1. Show that the Cantor set is a uncountable measure zero set.

2. Let \(\{R_j\}_{j=1}^N \) be non-overlapping rectangles, then \(|\bigcup_{k=1}^N R_j| = \sum_{j=1}^N |R_j| \).

3. Let \(A \) and \(B \) two disjoint compact sets of \(\mathbb{R}^n \). Show that \(\text{dist}(A, B) > 0 \).

4. Prove that every open set in \(\mathbb{R}^n \) can be written as a countable union of non-overlapping (closed) cubes.

5. Prove that outer measure is translation invariant, i.e., if \(E_h = \{x + h; x \in E\} \) is the translate of \(E \) by \(h \in \mathbb{R}^n \), then \(|E + h|_e = |E|_e \).

6. Let \(Z \) be a subset of \(\mathbb{R}^1 \) with measure zero. Show that the set \(\{x^2 : x \in Z\} \) also has measure zero.