4E-22. Give an alternative proof of the uniform continuity theorem using the Bolzano-Weierstrass Theorem as follows. First, show that if f is not uniformly continuous, there is an $\varepsilon > 0$ and there are sequences x_n, y_n such that $\rho(x_n, y_n) < 1/n$ and $\rho(f(x_n), f(y_n)) \ge \varepsilon$. Pass to convergent subsequences and obtain a contradiction to the continuity of f.

Solution. We are asked to prove that a continuous function on a compact set is uniformly continuous on that set by using the Bolzano-Weierstrass Theorem which says that a compact set is sequentially compact. So, suppose K is a compact subset of a metric space M with metric d and f is a continuous function from K into a metric space N with metric ρ . If f were not uniformly continuous, then there would be an $\varepsilon > 0$ for which no $\delta > 0$ would work in the definition of uniform continuity. In particular, $\delta = 1/n$ would not work. So there would be points x_n and y_n with $d(x_n, y_n) < 1/n$ and $\rho(f(x_n), f(y_n)) > \varepsilon$. Since K is a compact subset of the metric space M, it is sequentially compact by the Bolzano-Weierstrass Theorem (3.1.3). So there are indices $n(1) < n(2) < n(3) < \ldots$ and a point $z \in K$ such that $x_{n(k)} \to z$ as $k \to \infty$. Since $n(k) \to \infty$ and $d(x_{n(k)}, y_{n(k)})) < 1/n(k)$, we can compute

$$d(y_{n(k)}, z) \le d(y_{n(k)}, x_{n(k)}) + d(x_{n(k)}, z) < \frac{1}{n(k)} + d(x_{n(k)}, z) \to 0.$$

So $y_{n(k)} \to z$ also. Since f is continuous on K, we should have $f(x_{n(k)}) \to f(z)$ and $f(y_{n(k)}) \to f(z)$ as $k \to \infty$. We can select k large enough so that $\rho(f(x_{n(k)}), f(z)) < \varepsilon/2$ and $\rho(f(y_{n(k)}), f(z)) < \varepsilon/2$. But this would give

$$\varepsilon < \rho(f(x_{n(k)}), f(y_{n(k)}))$$

$$\leq \rho(f(x_{n(k)}), f(z)) + \rho(f(y_{n(k)}), f(z))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This impossibility shows that f must, in fact, be uniformly continuous on K.

♦ **4E-23.** Let X be a compact metric space and $f: X \to X$ an isometry; that is, d(f(x), f(y)) = d(x, y) for all $x, y \in X$. Show that f is a bijection.

Sketch. To show "onto" suppose $y_1 \in \mathcal{X} \setminus f(\mathcal{X})$ and consider the sequence $y_2 = f(y_1), y_3 = f(y_2), \ldots$

Solution. If f(x) = f(y), then 0 = d(f(x), f(y)) = d(x, y), so x = y. Thus f is one-to-one. If $\varepsilon > 0$, let $\delta = \varepsilon$. If $d(x, y) < \delta$, then $d(f(x), f(y)) = d(x, y) < \delta = \varepsilon$, so f is continuous, in fact uniformly continuous, on \mathcal{X} . It remains to show that f maps \mathcal{X} onto \mathcal{X} . Since \mathcal{X} is compact and f is continuous, the image, $f(\mathcal{X})$ is a compact subset of the metric space \mathcal{X} . So it must be closed. Its complement, $\mathcal{X} \setminus f(\mathcal{X})$ must be open. If there were a point x in $\mathcal{X} \setminus f(\mathcal{X})$, then there would be a radius r > 0 such that $D(x,r) \subseteq \mathcal{X} \setminus f(\mathcal{X})$. That is, $y \in f(\mathcal{X})$ implies d(y,x) > r. Consider the sequence defined by $x_0 = x$ and $x_{n+1} = f(x_n)$ for $n = 0,1,2,\ldots$ For positive integer k, let f^k denote the composition of f with itself k times. If f and f are positive integers, then

$$d(x_{n+p}, x_n) = d(f^n \circ f^p(x), f^n(x)) = d(f^p(x), x) > r$$

since $f^p(x) \in f(\mathcal{X})$. The points in the sequence are pairwise separated by distances of at least r. This would prevent any subsequence from converging. But \mathcal{X} is sequentially compact by the Bolzano-Weierstrass Theorem. So there should be a convergent subsequence. This contradiction shows that there can be no such starting point x for our proposed sequence. The complement $\mathcal{X} \setminus f(\mathcal{X})$ must be empty. So $f(\mathcal{X}) = \mathcal{X}$ and f maps \mathcal{X} onto \mathcal{X} as claimed.

4E-26. Let $f: [a,b] \to \mathbb{R}$ be continuous and such that f'(x) exists on [a,b] and $\lim_{x\to a^+} f'(x)$ exists. Prove that f is uniformly continuous.

Suggestion. Use the limit of the derivative at a to get uniform continuity on a short interval [a, a+2d]. Use Theorem 4.6.2 to get uniform continuity on an overlapping interval [a+d,b]. Then combine the two results. \Diamond

Solution. Let $\varepsilon>0$, and suppose $\lim_{x\to a^+}f(x)=\lambda$. There is a d such that 0<2d< b-a and $|f'(x)|\leq |\lambda|+1$ for a< x< a+2d. As is Example 4.6.4, f is uniformly continuous on]a,a+2d], and there is a $\delta_1>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever x and y are in]a,a+2d] and $|x-y|<\delta_1$. Since f is continuous on]a,b], it is continuous on the subinterval [a+d,b]. Since that interval is compact, f is uniformly continuous on it by the uniform continuity theorem, 4.6.2. There is a $\delta_2>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever x and y are in [a+d,b] and $|x-y|<\delta_2$. Now we take advantage of the overlap we have carefully arranged between our two subdomains. If x and y are in [a,b] and $|x-y|<\min(\delta_1,\delta_2,d/2)$, then either they are both in [a,a+2d], then $|f(x)-f(y)|<\varepsilon$ since $|x-y|<\delta_1$. If they are both in [a,a+2d], then $|f(x)-f(y)|<\varepsilon$ since $|x-y|<\delta_2$. In any case, $|f(x)-f(y)|<\varepsilon$ whenever x and y are in |a,b| and $|x-y|<\delta_1$ in any case, $|f(x)-f(y)|<\varepsilon$ whenever x and y are in |a,b| and $|x-y|<\delta_2$. In any case, $|f(x)-f(y)|<\varepsilon$ whenever x and y are in |a,b| and $|x-y|<\delta_2$. In any case, $|f(x)-f(y)|<\varepsilon$ whenever x and y are in |a,b| and $|x-y|<\delta_3$. So $|x-y|<\delta_4$ and $|x-y|<\delta_3$. So $|x-y|<\delta_4$ is uniformly continuous on $|x-y|<\delta_3$ as claimed.

4E-28. Let f: [0,1] → \mathbb{R} be uniformly continuous. Must f be bounded?

Answer. Yes.

Solution. If f were not bounded on]0,1[, we could inductively select a sequence of points $\langle x_k \rangle_1^\infty$ in]0,1[such that $|f(x_{k+1})| > |f(x_k)| + 1$ for each k. In particular, we would have $|f(x_k) - f(x_j)| > 1$ whenever $k \neq j$. But the points x_k are all in the compact interval [0,1], so there should be a subsequence converging to some point in [0,1]. This subsequence would have to be a Cauchy sequence, so no matter how small a positive number δ were specified, we could get points x_k and x_j in the subsequence with $|x_k - x_j| < \delta$ and $|f(x_k) - f(x_j)| > 1$. This contradicts the uniform continuity of f on]0,1[. So the image f(]0,1[) must, in fact, be bounded.

If we knew the result of Exercise 4E-24(c), then we would know that f has a unique continuous extension to the closure, [0,1]. There is a continuous $g:[0,1]\to\mathbb{R}$ such that g(x)=f(x) for all x in]0,1[. Since g is continuous on the compact domain [0,1], the image g([0,1]) is compact and hence bounded. So $f([0,1])=g([0,1])\subseteq g([0,1])$ is bounded.

♦ **4E-29.** Let $f: \mathbb{R} \to \mathbb{R}$ satisfy $|f(x) - f(y)| \le |x - y|^2$. Prove that f is a constant. [Hint: What is f'(x)?]

Suggestion. Divide by x - y and let y tend to x to show that f'(x) = 0.

Solution. Suppose $x_0 \in \mathbb{R}$. Then for $x \neq x_0$ we have $|f(x) - f(x_0)| \leq |x - x_0|^2$, so

 $0 \le \left| \frac{f(x) - f(x_0)}{x - x_0} \right| \le |x - x_0|.$

Letting $x \to x_0$, we find that $\lim_{x \to x_0} (f(x) - f(x_0))/(x - x_0) = 0$. So $f'(x_0)$ exists and is equal to 0 for every $x_0 \in \mathbb{R}$. If $t \in \mathbb{R}$, there is, by the mean value theorem, a point x_0 between 0 and t such that $|f(t) - f(0)| = |f'(x_0)(t-0)| = |0(t-0)| = 0$. So f(t) = f(0) for all $t \in \mathbb{R}$. Thus f is a constant function as claimed.

- ♦ **4E-30.** (a) Let $f:[0,\infty[\to \mathbb{R}, f(x)=\sqrt{x}]$. Prove that f is uniformly continuous.
 - (b) Let k > 0 and $f(x) = (x x^k)/\log x$ for 0 < x < 1 and f(0) = 0, f(1) = 1 k. Show that $f: [0,1] \to \mathbb{R}$ is continuous. Is f uniformly continuous?

Solution. (a) Let $\varepsilon > 0$. We know that $f(x) = \sqrt{x}$ is continuous on $[0, \infty[$, so it is certainly continuous on the compact domain [0,3]. By the uniform continuity theorem, 4.6.2, it is uniformly continuous on that set. There is a $\delta_1 > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever x and y are in [0,3] and $|x-y| < \delta_1$.

We also know that f is differentiable for x > 0 with $f'(x) = 1/(2\sqrt{x})$. So $|f'(x)| \le 1/2$ for $x \ge 1$. As in Example 4.6.4, we can use the mean value theorem to conclude that if $\delta_2 = 2\varepsilon$, and x and y are in $[1, \infty[$ with $|x - y| < \delta_2$, then there is a point c between x and y such that $|f(x) - f(y)| = |f'(c)(x - y)| < (1/2)(2\varepsilon) = \varepsilon$.

Now take advantage of the overlap of our two domains. If x and y are in $[0,\infty[$ and $|x-y|<\delta=\min(1,\delta_1,\delta_2),$ then either x and y are both in [0,3] or both are in $[1,\infty[$ or both. If they are both in [0,3], then $|f(x)-f(y)|<\varepsilon$ since $|x-y|<\delta_1.$ If they are both in $[1,\infty[$, then $|f(x)-f(y)|<\varepsilon$ since $|x-y|<\delta_2.$ In either case, $|f(x)-f(y)|<\varepsilon$. So f is uniformly continuous on $[0,\infty[$ as claimed.

(b) Suppose k is a positive integer and $f(x) = (x - x^k)/\log x$ for 0 < x < 1, f(0) = 0, and f(1) = 1 - k. The numerator, $x - x^k$, is continuous for all x. The denominator, $\log x$, is continuous for x > 0. So f is continuous on x > 0 except possibly at x = 1 where the denominator is 0, However, the numerator is also 0 at x = 1. To apply L'Hôpital's Rule, we consider the ratio of the derivatives

$$\frac{1 - kx^{k-1}}{1/x} = x - kx^k \to 1 - k = f(1) \quad \text{as} \quad x \to 1.$$

By L'Hôpital's Rule, $\lim_{x\to 1}(x-x^k)/\log x = \lim_{x\to 1}f(x)$ also exists and is equal to f(1). So f is continuous at 1. As $x\to 0^+$, the numerator of f(x) tends to 0 and the denominator to $-\infty$. So $\lim_{x\to 0^+}f(x)=0=f(0)$. So f is continuous from the right at 0. So f is continuous on $[0,\infty[$ and on the smaller domain [0,1]. Since the latter is compact, f is uniformly continuous on it by the uniform continuity theorem, 4.6.2. \blacklozenge

⋄ **4E-37.** Prove the following intermediate value theorem for derivatives: If f is differentiable at all points of [a, b], and if f'(a) and f'(b) have opposite signs, then there is a point $x_0 \in [a, b]$ such that $f'(x_0) = 0$.

Sketch. Suppose f'(a) < 0 < f'(b). Since f is continuous on [a, b] (why?), it has a uninimum at some x_0 in [a, b]. (Why?) $x_0 \neq a$ since f(x) < f(a) for x slightly larger than a. (Why?) $x_0 \neq b$ since f(x) < f(b) for x slightly smaller that b. (Why?) So $a < x_0 < b$. So $f'(x_0) = 0$. (Why?) The case of f'(a) > 0 > f'(b) is similar.

Solution. We know from Proposition 4.7.2 that f is continuous on the compact domain [a, b]. By the maximum-minimum theorem, 4.4.1, it attains a finite minimum, m, and a finite maximum, M, at points x_1 and x_2 in [a, b].

CASE ONE: f'(a) < 0 < f'(b): Since f'(b) > 0, and it is the limit of the difference quotients at b, we must have (f(x) - f(b))/(x - b) > 0 for x slightly smaller than b. Since x - b < 0, we must have f(x) < f(b) for such x. So the minimum doe not occur at b. Since f'(a) < 0, and it is the limit of the difference quotients at a, we must have (f(x) - f(a))/(x - a) < 0 for x slightly larger than a. Since x - a > 0, we must have f(x) < f(a) for such x. So the minimum does not occur at a. Thus the minimum must occur at a point $x_0 \in]a, b[$. By Proposition 4.7.9, we must have $f'(x_0) = 0$.

CASE TWO: f'(a) > 0 > f'(b): Since f'(b) < 0, and it is the limit of the difference quotients at b, we must have (f(x) - f(b))/(x - b) < 0 for x slightly smaller than b. Since x - b < 0, we must have f(x) > f(b) for such x. So the maximum does not occur at b. Since f'(a) > 0, and it is the limit of the difference quotients at a, we must have (f(x) - f(a))/(x - a) > 0 for x slightly larger than a. Since x - a > 0, we must have f(x) > f(a) for such x. So the maximum does not occur at a. Thus the maximum must occur at a point $x_0 \in]a, b[$. By Proposition 4.7.9, we must have $f'(x_0) = 0$.

a, b with $0 \le a < b \le 1$ there is a c, a < c < b, with f(c) = 0. Prove $\int_0^1 f = 0$. Must f be zero? What if f is continuous?

Suggestion. Show that the upper and lower sums are both 0 for every partition of [0, 1]. Consider a function which is 0 except at finitely many points. \Diamond

Solution. Since f is integrable on [0, 1], the upper and lower integrals are the same and are equal to the integral. Let $P = \{0 = x_0 < x_1 < x_2 < \cdots < x_n = 1\}$ be any partition of [0, 1]. For each subinterval $[x_{j-1}, x_j]$ there is a point c_j in it with $f(c_j) = 0$. So

$$m_j = \inf\{f(x) \mid x \in [x_{j-1}, x_j]\} \le 0 \le \sup\{f(x) \mid x \in [x_{j-1}, x_j]\} = M_j.$$

So

$$L(f,P) = \sum_{j=1}^{n} m_j(x_j - x_{j-1}) \le 0 \le \sum_{j=1}^{n} M_j(x_j - x_{j-1}) = U(f,P).$$

This is true for every partition of [0, 1]. So

$$\int_0^1 f(x) dx = \underbrace{\int_0^1 f(x) dx}_{P \text{ a partition of } [0,1]} L(f,P) \le 0$$

$$\le \inf_{P \text{ a partition of } [0,1]} U(f,P) = \overline{\int_0^1} f(x) dx = \int_0^1 f(x) dx.$$

So we must have $\int_0^1 f(x) dx = 0$.

The function f need not be identically 0. We could, for example, have f(x) = 0 for all but finitely many points at which f(x) = 1.

If f is continuous and satisfies the stated condition, then f must be identically 0. Let $x \in [0,1]$. By hypothesis there is, for each integer n > 0, at least one point c_n in [0,1] with $x-(1/n) \le c_n \le x+(1/n)$ and $f(c_n) = 0$. Since $c_n \to 0$ and f is continuous, we must have $0 = f(c_n) \to f(x)$. So f(x) = 0.

4E-45. Prove the following second mean value theorem. Let f and g be defined on [a,b] with g continuous, $f \ge 0$, and f integrable. Then there is a point $x_0 \in]a,b[$ such that

$$\int_a^b f(x)g(x) dx = g(x_0) \int_a^b f(x) dx.$$

Sketch. Let $m = \inf(g([a,b]))$ and $M = \sup(g([a,b]))$. Then

$$m \int_a^b f(x) \, dx \le \int_a^b f(x) g(x) \, dx \le M \int_a^b f(x) \, dx.$$

(Why?) Since $t \int_a^b f(x) dx$ depends continuously on t, the intermediate value theorem gives t_0 in [m, M] with

$$\int_a^b f(x)g(x) dx = t_0 \int_a^b f(x) dx.$$

Now apply that theorem to g to get x_0 with $g(x_0) = t_0$. (Supply details.)

Solution. Since g is continuous on the compact interval [a,b], we know that $m = \inf(g([a,b]))$ and $M = \sup(g([a,b]))$ exist as finite real numbers

and that there are points x_1 and x_2 in [a, b] where $g(x_1) = m$ and $g(x_2) = M$. Since $m \leq g(x) \leq M$ and $f(x) \geq 0$, we have $mf(x) \leq f(x)g(x) \leq Mf(x)$ for all x in [a, b]. Assuming that f and fg are integrable on [a, b], Proposition 4.8.5(iii) gives

$$m \int_{a}^{b} f(x) dx = \int_{a}^{b} mf(x) dx$$

$$\leq \int_{a}^{b} f(x)g(x) dx$$

$$\leq \int_{a}^{b} Mf(x) dx$$

$$= M \int_{a}^{b} f(x) dx.$$

The function $h(t)=t\int_a^b f(x)\,dx$ is a continuous function of t in the interval $m\leq t\leq M$, and $\int_a^b f(x)g(x)\,dx$ is a number between h(m) and h(M). By the intermediate value theorem there is a number t_0 in [m,M] with $h(t_0)=\int_a^b f(x)g(x)\,dx$. Since g is continuous between x_1 and x_2 and t_0 is between $m=g(x_1)$ and $M=g(x_2)$, another application of the intermediate value theorem gives a point x_0 between x_1 and x_2 with $g(x_0)=t_0$. So

$$\int_{a}^{b} f(x)g(x) dx = h(t_0) = t_0 \int_{a}^{b} f(x) dx = g(x_0) \int_{a}^{b} f(x) dx$$

as desired.