o 4E-22. Give an alternative proof of the uniform continuity theorem us-
ing the Bolzano-Weierstrass Theoremn as follows. First, show that if f is
not uniformly continuous, there is an £ > 0 and there are sequences z,,, ¥,
such that p{x,,y,) < 1/n and p(f(x,), f(yn)) = &. Pass to convergent
subscquences and obtain a contradiction to the continuity of f.

Solution. We are asked to prove that a continuous function on a compact
set is uniformly contimious on that set by using the Bolzano-Weierstrass
Theorem which says that a compact set is sequentially compact. So, sup-
posc K is a compact subset of a metric space M with metric d and f is a
continuous function from K into a metric space N with mectric p. If f werc
not uniformly continuous, then there would be an € > 0 for which no § > 0
would work in the definition of uniform continuity. In particular, § = 1/n
would not work. So there would be points «,, and y, with d(z,.y,) < 1/n
and p(f(z,), f(yn)) > €. Since K is a compact subset of the metric space
M, it is scquentially compact by the Bolzano-Weierstrass Theorem (3.1.3).
So there are indices n(1) < n(2) < n(3) < ... and a point z € K such that
Zaky = = as k — o0. Since n(k) — oc and d(@n)s Yu(ry)) < 1/n(k), we
can compute

1
d(y'n,(lr,) s Z) < d(’l/n(lw l7n(/¢,)) + d(a:n.(l\:)7 Z) < m + d('ln(L) Z) - 0.
S0 Yny — z also. Since f is continuous on K, we should have f (Tnry) —
F(z) and fyn)) — f(2) as k — . We can select k large enough so that
P(f(Eniiy ) F(2)) < €/2 and p(f (Yneky). F(2)) < £/2. But this would give

€ < p(f(@ngey)s fYniiy))
< /)(f("l"n(k))* f(’?')) + /)(f(yn(/c))! f(Z))

[ 3
<‘2'+—2'

[

This impossibility shows that f must, in fact, be uniformly coutinuous on
K. ]

o 4E-23. Lect X he a compact metric space and f : X — X an isometry;
that is, d(f(z), f(¥)) = d(z,y) for all z,y € X. Show that f is a bijection.

Sketch. To show “onto” supposc y; € X\ f(X) and consider the sequence
y2 = fy1), ys = f(y2), ... - O

Solution. If f(z) = f(y), then 0 = d(f(x). f(¥)) = d(z,y), so z = y.
Thus f is onc-to-one. If £ > 0, let § = &, If d(z, y) < 4, then d(f (). f(y)) =
d(z,y) < § = g, so [ is continuous, in fact uniformly continuous, on X.
It remains to show that f maps X onto X. Since X is compact and f is
continuous, the image, f(&X) is a compact subset of the metric space X.
So it nust be closed. Its complement, X \ f(A') must be open. If there
were a point 2 in X'\ f(X), then there would be a radius r > 0 such that
D(x,r) C X\ f(X). That is, y € f(X) implies d(y,z) > r. Consider the
scquence defined by zp = 2 and z,41 = f(z,) for n = 0,1,2,.... For
positive integer &, let £* denote the comnposition of f with itself & times. Tf
n and p are positive integers, then

d(Enspza) = AU 0 fP(2). " (2)) = d(fP(2)3) > 7

since fP(x) € f(X). The points in the sequence are pairwise separated by
distances of at least 7. This would prevent any subsequence from converg-
ing. But X is scquentially compact by the Bolzano-Weicrstrass Theorem.
So there should be a convergent subsequence. This contradiction shows
that there can be no such starting point z for our proposed seduence. The
complement X\ f(X) must be empty. So f(X) = X and f maps X ounto
A as claimed. ]

°



o 4E-26. Let f: e, bl — R be continuous and such that f/(x) exists on
Ja. b and lim,,._,+ f'(x) exists. Prove that f is uniformly continuous.

Suggestion. Usc the limit of the derivative at a to get uniform continuity
on a short interval |a, « + 2d]. Use Theorem 4.6.2 to get uniform continuity
on an overlapping interval J¢ + d, b]. Then combine the two results. O

Solution. Let £ > 0, and suppose lim,_+ f(x) = A There is a d such
that 0 < 2d < b—-a and | f'(z)| < [A[+1 for a < 2 < a+ 2d. As is Example
4.6.4, f is uniformly continuous on Ja. a+2d)], and there is a #; > 0 such that
[f(x) ~ fly)| < e whenever z and y are in Ja, a+2d] and |z — y| < 6;. Since
f is continuous on |a, 8], it is continuous on the subinterval ¢ + d, 4. Since
that interval is compact, f is uniformly continuous on it by the uniform
continuity theorem, 4.6.2. There is a d2 > 0 such that |f(z) — f(y)| < €
whenever z and y arc in [¢ + d.b] and |z — y| < §;. Now we take advantage
of the overlap we have carcfully arranged between our two subdomains. If &
and y arc in |a, b] and |z — y| < min(8y, 8, d/2), then cither they arc both in
la, a+2d] or they are both in [a+d, b], or both. If they are both in |a, a+2d],
then |f(x) — f(y)| < € since |« — y| < ;. If they are both in |a.a + 2d].
then |f(z) — f(y)| < € since |z — y| < dz. In any case, |f{z) — f(y)| < ¢
whenever ¢ and y are in |a,b] ans |2 ~y| < § = min(d(,ds,d/2). So f is
uniformly continuous on |e, b| as claimed. ¢

o 4E-28. Let f:]0,1[ — R be uniformly continuous. Must f be bounded?
Answer. Yes. Y

Solution. If f were not bounded on |0, 1f, we could inductively select a
sequence of points (wx)3° in 10.1] such that |f(ees1)] > |f(ze)] + 1 for
cach k. In particular, we would have | f(xi) — f(z;)] > 1 whenever & # j.
But the points xx are all in the compact interval [0, 1], so there should be
a subsequence converging to some point in [0, 1]. This subsequence would
have to he a Cauchy sequence, so no matter how small a positive mun-
ber 4 were specified, we could get points zx and z; in the subsequence
with |z — ;] < ¢ and |f{zk) — f(2;)| > 1. This contradicts the uniform
continuity of f on |0, 1{. So the image f(]0, 1) must, in fact, be bounded.

If we knew the result of Exercise 4E-24(c), then we would know that
f has a unique continuous extension to the closure, [0, 1]. There is a con-
tinuous ¢ : [0,1] — R such that g(z) = f(z) for all z in |0, 1[. Since g is
continuous on the compact domain [0, 1], the image ¢{([0, 1]) is compact and
hence bounded. So £(]0, 1[) = ¢(]0, 1[) € ¢([0, 1]) is bounded.

o 4E-29. Lot f:R — R satisfy | f(z) — f(»)] < )z — y|>. Prove that f is
a constant. [Hint: What is f/(x)7?|

Suggestion. Divide by r —y and let y tend to z to show that f/'(x) = 0.

0

Solution. Suppose 79 € R. Then for & # x¢ we have |f(z) — f(xo)| <
lz — zol?, 50
f@) = fx0)

< x =zl
T —xy

O<\

Letting  — &g, we find that ling .. (f(z) - f(z0))/(x — 20} = 0. So
f'(o) exists and is equal to 0 for cvery zo € R. If t € R, there is, by the
mean value theorem, a point xp between 0 and ¢ such that |f(t) — f(0)| =
[ f{ze)@—0)) =0t —0)] = 0. So f(t) = f(0) for all t € R. Thus f is a
constant function as claimed. ¢

o 4E-30. (a) Let f:[0,00] — R, f(xr) = y/x. Prove that f is uniformly

continuous. e

(b) Let & > 0 and f(z) = (x — z¥)/log « for 0 < 2 < 1 and f(0) = 0,

f(1) =1 — k. Show that f:{0.1] — R is continuous. Is f uniformly

continuous?



Suggestion. (a) Usc Theorem 4.6.2 to show that f is uniformly coutinu-
ous on [0, 3] and Exanmple 4.6.4 to show that it is uniformly continuous
on (1,00[. Then coinbine these results.

(b) Use L'Ilépital’s Rule. 0

Solution. (a) Lot € > 0. We know that f(x) = /2 s continuous on [0, 0],
s0 it is certainly continuous on the compact domain [0, 3]. By the uniform
continuity theorem, 4.6.2, it is uniformly continuous on that sct. There
is a §; > 0 such that |f(x) — f(¥)| < ¢ whenever z and y are in [0, 3]
and |z —y| < 6.

We also know that f is diffeventiable for 2 > 0 with f'(z) = 1/(2/Z).
So |f'(x)| < 1/2 for > 1. As in Example 4.6.4, we can use the mean
value theorem to conclude that if do = 2, and z and y are in [1, 00]
with |z — y| < da. then there is a point ¢ between 2 and y such that
|£(2) = )] = [f () — )] < (1/2)(28) = .

Now take advantage of the overlap of our two domains. If x and y are
in [0,00[ and |z — y| < 4 = min(1,4d;,d3), then either = and y are both
in [0, 3] or both arc in [1,5c or both. If they are both in [0,3], then
|f(z) = f(y)] < = since |z ~y| < d;. If they arc both in [1,00[, then
|f(2) = f(y)] < € since |z — y| < bz. In ecither case, |f(z) — f(y)] < ¢
So f is uniformly continuous on [0, cof as claimed.

(b) Suppose k is a positive integer and f(x) = (z —z8)/logzrfor 0 < x < 1,
£(0) =0, and f(1) = 1 — k. The numerator, z — z*, is continuous for all
x. The denominator, log z, is continuous for z > 0. So f is continuous
on z > 0 except possibly at @ = 1 where the denominator is 0, However,
the numerator is also 0 at = 1. To apply L’Hoépital's Rule, we consider
the ratio of the derivatives

k-1

L= ke =x—ka* = 1-k=f1) a xz-1L
1/x

By L’'Hépital's Rule, limg_i(z — 2*)/logx = limg_.; f(z) also exists
and is equal to f(1). So f is continuous at 1. As x — 0%, the numerator
of f(z) tends to 0 and the denominator to —oc. So lim,_o+ f(x) =
0 = f(0). So f is continuous from the right at 0. So f is continuous on
[0, [ and on the smaller domain [0, 1]. Since the latter is compact, f is
uniformly continuous on it by the uniform continuity theorem, 4.6.2. ¢

o 4E-37. Prove the following intermediate value theorem for derivatives: If
f is differentiable at all points of [a, b], and if f'(a) and f/(b) have opposite
signs, then there is a point zg € |a, b] such that f/(2¢) = 0.

Sketch. Suppose f'(a) < 0 < f'(b). Since f is continuous on [a, b] (why?),
it has a minimum at some zg in [, b]. (Why?) @y # a since f(x) < f(a)
for z slightly larger than a. (Why?) 29 # b since f(z) < f(b) for = slightly
smaller that b. (Why?) So a < 2o < b. So f'(zy) = 0. (Why?) The case of
f'(a) > 0> f'(b) is sinilar. ¢

Solution. We know from Proposition 4.7.2 that f is continuous on the
compact domain [a, b]. By the maximum-mininnm theoreny, 4.4.1, it attains
a finite minimum, m, and a finitec maximum, M, at points 2, and ;5 in
la, b].

CASE ONE: f'(a) < 0 < f/(b): Since f'(b) > 0, and it is the limit of the
difference quotients at b, we must have (f(z) — f(b))/(x — b) > 0 for z
slightly smaller than b. Since z ~ b < 0, we must have f{x) < f(b) for such
2. So the minimuin doe uot occur at b. Sinee f'(a) < 0, and it is the limit
of the difference quotients at a, we must have (f(z) — f(a))/(z —a) <0
for z slightly larger than «. Since z — a > 0, we must have f(z) < f(a)
for such x. So the minimum does not occur at a. Thus the minimum must
oceur at a point 2g €]a, b[. By Proposition 4.7.9, we must have f'(x9) = 0.

CASE TWO: f'(a) > 0 > f'(b): Since f'(b) < 0, and it is the limit of
the difference quotients at b, we must have (f(2) — f(0))/(z —b) < 0 for
slightly smaller than b. Since 2 — b < 0, we must have f(z) > f(b) for such
z. So the maximum docs not occur at b. Since f'(a) > 0, and it is the limit
of the difference quotients at ¢, we must have (f(z) — f(a))/(x —a) > 0
for « slightly larger than a. Since x —a > 0, we must have f(x) > f(a)
for such . So the maximum does not, occur at ¢. Thus the maximum must
occur at a point xy €]a, b[. By Proposition 4.7.9, we must have f'(zy) = 0.
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f(} £ =0.Must f be zero? What if f is continuous?

Suggestion. Show that the upper and lower sums arc both 0 for every
partition of [0, 1]. Consider a function which is 0 except at finitely many
points. ¢

Solution. Since f is integrable on [0, 1], the upper and lower integrals are
the saune and arc equal to the integral. Let P= {0 =20 <21 <22 < --- <
T, = 1} be any partition of [0,1]. For cach subinterval [x;_, ;] there is a
point ¢; in it with f(¢;) = 0. So

m; =inf{f(z) |z € [z;-1,z,]} O <sup{f(z)|z € [#j-1, 5]} = M.

So
L(f.P)= Z'fnj(.'(}j —z;_1) <0< Z,Mj(a;j —-xz;_1) =U(f, P).
Jj=1 J=1
This is true for every partition of [0,1]. So

1 L
/ flz)dz = / Jlx)da = sup L(f,P)<0
0 Jo_

P a partition of [0,1]

ry -1
< inf U(f,P)= /) flz)dx = A fx)da.

T P a partition of [0,1)

So we must have fol flx)de=0.

The function f nced not be identically 0. We could, for example, have
f(z) =0 for all but finitely many points at which f(z) = 1.

If f is continuous and satisfies the stated condition, then f must be
identically 0. Let z € [0, 1]. By hypothesis there is, for each integer n > 0,
at least one point ¢, in [0, 1] with x—(1/n) < ¢, € £+ (1/n) and f{c,) = 0.
Since ¢, — 0 and f is continuous, we must have 0 = f(e,.) — f(x). So

flz)=0.
o 4E-45. Prove the following second mean value theoren. Let f and g be

defined on |a,b] with g continuous, f > 0. and f integrable. Then there is
a point Ty € a. b such that

b b
flx)g(z)de = g(wo)/ fx) du.
Sketch. Let m = inf(g([a,b])) and M = sup(g([a. b])). Then

b b b
m/ f)de < | flo)g(x)da <M [ flz)de

@

(Why?) Since ¢ [ f’ f(z) dz depends continuously on ¢, the interimediate valuc
theorem gives ¢o in [, M] with

b b
/ f(@)g(z)dx =ty / f(z) dz.

Now apply that theoren to g to get xg with g(zg) = to. (Supply details.)
0

Solution. Since g is continuous on the compact interval [«, 8], we know
that m = inf(g{[a.b])) and M = sup(g([a.b])) cxist as finitc rcal nunbers



and that there are points 2, and w2 in [a, 8] where g(zy) = and g(xs) =
M. Since m < g(z) < M and f(z) 2 0, we have mf(z) < f(x)g(z) <
M f(z) for all 2 in [, b]. Assuming that f and fg are integrable on [a, b],
Proposition 4.8.5(iii) gives

b

b
m f(a:)d;r:/ mf(z)dz

(3 [

b
< / flx)g(x) dz
b

2]
S/ M f(x)da
a
b
= M f(z)dx.
(13
The function A(t) =t j: f(z) dz is a continuous function of ¢ in the interval
m <t < M. and fab Flx)g(z) de is a number between h(m) and h(M).
By the intermediate value theorem there is a number ¢y in [m, M| with
h(to) = ]: f(x)g(z) dzx. Since g is continuous between z, and 22 and ¥y is
between m = g(x,) and M = g(x2), another application of the intcrmediate
value theorem gives a point zy between @ and z2 with g(zg) = to. So

b 1] b
[ f@lgte)dz = hito) =to [ 1) = g(a0) [ f(o)de

as desired.




