]. The above discussions still
valid if we replace M by a (possibly larger) M = M(σ,B, s, t, F0) > 0 with ∥F0∥L∞ ≤ M .
Since n = Φ◦F and n0 = Φ◦F0, by (i), mean value theorem and inverse function theorems,
there exists η lying between n0(x) and n(x) such that

|F (x)− F0(x)| =
1

|Φ′(Φ−1(η))|
|n(x)− n0(x)|,

for all x ∈ D. Since F, F0 ∈ [Φ(−M),Φ(M)], by (i) we reach

|F (x)− F0(x)| ≤
1

minz∈[−M,M ] Φ′(z)
|n(x)− n0(x)| ≲ |n(x)− n0(x)| for all x ∈ D.

Therefore we see that

∥F − F0∥L∞1∥F∥Ct≤M ≲ ∥n− n0∥L∞1∥F∥Ct≤M ,

and

EΠ[∥F − F0∥L∞1∥F∥Ct≤M |Y (N), X(N)] ≲ EΠ̃[∥n− n0∥L∞|Y (N), X(N)]. (3.9)

Let C > 0 be a constant to be determined later. From (3.9), we see that

PNF0

(
EΠ[∥F − F0∥L∞1∥F∥Ct≤M |Y (N), X(N)] > C(lnN)−

(2t−3)
2t+3

+ϵ
)

≤ C(lnN)−
2t−3
2t+3

+ϵ + EΠ̃[∥n− n0∥L∞1
∥n−n0∥L∞≥C(lnN)

− 2t−3
2t+3+ϵ|Y (N), X(N)],

We can modify the arguments as in Part I above by replacing the event {F : ∥F∥Ct > M}
(resp. (2.7b)) by the event

{
n : ∥n− n0∥L∞ > C(lnN)−

2t−3
2t+3

+ϵ
}

(resp. (2.9)) with C =

C(σ, n0, K, s, t,D, κ, ϵ,M0) > 0 given in Theorem 2.4 to show that

PNF0

(
EΠ[∥F − F0∥L∞1∥F∥Ct≤M |Y (N), X(N)] > C(lnN)−

(2t−3)
2t+3

+ϵ
)
→ 0. (3.10)

Finally, putting together (3.2), (3.8), and (3.10) yields Theorem 2.5 with C̃ = max{C, 1}.
□

Next, we prove the optimality of contraction rate in Corollary 2.6 in the minimax sense.

Proof of Theorem 2.7. We apply the method in the proof of the lower bound [AN19, Theo-

rem 2] to our case here. The idea is to find n0, n1 ∈ F̂ s
β (both are allowed to depend on N)

such that, for some small ζ sufficiently small,

(a) ∥n0 − n1∥L∞ ≥ θN,δ := (lnN)−δ.
(b) KL(p⊗Nn0

, p⊗Nn1
) ≤ ζ,
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where p⊗Nn is the Radon Nikodym derivative of the joint law PNn and the Kullback-Leibler
divergence KL(p⊗Nn0

, p⊗Nn1
) is defined by

KL(p⊗Nn0
, p⊗Nn1

) = ENn0

[
log

p⊗Nn0

p⊗Nn1

]
. (3.11)

By independence, we note that

KL(p⊗Nn0
, p⊗Nn1

) = NE1
n0

[
log

pn0(Y1, X1)

pn1(Y1, X1)

]
,

and [GN20, Lemma 23] implies

KL(p⊗Nn0
, p⊗Nn1

) =
N

2σ2
∥G(n0)−G(n1)∥2L2(S2×S2), (3.12)

then using the standard arguments as in [GN21, Section 6.3.1] (see also [Tsy09, Chapter 2]),
we conclude the theorem.

For the sake of completeness, here we present the details. From condition (a), we see that
ψ = 1{∥ñ−n1∥L∞<∥ñ−n0∥L∞} yields a test of

H0 : n = n0 against H1 : n = n1. (3.13)

It follows from a general reduction principle that

inf
ñ

sup
n∈F̂s

β

PNn
(
∥ñ− n∥L∞ ≥ 1

2
θN,δ

)
≥ inf

ψ
max

{
PNn0

(ψ ̸= 0),PNn1
(ψ ̸= 1)

}
,

where the second infimum is over all tests ψ of (3.13). Similar to the proof of [GN21,
Theorem 6.3.2], we introduce the event

Ω =

{
p⊗Nn0

p⊗Nn1

≥ 1

2

}
.

Note that

PNn0
(ψ ̸= 0) ≥ ENn0

[1Ωψ] = ENn1

[
p⊗Nn0

p⊗Nn1

1Ωψ

]
≥ 1

2
[PNn1

(ψ = 1)− PNn1
(Ωc)].

Let p1 = PNn1
(ψ = 1), then

max
{
PNn0

(ψ ̸= 0),PNn1
(ψ ̸= 1)

}
≥ max

{
1

2
(p1 − PNn1

(Ωc)), 1− p1

}
≥ inf

p∈[0,1]
max

{
1

2
(p− PNn1

(Ωc)), 1− p

}
.

It is clear that the infimum above is attained when 1
2
(p−PNn1

(Ωc)) = 1−p and has the value
1
3
PNn1

(Ω). Hence,

inf
ñ

sup
n∈F̂s

β

PNn
(
∥ñ− n∥∞ ≥ 1

2
θN,δ

)
≥ 1

3
PNn1

(Ω). (3.14)

Next, let’s estimate

PNn1
(Ω) = PNn1

[p⊗Nn0
/p⊗Nn1

≤ 2] = 1− PNn1
[log(p⊗Nn0

/p⊗Nn1
) > log 2]

≥ 1− PNn1
[| log(p⊗Nn0

/p⊗Nn1
)| > log 2]

≥ 1− (log 2)−1ENn1
[| log(p⊗Nn0

/p⊗Nn1
)|] (by Markov’s inequality).
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Using the second Pinsker inequality [GN21, Proposition 6.1.7b] and condition (b), we have

1

3
PNn1

(Ω) ≥ 1

3

(
1− (log 2)−1[KL(p⊗Nn0

, p⊗Nn1
) +

√
2KL(p⊗Nn0

, p⊗Nn1
)]
)

≥ 1

3

(
1− (log 2)−1(ζ +

√
2ζ)
)
.

We now choose ζ sufficiently small such that the last term above is bounded below by 1− ε.
Then the estimate (2.12) follows in view of (3.14).

The remaining task is to find n0, n1 satisfying conditions (a) and (b). For δ > 5s
3
, setting

θ = θN,δ = (lnN)−δ in Theorem B.1, there exist n0, n1 ∈ F̂ s
β satisfying ∥n0 − n1∥∞ > θN,δ

and

∥u∞n0
− u∞n1

∥L2(S2×S2) ≤ 2 exp(−θ−
3
5s ) = 2 exp(−(lnN)

3δ
5s ).

To verify condition (b), we use (3.12) to conclude that

KL(p⊗Nn0
, p⊗Nn1

) =
N

2σ2
∥u∞n0

− u∞n1
∥2L2(S2×S2)

≤ 4N

2σ2
exp(−2(lnN)

3δ
5s )

=
2

σ2
exp(lnN − 2(lnN)

3δ
5s ) → 0 as N → ∞,

since 3δ
5s

> 1. Therefore, we can make ζ as small as we wish by taking N sufficiently
large. □

Appendix A. Inverse scattering problem

In what follows, assume that

n ∈ C1(R3), supp(1− n) ⊂ D, 0 ≤ n ≤M0 with M0 ≥ 1. (A.1)

We first discuss the existence and uniqueness of the scattered field uscan . It is known that
w := uscan satisfies the following boundary value problem [CCH23, (1.51)–(1.52)]:{

−∆w − κ2nw = κ2(n− 1)uinc in BR,

∂w/∂r = SR(w|∂BR
) on ∂BR,

(A.2)

where BR is a ball of radius R such that D̄ ⊂ BR. Here SR : H1/2(∂BR) → H−1/2(∂BR) is
the Dirichlet-to-Neumann map, defined for g ∈ H1/2(∂BR) by SRg = (∂ug/∂r)|∂BR

, where
ug is the solution of the Helmholtz equation satisfying the Sommerfeld radiation condition
in R3 \BR and the Dirichlet condition ug = g on ∂BR. It has been shown that

Re⟨SR(v), v⟩ ≤ 0 and Im⟨SR(v), v⟩ ≥ 0, ∀ v ∈ H1/2(∂BR), (A.3)

where ⟨·, ·⟩ denotes the duality pairing between H−1/2(∂BR) and H
1/2(∂BR), see, for exam-

ple, [CCH23, Definition 1.36 and (1.50)].
To proceed further, let us replace the right-hand side of the first equation in (A.2) by a

general source term f with supp(f) ⊂ BR, i.e.,{
−∆w − κ2nw = f in BR,

∂w/∂r = SR(w|∂BR
) on ∂BR,

(A.4)

In view of the integration by parts, (A.4) is equivalent to the following variational formula-
tion: find w ∈ H1(BR) such that for all v ∈ H1(BR),

a1(w, v) + a2(w, v) = F (v),
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where

a1(w, v) =

∫
BR

∇w · ∇v̄ dx− κ2
∫
BR

nwv̄ dx+ κ2(M0 + 1)

∫
BR

wv̄ dx− ⟨SR(w), v̄⟩,

a2(w, v) = −κ2(M0 + 1)

∫
BR

wv̄ dx,

and

F (v) =

∫
BR

f v̄ dx.

We can see that

Re a1(w,w) =

∫
BR

(
|∇w|2 + k2(M0 + 1− n)|w|2

)
dx ≥ C(κ)∥w∥2H1(BR).

In other words, a1(·, ·) is strictly coercive. Combining the Riesz representation theorem and
the Lax-Milgram theorem, there exists an invertible operator A : H1(BR) → (H1(BR))

∗,
where (H1(BR))

∗ is the dual space of H1(BR), such that

a1(w, v) = (Aw, v)H1(BR) ∀ v ∈ H1(BR).

Similarly, define the bounded linear operator B : H1(BR) → (H1(BR))
∗ by a2(w, v) =

(Bw, v)H1(BR). It is not difficult to see that B is compact. Consequently, A + B is a
Fredholm operator. By the Fredholm alternative, A+B : H1(BR) → (H1(BR))

∗ is bounded
invertible provided the kernel ofA+B is trivial, which follows the uniqueness of the scattered
solution (by the combination of the Rellich lemma and the unique continuation property).
Furthermore, we have the following estimate:

∥w∥H1(BR) ≤ C∥f∥(H1(BR))∗ , (A.5)

where C = C(D, κ,M0). Let f = κ2(n− 1)uinc and w = uscan , then (A.5) implies

∥uscan ∥H1(BR) ≤ C∥1− n∥L2(D), (A.6)

uniformly in θ ∈ S2. We now choose R′ < R such that D ⊂ BR′ . By the interior estimate
[GT01, Theorem 8.8], we further have

∥uscan ∥H2(BR′ ) ≤ C∥1− n∥L2(D),

which, by the Sobolev imbedding theorem, implies

∥uscan ∥C(D) ≤ C∥1− n∥L2(D). (A.7)

The scattering amplitude u∞n (θ′, θ) can be expressed explicitly by

u∞n (θ′, θ) = −κ2

4π

∫
R3

e−iκθ′·y(1− n)(y)u(y, θ) dy

= −κ2

4π

∫
D

e−iκθ′·y(1− n)(y)u(y, θ) dy,

(A.8)

where u(y, θ) = uinc(y, θ) + uscan (y, θ) is the total field with uinc(y, θ) = eiκy·θ, see [CCH23,
(1.22)] or [CK19, (8.28)] or [Ser17, Page 232]. From (A.7) and (A.8), we have

∥u∞n ∥L∞(S2×S2) ≤ C∥1− n∥L2(D) ≤ S <∞, (A.9)

with S = S(D, k,M0) = C(1 +M0). Since

−∆∇uscan − κ2n∇uscan = κ2∇nuscan + κ2∇nuinc + κ2(n− 1)∇uinc in BR,

applying the interior estimate and the Sobolev imbedding theorem again, we have that

∥uscan ∥C1(D) ≤ C(1 + ∥n∥C1(D))∥1− n∥L∞(D) ≤ C(1 + ∥n∥C1(D)), (A.10)

with C = C(D, k,M0).
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Next, assume that n1, n2 satisfy (A.1). For each open set Ω in Euclidean space, we observe
that

∥f1f2∥(H1(Ω))∗ = sup
∥φ∥H1(Ω)≤1

∣∣∣∣∫
Ω

f1f2φ dx

∣∣∣∣
≤ ∥f1∥(H1(Ω))∗ sup

∥φ∥H1(Ω)≤1

∥f2φ∥H1(Ω) ≤ C∥f1∥(H1(Ω))∗∥f2∥C1(Ω).
(A.11)

Let w = uscan2
− uscan1

and f = κ2(n2 − n1)u
sca
n1

+ κ2(n2 − n1)u
inc, then combining (A.5), (A.7),

(A.10) and (A.11), yields

∥uscan1
− uscan2

∥H1(BR) ≤ C(1 + ∥n1∥C1(D))∥n1 − n2∥(H1(D))∗ , (A.12)

uniformly in θ and C = C(D, k,M0). Then it yields from (A.8) that(∫
S2×S2

|(u∞n1
− u∞n2

)(θ′, θ)|2 dω
) 1

2

=
κ2

4π

(∫
S2×S2

∣∣∣∣∫
D

e−iκθ′·y[(1− n1)(e
iκθ·y + uscan1

)− (1− n2)(e
iκθ·y + uscan2

)] dy

∣∣∣∣2 dω

) 1
2

≤ κ2

4π

∫
D

(∫
S2×S2

∣∣∣e−iκθ′·y[(1− n1)(e
iκθ·y + uscan1

)− (1− n2)(e
iκθ·y + uscan2

)]
∣∣∣2 dω

) 1
2

dy

=
κ2

4π

∫
D

(∫
S2×S2

∣∣(n2 − n1)e
iκθ·y − (n1 − n2)u

sca
n1

+ (1− n2)(u
sca
n1

− uscan2
)
∣∣2 dω

) 1
2

dy,

(A.13)
where the inequality above is due to the integral form of Minkowski’s inequality. Plugging
(A.6), (A.10) and (A.12) into (A.13) gives

∥u∞n1
− u∞n2

∥L2(S2×S2) ≤ C(1 + ∥n1∥C1(D) ∨ ∥n2∥C1(D))∥n1 − n2∥(H1(D))∗ , (A.14)

where C = C(D, k,M0).
Next, we recall the following stability estimate for the determination of the potential from

the scattering amplitude.

Theorem A.1. [HH01, Theorem 1.2] Let t > 3/2, M > 0, and 0 < ϵ < 2t−3
2t+3

be given

constants. Assume that 1−nj ∈ H t(R3) satisfying ∥1−nj∥Ht(R3) ≤M and supp(1−nj) ⊂ D,
j = 1, 2. Then

∥n1 − n2∥L∞(D) ≤ C[− ln−(∥u∞n1
− u∞n2

∥L2(S2×S2))]
−( 2t−3

2t+3
−ϵ), (A.15)

where C = C(D, t, k,M, ϵ) and

ln−(z) =

{
ln(z), if t ≤ e−1,

− 1, otherwise.

Remark A.2. Here the constant M may be different from M0 given above.

Appendix B. Optimality of the stability estimate

The purpose of this section is to show that the logarithmic estimate obtained in The-
orem A.1 is optimal by deriving an instability estimate. Similar instability estimate was
already proved in [Isa13]. To make the paper self contained, we present our own proof here
and also slightly refine the estimate obtained in [Isa13]. Throughout this section, we denote
q(x) = n(x)− 1.
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Theorem B.1. Consider the inverse scattering problem (1.1a)–(1.1c) with frequency κ > 0.
Let integer s > 0 be a given regularizing parameter. Then there exists constants β =
β(s, κ) > 0 and ϑ0 = ϑ0(s, κ) > 0 such that: for each 0 < ϑ < ϑ0 there exists non-negative
q1, q2 ∈ C∞(R3) with supp (qj) ⊂ B 1

2
satisfying the apriori bound ∥qj∥Cs(R3) ≤ β and

∥q1 − q2∥L∞(R3) ≥ ϑ, ∥u∞1+q1 − u∞1+q2∥L2(S2×S2) ≤ 2 exp(−ϑ− 3
5s ).

Remark B.2. From the properties of the Hilbert-Schmidt norm [Con90, Exer-
cise IX.2.19(h)], one has

∥G(1 + q)∥HS(L2(S2),L2(S2)) = ∥u∞1+q∥L2(S2×S2),

∥G(1 + q1)−G(1 + q2)∥HS(L2(S2),L2(S2)) = ∥u∞1+q1 − u∞1+q2∥L2(S2×S2).
(B.1)

Recall G(1 + q) is the far-field operator given in (1.2).

Our main strategy is to modify the ideas in [DCR03] (see also [KRS21] for more details
about the mechanism). Given any ϑ > 0, s ≥ 0 and β > 0, we consider the following set:

N ϑ
sβ :=

{
q ≥ 0 : supp (q) ⊂ B1/2, ∥q∥L∞(Rd) ≤ ϑ, ∥q∥Cs(Rd) ≤ β

}
,

where Br denotes the ball or radius r centered at the origin. The following lemma verifies
the assumption (a) of [DCR03, Theorem 2.2], can be proved as in [Man01, Lemma 2] (we
omit the proof), see also [Isa13, KUW21, KW22, ZZ19]. We refer [KT61] for a version in a
more abstract form.

Lemma B.3. Fix d ∈ N and s ≥ 0. There exists a constant1 µ = µ(d, s) > 0 such that
the following statement holds for all β > 0 and for all ϑ ∈ (0, µβ): there exists a ϑ-discrete
subset Zϑ of

(
N ϑ
sβ, ∥·∥L∞(Rd)

)
2 such that

|Zϑ| ≥ exp

((
log 2

2

)d(
µβ

ϑ

) d
s

)
. (B.2)

In addition, all elements in Zϑ are in C∞(Rd).

Similar to [DCR03], the proof of Theorem B.1 is quite delicate, which is not an obvi-
ous consequence of the abstract theorem in [DCR03, Theorem 2.2]. From the asymptotic
expansion (1.1c), it is easy to see that

|x||usca1+q(x, θ)| = O(1) as |x| → ∞ uniformly for all θ′ = x/|x| ∈ S2.

A crucial point is to bound |x||usca1+q(x, θ)| for all |x| ≥ 2, by some constant which is inde-
pendent of θ and q, like [DCR03, (4.21)]. From now on, for simplicity, we restrict ourselves
for the case when d = 3. We now prove the following lemma.

Lemma B.4. Let κ > 0 and let ∥q∥L∞(R3) ≤ 1 with supp (q) ⊂ B1/2. Then there exists a
constant C = C(κ) > 0 such that the following uniform decay estimate holds:

sup
θ∈S2

|usca1+q(x, θ)| ≤ C|x|−1 for all x ∈ R3 \B2.

Proof. This lemma is an easy consequence of (A.6) and [Ron03, Lemma 3.2] (with R =
1). □

1In fact, one can choose µ = d−
s
2 ∥ψ∥−1

Cs(Rd)
for some ψ ∈ C∞

c ((−1/2, 1/2)d) with ∥ψ∥L∞(Rd) = 1.
2This means that ∥q1 − q2∥L∞(Rd) ≥ ϑ for all q1, q2 ∈ Zϑ ⊂ N ϑ

sβ .
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As in [HH01], we introduce the following index set

M := {(m, j, n, k) ∈ Z≥0 × Z× Z≥0 × Z : |j| ≤ m and |k| ≤ n} .

Let {Y j
m : m ∈ Z≥0, |j| ≤ m} be the set of spherical harmonics. For each F ∈

HS(L2(S2), L2(S2)), we denote F jk
mn :=

(
FY j

m, Y
k
n

)
L2(S2),L2(S2)

. Accordingly, we write

G(1 + q)jkmn :=
(
G(1 + q)Y j

m, Y
k
n

)
L2(S2),L2(S2)

.

Lemma B.5. Let κ > 0 and let ∥q∥L∞(R3) ≤ 1 with supp (q) ⊂ B1/2. Then there exist
constants cabs = cabs(κ) > 0 and Cabs = Cabs(κ) > e such that

|G(1 + q)jkmn| ≤ Cabse
−cabs max{m,n} for all (m, j, n, k) ∈ M.

Proof. By [CK19, Theorem 2.15], we can write

usc1+q(x, θ) =
∞∑
m=0

m∑
j=−m

(
usca1+q

)j
m
(θ)h(1)m (κ|x|)Y j

m(θ
′),

where h
(1)
m is the spherical Hankel function of the first kind or order m. In fact,(

usca1+q

)j
m
(θ)h(1)m (κr) =

∫
S2

usca1+q(rθ
′, θ)Y j

m(θ′) dθ
′ for all r > 1,

see the proof of [CK19, Theorem 2.16]. For each θ ∈ S2, also from [CK19, Theorem 2.16],
we have the following expansion

u∞1+q(θ
′, θ) =

∞∑
m=0

m∑
j=−m

1

im+1

(
usca1+q

)j
m
(θ)Y j

m(θ
′),

which converges uniformly in θ′ ∈ S2, and hence∫
S2

u∞1+q(θ
′, θ)Y j

m(θ′) dθ
′ =

1

im+1

(
usc1+q

)j
m
(θ) = |h(1)m (κr)|−1

∫
S2

usca1+q(rθ
′, θ)Y j

m(θ′) dθ
′, (B.3)

for all r > 1. We now combine (B.3) with Lemma B.4 to obtain∣∣∣∣∫
S2

u∞1+q(θ
′, θ)Y j

m(θ′) dθ
′
∣∣∣∣ ≤ Cr−1|h(1)m (κr)|−1,

uniformly in θ′ ∈ S2. We now choose κr = 2 and reach∣∣∣∣∫
S2

u∞1+q(θ
′, θ)Y j

m(θ′) dθ
′
∣∣∣∣ ≤ C|h(1)m (2)|−1. (B.4)

From [KW22, (48)], we see that

|h(1)m (2)|−1 ≤ 2
√
π

1

Γ(m+ 1
2
)

for all m = 0, 1, 2, · · · . (B.5)

In view of the quantitative Stirling’s formula [Rob55], we obtain

|h(1)m (2)|−1 ≤ 2
√
π

1

(m− 1)!
≤

√
2(m− 1)−(m− 1

2
)em−1e−

1
12m−11

≤ C(m− 1)−(m−1)em−1 for all m = 6, 7, 8, · · · .
(B.6)

From (B.5), it is clearly that

|h(1)m (2)|−1 ≤ C for m = 0, 1, 2, · · · , 5.
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Combining (B.4) and (B.6) implies

|G(1 + q)kjnm| =
∣∣∣∣∫

S2

∫
S2

u∞1+q(θ
′, θ)Y j

m(θ′)Y
k
n (θ) dθ

′ dθ

∣∣∣∣
≤ |S2|

1
2

∣∣∣∣∫
S2

u∞1+q(θ
′, θ)Y j

m(θ′) dθ
′
∣∣∣∣ ≤ Ce−cm for all (m, j, n, k) ∈ M.

Finally, by the first reciprocity relation [CK19, Theorem 8.8], we have

|G(1 + q)jkmn| = |G(1 + q)kjnm| for all (m, j, n, k) ∈ M,

and the lemma is proved. □

We also need a technical lemma.

Lemma B.6. Consider the normed space

HS′ =
{
F ∈ HS(L2(S2), L2(S2)) : ∥F∥HS′ <∞

}
,

where

∥F∥HS′ := sup
(m,j,n,k)∈M

|F jk
mn|(1 + max{m,n})3.

Then

∥F∥HS(L2(S2),L2(S2)) ≤ C0∥F∥HS′ , C0 = 4

(
∞∑
n=0

1

(1 + n)3

) 1
2

<∞.

Proof. Since

∥F∥2HS(L2(S2),L2(S2)) =
∑

(m,j,n,k)∈M

|F jk
mn|2, (B.7)

we can estimate

∥F∥HS(L2(S2),L2(S2)) =

 ∑
(m,j,n,k)∈M

|F jk
mn|2

(1 + max{m,n})6

(1 + max{m,n})6

 1
2

≤

 ∑
(m,j,n,k)∈M

1

(1 + max{m,n})6

 1
2

∥F∥HS′

≤ 2

( ∑
m,n=0,1,2,···

1

(1 + max{m,n})4

) 1
2

∥F∥HS′

≤ 2

(( ∑
n≥m≥0

+
∑

m≥n≥0

)
1

(1 + max{m,n})4

) 1
2

∥F∥HS′

= 4

(
∞∑
n=0

n∑
m=0

1

(1 + n)4

) 1
2

∥F∥HS′ = 4

(
∞∑
n=0

1

(1 + n)3

) 1
2

∥F∥HS′ ,

which implies the lemma. □

We now construct a δ-net by following the procedures in [DCR03, Lemma 2.3].
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Lemma B.7. Let N 1 :=
{
q ≥ 0 : supp (q) ⊂ B1/2, ∥q∥L∞(R3) ≤ 1

}
. Then there exists a

constant C ′
abs = C ′

abs(κ) > e such that: for each 0 < δ < 1/e we can find a δ-net3 Yδ for(
G(1 +N 1), ∥·∥HS(L2(S2),L2(S2))

)
such that

|Yδ| ≤ C ′
abs exp(− log δ)5. (B.8)

Proof. Fix δ ∈ (0, 1/e). Let ℓ̃ be the smallest positive integer such that

Cabse
−cabs(t−1)(1 + t)3 ≤ δ

2C0

for all t ≥ ℓ̃, (B.9)

where Cabs > e and cabs > 0 are the absolute constants appeared in Lemma B.5. One sees
that there exists an absolute constant C > 0 such that

ℓ̃ ≤ C log δ−1. (B.10)

We define a finite subset of the complex plane C by

Ψδ := (δ′Z ∩ [−Cabs, Cabs]) + i (δ′Z ∩ [−Cabs, Cabs]) , δ′ =
(1 + ℓ̃)−3

2C0

δ.

It is easy to see that

|Ψδ| ≤
(
2Cabs + 1

δ′

)2

=

(
2C0(2Cabs + 1)(1 + ℓ̃)3

δ

)2

. (B.11)

We now define the set

Yδ :=
{
F ∈ HS(L2(S2), L2(S2)) :

F jk
mn ∈ Ψδ if max{m,n} ≤ ℓ̃

and F jk
mn = 0 otherwise

}
.

Let ℓ∗ be the number of (m, j, n, k) ∈ M such that max{m,n} ≤ ℓ̃, then we have

|Yδ| = |Ψδ|ℓ∗ ≤ |Ψδ|16(1+ℓ̃)
4

. (B.12)

Plugging (B.10) and (B.11) into (B.12) yields

|Yδ| ≤
(
2C0(2Cabs + 1)

(C log δ−1)3

δ

)16(C log δ−1)4

,

and, furthermore, from the trivial estimate log(1 + t) ≤ t for all t ≥ 0, we see that

log|Yδ| ≤ 16(C log δ−1)4 log

(
2C0(2Cabs + 1)

(C log δ−1)3

δ

)
= 16(C log δ−1)4

(
log(2C0(2Cabs + 1)) + 3 log(C log δ−1) + log δ−1

)
≤ 16(C log δ−1)4

(
log(2C0(2Cabs + 1)) + 3C log δ−1 + log δ−1

)
≤ C(log δ−1)5,

which gives (B.8).
The remaining task now is to verify that the set Yδ constructed above is a δ-net for(
G(1 +N 1), ∥·∥HS(L2(S2),L2(S2))

)
. Fix q ∈ N 1 and consider the far-field pattern G(1 + q).

For each (m, j, n, k) ∈ M with max{m,n} ≤ ℓ̃, we choose F jk
mn ∈ Ψδ be the closest element

to G(1 + q)jkmn; otherwise for those (m, j, n, k) ∈ M with max{m,n} > ℓ̃, we simply choose
F jk
mn = 0. We define the operator F ∈ Yδ by(

FY j
m, Y

k
m

)
L2(S2),L2(S2)

:= F jk
mn for all (m, j, n, k) ∈ M.

3This means that for each operator F0 ∈ G(1 +N 1) there exists F ∈ Yδ which is approximate F0 in the
sense that ∥F0 − F∥HS(L2(S2),L2(S2)) ≤ δ.
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By Lemma B.5, we see that

G(1 +N 1) ⊂ BCabs
⊂ C.

Therefore, if max{m,n} ≤ ℓ̃, we have that

|G(1 + q)jkmn − F jk
mn|(1 + max{m,n})3 ≤

√
2δ′(1 + ℓ̃)3 =

δ√
2C0

.

Otherwise, when t := max{m,n} > ℓ̃, from Lemma B.5 and (B.9), we estimate

|G(1 + q)jkmn − F jk
mn|(1 + max{m,n})3 = |G(1 + q)jkmn|(1 + t)3 ≤ Cabse

−cabst(1 + t3) ≤ δ

2C0

.

Consequently, by Lemma B.6, we finally obtain

∥G(1 + q)− F∥HS(L2(S2),L2(S2)) ≤ C0 sup
(m,j,n,k)∈M

|G(1 + q)jkmn − F jk
mn|(1 + max{m,n})3 ≤ δ.

□

We are now ready to prove the main instability estimate by combining Lemma B.3 and
Lemma B.7.

Proof of Theorem B.1. Let s > 3
2
and C ′

abs > e be the constant obtained in Lemma B.7. We
choose β = β(s) > 0 such that

1 ≤ 1

2

(
log 2

2

)d
(µβ)

3
s , (B.13)

where µ = µ(s) is the constant given in Lemma B.3 (with d = 3). Let us pick ϑ satisfying

0 < ϑ < min

µβ,
((

log 2

2

)d
1

2 logC ′
abs

) s
3

(µβ), 1

 .

Assume that the set Zϑ is given in Lemma B.3 (also take d = 3). Next we choose

δ := exp(−ϑ− 3
5s ) ∈ (0, 1/e),

and construct the Yδ described in Lemma B.7. Since Zϑ ⊂ N ϑ
sβ ⊂ N 1

sβ, it is clear that Yδ is
also a δ-net for

(
G(1 + Zϑ), ∥·∥HS(L2(S2),L2(S2))

)
. Moreover, we can check that

ϑ ≤

((
log 2

2

)d
1

2 logC ′
abs

) s
3

µβ ⇐⇒ logC ′
abs ≤

1

2

(
log 2

2

)d
(µβ)

3
sϑ− 3

s .

Combining (B.2), (B.8) and (B.13) implies

|Yδ| ≤ C ′
abs exp(ϑ

− 3
s ) = exp(ϑ− 3

s + logC ′
abs) < exp

((
log 2

2

)d
(µβ)

3
sϑ− 3

s

)
≤ |Zϑ|.

This enables us to choose two different q1, q2 ∈ Zϑ (by definition of Zϑ it holds that ∥q1 −
q2∥L∞(R3) ≥ ϑ) such that there exists F ∈ Yδ such that

∥G(1 + qj)− F∥HS(L2(S2),L2(S2)) ≤ δ = exp(−ϑ− 3
5s ),

which proves the theorem by using (B.1). □
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[KRS21] H. Koch, A. Rüland, and M. Salo. On instability mechanisms for inverse problems. Ars In-
ven. Anal., 2021. Paper No. 7, 93 pages. MR4462475, Zbl:1482.35002, doi:10.15781/c93s-pk62,
arXiv:2012.01855.

https://mathscinet.ams.org/mathscinet/article?mr=4003562
https://zbmath.org/1428.62139
https://doi.org/10.3150/18-BEJ1067
https://arxiv.org/abs/1802.05635
https://mathscinet.ams.org/mathscinet/article?mr=4130599
https://zbmath.org/1445.35144
https://doi.org/10.4171/MSL/14
https://arxiv.org/abs/1906.03486
https://mathscinet.ams.org/mathscinet/article?mr=3084161
https://zbmath.org/1284.62289
https://doi.org/10.1016/j.spa.2013.05.001
https://arxiv.org/abs/1203.5753
https://mathscinet.ams.org/mathscinet/article?mr=4539629
https://zbmath.org/1507.35002
https://doi.org/10.1137/1.9781611977424
https://mathscinet.ams.org/mathscinet-getitem?mr=3971246
https://zbmath.org/1425.35001
https://doi.org/10.1007/978-3-030-30351-8
https://mathscinet.ams.org/mathscinet-getitem?mr=1070713
https://zbmath.org/0706.46003
https://doi.org/10.1007/978-1-4757-4383-8
https://mathscinet.ams.org/mathscinet/article?mr=3135540
https://zbmath.org/1331.62132
https://doi.org/10.1214/13-STS421
https://arxiv.org/abs/1202.0709
https://mathscinet.ams.org/mathscinet/article?mr=3839555
https://zbmath.org/1372.60001
https://doi.org/10.1007/978-3-319-12385-1
https://mathscinet.ams.org/mathscinet-getitem?mr=1984884
https://zbmath.org/1033.35137
https://doi.org/10.1088/0266-5611/19/3/313
https://mathscinet.ams.org/mathscinet/article?mr=1814364
https://zbmath.org/1042.35002
https://doi.org/10.1007/978-3-642-61798-0
https://mathscinet.ams.org/mathscinet/article?mr=3588285
https://zbmath.org/1460.62007
https://doi.org/10.1017/9781009022811
https://mathscinet.ams.org/mathscinet/article?mr=4151406
https://zbmath.org/1445.35330
https://doi.org/10.1088/1361-6420/ab7d2a
https://arxiv.org/abs/1910.07343
https://mathscinet.ams.org/mathscinet/article?mr=1871415
https://zbmath.org/0993.35091
https://doi.org/10.1137/S0036141001383564
https://mathscinet.ams.org/mathscinet/article?mr=3154837
https://zbmath.org/1335.35171
https://doi.org/10.1007/s10688-013-0025-9
https://arxiv.org/abs/1012.5526
https://mathscinet.ams.org/mathscinet/article?mr=4385425
https://zbmath.org/1487.80018
https://doi.org/10.1088/1361-6420/ac4839
https://arxiv.org/abs/2103.13213
https://mathscinet.ams.org/mathscinet/article?mr=3535664
https://zbmath.org/1390.35422
https://doi.org/10.1088/0266-5611/32/8/085005
https://arxiv.org/abs/1507.01772
https://mathscinet.ams.org/mathscinet/article?mr=2906881
https://zbmath.org/1232.62079
https://doi.org/10.1214/11-AOS920
https://arxiv.org/abs/1103.2692
https://mathscinet.ams.org/mathscinet/article?mr=4462475
https://zbmath.org/1482.35002
https://doi.org/10.15781/c93s-pk62
https://arxiv.org/abs/2012.01855


BAYES METHOD FOR THE INVERSE SCATTERING PROBLEM 21

[KT61] A. Kolmogorov and V. Tikhomirov. ε-entropy and ε-capacity in functional spaces (Eng-
lish translation). Amer. Math. Soc. Transl., 17:277–364, 1961. MR0124720, Zbl:0133.06703,
doi:10.1007/978-94-017-2973-4 7. Russian original, Mat. Nauk, 14:3–86, 1959. MR0112032,
Zbl:0090.33503.

[KUW21] P.-Z. Kow, G. Uhlmann, and J.-N. Wang. Optimality of increasing stability for an in-
verse boundary value problem. SIAM J. Math. Anal., 53(6):7062–7080, 2021. MR4354999,
Zbl:1483.35086, doi:10.1137/21M1402169, arXiv:2102.11532.

[KW22] P.-Z. Kow and J.-N. Wang. Refined instability estimates for some inverse problems. Inverse
Probl. Imaging, 16(6):1619–1642, 2022. MR4520377, Zbl:7675881, doi:10.3934/ipi.2022017.

[LM72] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol.
I., volume 181 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New
York-Heidelberg, 1972. MR0350177, Zbl:0223.35039.

[Man01] N. Mandache. Exponential instability in an inverse problem for the schrödinger equation.
Inverse Problems, 17(5):1435–1444, 2001. MR1862200, Zbl:0985.35110, doi:10.1088/0266-
5611/17/5/313.

[McL00] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University
Press, 2000. MR1742312, Zbl:0948.35001.

[MNP19] F. Monard, R. Nickl, and G. P. Paternain. Efficient nonparametric Bayesian inference forX-ray
transforms. Ann. Statist., 47(2):1113–1147, 2019. MR3909962, Zbl:1417.62060, doi:10.1214/18-
AOS1708, arXiv:1708.06332.

[MNP21] F. Monard, R. Nickl, and G. P. Paternain. Consistent inversion of noisy non-Abelian X-
ray transforms. Comm. Pure Appl. Math., 74(5):1045–1099, 2021. MR4230066, Zbl:7363259,
doi:10.1002/cpa.21942, arXiv:1905.00860.

[Nac88] A. I. Nachman. Reconstructions from boundary measurements. Ann. of Math. (2), 128(3):531–
576, 1988. MR0970610, Zbl:0675.35084, doi:10.2307/1971435.

[Nic20] R. Nickl. Bernstein–von Mises theorems for statistical inverse problems I: Schrödinger
equation. J. Eur. Math. Soc. (JEMS), 22(8):2697–2750, 2020. MR4118619, Zbl:1445.62099,
doi:10.4171/JEMS/975, arXiv:1707.01764.

[Nic23] R. Nickl. Bayesian non-linear statistical inverse problems. Zur. Lect. Adv. Math. EMS Press,
Berlin, 2023. MR4604099, Zbl:7713834, doi:10.4171/ZLAM/30.

[NP21] R. Nickl and G. Paternain. On some information-theoretic aspects of non-linear statistical
inverse problems. arXiv preprint, 2021. arXiv:2107.09488.

[NS17] R. Nickl and J. Söhl. Nonparametric Bayesian posterior contraction rates for discretely ob-
served scalar diffusions. Ann. Statist., 45(4):1664–1693, 2017. MR3670192, Zbl:1411.62087,
doi:10.1214/16-AOS1504, arXiv:1510.05526.
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