Homework \#6

1. Show that the Cantor set is a uncountable measure zero set.
2. Let $\left\{R_{j}\right\}_{j=1}^{N}$ be non-overlapping rectangles, then $\left|\cup_{k=1}^{N} R_{j}\right|=\sum_{j=1}^{N}\left|R_{j}\right|$.
3. Let A and B two disjoint compact sets of \mathbb{R}^{n}. Show that $\operatorname{dist}(A, B)>0$.
4. Prove that every open set in \mathbb{R}^{n} can be written as a countable union of non-overlapping (closed) cubes.
5. Prove that outer measure is translation invariant, i.e., if $E_{h}=\{x+h ; x \in E\}$ is the translate of E by $h \in \mathbb{R}^{n}$, then $|E+h|_{e}=|E|_{e}$.
6. Let Z be a subset of \mathbb{R}^{1} with measure zero. Show that the set $\left\{x^{2}: x \in Z\right\}$ also has measure zero.
