4E-22. Give an alternative proof of the uniform continuity theorem using the Bolzano-Weierstrass Theorem as follows. First, show that if f is not uniformly continuous, there is an $\varepsilon > 0$ and there are sequences x_n, y_n such that $\rho(x_n, y_n) < 1/n$ and $\rho(f(x_n), f(y_n)) \geq \varepsilon$. Pass to convergent subsequences and obtain a contradiction to the continuity of f.

Solution. We are asked to prove that a continuous function on a compact set is uniformly continuous on that set by using the Bolzano-Weierstrass Theorem which says that a compact set is sequentially compact. So, suppose K is a compact subset of a metric space M with metric d and f is a continuous function from K into a metric space N with metric ρ. If f were not uniformly continuous, then there would be an $\varepsilon > 0$ for which no $\delta > 0$ would work in the definition of uniform continuity. In particular, $\delta = 1/n$ would not work. So there would be points x_n and y_n with $d(x_n, y_n) < 1/n$ and $\rho(f(x_n), f(y_n)) > \varepsilon$. Since K is a compact subset of the metric space M, it is sequentially compact by the Bolzano-Weierstrass Theorem (3.1.3). So there are indices $n(1) < n(2) < n(3) < \ldots$ and a point $z \in K$ such that $x_{n(k)} \to z$ as $k \to \infty$. Since $n(k) \to \infty$ and $d(x_{n(k)}, y_{n(k)}) < 1/n(k)$, we can compute

$$d(y_{n(k)}, z) \leq d(y_{n(k)}, x_{n(k)}) + d(x_{n(k)}, z) < \frac{1}{n(k)} + d(x_{n(k)}, z) - 0.$$

So $y_{n(k)} \to z$ also. Since f is continuous on K, we should have $f(x_{n(k)}) \to f(z)$ and $f(y_{n(k)}) \to f(z)$ as $k \to \infty$. We can select k large enough so that $\rho(f(x_{n(k)}), f(z)) < \varepsilon/2$ and $\rho(f(y_{n(k)}), f(z)) < \varepsilon/2$. But this would give

$$\varepsilon < \rho(f(x_{n(k)}), f(y_{n(k)})) \leq \rho(f(x_{n(k)}), f(z)) + \rho(f(y_{n(k)}), f(z)) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

This impossibility shows that f must, in fact, be uniformly continuous on K.

4E-23. Let X be a compact metric space and $f : X \to X$ an isometry; that is, $d(f(x), f(y)) = d(x, y)$ for all $x, y \in X$. Show that f is a bijection.

Sketch. To show "auto" suppose $y_1 \in X \setminus f(X)$ and consider the sequence $y_2 = f(y_1), y_3 = f(y_2), \ldots$.

Solution. If $f(x) = f(y)$, then $0 = d(f(x), f(y)) = d(x, y)$, so $x = y$. Thus f is one-to-one. If $\varepsilon > 0$, let $\delta = \varepsilon$. If $d(x, y) < \delta$, then $d(f(x), f(y)) = d(x, y) < \delta = \varepsilon$, so f is continuous, in fact uniformly continuous, on X. It remains to show that f maps X onto X. Since X is compact and f is continuous, the image, $f(X)$, is a compact subset of the metric space X. So it must be closed. Its complement, $X \setminus f(X)$, must be open. If there were a point x in $X \setminus f(X)$, then there would be a radius $r > 0$ such that $D(x, r) \subseteq X \setminus f(X)$. That is, $y \in f(X)$ implies $d(y, x) > r$. Consider the sequence defined by $x_0 = x$ and $x_{n+1} = f(x_n)$ for $n = 0, 1, 2, \ldots$. For positive integer k, let f^k denote the composition of f with itself k times. If n and p are positive integers, then

$$d(x_{n+p}, x_n) = d(f^n \circ f^p(x), f^n(x)) = d(f^p(x), x) > r$$

since $f^p(x) \in f(X)$. The points in the sequence are pairwise separated by distances of at least r. This would prevent any subsequence from converging. But X is sequentially compact by the Bolzano-Weierstrass Theorem. So there should be a convergent subsequence. This contradiction shows that there can be no such starting point x for our proposed sequence. The complement $X \setminus f(X)$ must be empty. So $f(X) = X$ and f maps X onto X as claimed.
4E-26. Let \(f : [a, b] \to \mathbb{R} \) be continuous and such that \(f'(x) \) exists on \([a, b]\) and \(\lim_{y \to x} f'(x) \) exists. Prove that \(f \) is uniformly continuous.

Suggestion. Use the limit of the derivative at \(a \) to get uniform continuity on a short interval \([a, a+2d]\). Use Theorem 4.6.2 to get uniform continuity on an overlapping interval \([a+d, b]\). Then combine the two results.

Solution. Let \(\varepsilon > 0 \), and suppose \(\lim_{y \to x} f'(x) = \lambda \). There is a \(\delta \) such that \(\varepsilon < 2d < a - b \) and \(|f'(x)| \leq |\lambda| + 1 \) for \(a < x < a + 2d \). As is Example 4.6.4, \(f \) is uniformly continuous on \([a, a+2d]\), and there is a \(\delta_1 > 0 \) such that \(|f(x) - f(y)| < \varepsilon \) whenever \(x \) and \(y \) are in \([a, a+2d]\) and \(|x - y| < \delta_1 \). Since \(f \) is continuous on \([a, b]\), it is continuous on the subinterval \([a + d, b]\). Since that interval is compact, \(f \) is uniformly continuous on it by the uniform continuity theorem, 4.6.2. There is a \(\delta_2 > 0 \) such that \(|f(x) - f(y)| < \varepsilon \) whenever \(x \) and \(y \) are in \([a+2d, b]\) and \(|x - y| < \delta_2 \). Now we take advantage of the overlap we have carefully arranged between our two subdomains. If \(x \) and \(y \) are in \([a, b]\) and \(|x - y| < \min(\delta_1, \delta_2, d/2) \), then either they are both in \([a, a+2d]\) or they are both in \([a+d, b]\) or both. If they are both in \([a, a+2d]\), then \(|f(x) - f(y)| < \varepsilon \) since \(|x - y| < \delta_1 \). If they are both in \([a+d, b]\), then \(|f(x) - f(y)| < \varepsilon \) since \(|x - y| < \delta_2 \). In any case, \(|f(x) - f(y)| < \varepsilon \) whenever \(x \) and \(y \) are in \([a, b]\) and \(|x - y| < \delta = \min(\delta_1, \delta_2, d/2) \). So \(f \) is uniformly continuous on \([a, b]\) as claimed.

4E-28. Let \(f : [0, 1] \to \mathbb{R} \) be uniformly continuous. Must \(f \) be bounded?

Answer. Yes.

Solution. If \(f \) were not bounded on \([0, 1]\), we could inductively select a sequence \(\{x_k\} \subseteq [0, 1] \) such that \(|f(x_{k+1})| > |f(x_k)| + 1 \) for each \(k \). In particular, we would have \(|f(x_k) - f(x_j)| > 1 \) whenever \(k \neq j \). But the points \(x_k \) are all in the compact interval \([0, 1]\), so there should be a subsequence converging to some point in \([0, 1]\). This subsequence would have to be a Cauchy sequence, so no matter how small a positive number \(\delta \) were specified, we could get points \(x_k \) and \(x_j \) in the subsequence with \(|x_k - x_j| < \delta \) and \(|f(x_k) - f(x_j)| > 1 \). This contradicts the uniform continuity of \(f \) on \([0, 1]\). So the image \(f([0, 1]) \) must, in fact, be bounded.

If we knew the result of Exercise 4E-24(c), then we would know that \(f \) has a unique continuous extension to the closure, \([0, 1]\). There is a continuous \(g : [0, 1] \to \mathbb{R} \) such that \(g(x) = f(x) \) for all \(x \) in \([0, 1]\). Since \(g \) is continuous on the compact domain \([0, 1]\), the image \(g([0, 1]) \) is compact and hence bounded. So \(f([0, 1]) = g([0, 1]) \subseteq g([0, 1]) \) is bounded.

4E-29. Let \(f : \mathbb{R} \to \mathbb{R} \) satisfy \(|f(x) - f(y)| \leq |x - y|^2 \). Prove that \(f \) is a constant. [Hint: What is \(f'(x) \)?]

Suggestion. Divide by \(x - y \) and let \(y \) tend to \(x \) to show that \(f'(x) = 0 \).

Solution. Suppose \(x_0 \in \mathbb{R} \). Then for \(x \neq x_0 \) we have \(|f(x) - f(x_0)| \leq |x - x_0|^2 \), so

\[
|f(x) - f(x_0)| \leq |x - x_0|^2.
\]

Letting \(x \to x_0 \), we find that \(\lim_{x \to x_0} (f(x) - f(x_0))/(x - x_0) = 0 \). So \(f'(x_0) \) exists and is equal to 0 for every \(x_0 \in \mathbb{R} \). If \(t \in \mathbb{R} \), there is, by the mean value theorem, a point \(x_0 \) between 0 and \(t \) such that \(|f(t) - f(0)| = |f'(x_0)(t - 0)| = |0(t - 0)| = 0 \). So \(f(t) = f(0) \) for all \(t \in \mathbb{R} \). Thus \(f \) is a constant function as claimed.

4E-30. (a) Let \(f : [0, \infty] \to \mathbb{R} \), \(f(x) = \sqrt{x} \). Prove that \(f \) is uniformly continuous.

(b) Let \(k > 0 \) and \(f(x) = (x - x^k)/\log x \) for \(0 < x < 1 \) and \(f(0) = 0, f(1) = 1 - k \). Show that \(f : [0, 1] \to \mathbb{R} \) is continuous. Is \(f \) uniformly continuous?
Suggestion. (a) Use Theorem 4.6.2 to show that f is uniformly continuous on $[0, 3]$ and Example 4.6.4 to show that g is uniformly continuous on $[1, \infty)$. Then combine these results.

(b) Use L'Hôpital's Rule.

Solution. (a) Let $\epsilon > 0$. We know that $f(x) = \sqrt{x}$ is continuous on $[0, \infty)$, so it is certainly continuous on the compact domain $[0, 3]$. By the uniform continuity theorem, 4.6.2, it is uniformly continuous on that set. There is a $\delta_1 > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever x and y are in $[0, 3]$ and $|x - y| < \delta_1$.

We also know that f is differentiable for $x > 0$ with $f'(x) = 1/(2\sqrt{x})$. So $|f'(x)| \leq 1/2$ for $x \geq 1$. As in Example 4.6.4, we can use the mean value theorem to conclude that if $b_2 = 2\epsilon$, and x and y are in $[1, \infty]$ with $|x - y| < \delta_2$, then there is a point c between x and y such that $|f(x) - f(y)| = |f'(c)(x-y)| < (1/2)(2\epsilon) = \epsilon$.

Now take advantage of the overlap of our two domains. If x and y are in $[0, \infty]$ and $|x - y| < \delta = \min(\delta_1, \delta_2)$, then either x and y are both in $[0, 3]$ or both in $[1, \infty]$ or both. If they are both in $[0, 3]$, then $|f(x) - f(y)| < \epsilon$ since $|x - y| < \delta_1$. If they are both in $[1, \infty]$, then $|f(x) - f(y)| < \epsilon$ since $|x - y| < \delta_2$. In either case, $|f(x) - f(y)| < \epsilon$.

So f is uniformly continuous on $[0, \infty]$ as claimed.

(b) Suppose k is a positive integer and $f(x) = (x-x^k)/\log x$ for $0 < x < 1$, $f(0) = 0$, and $f(1) = 1-k$. The numerator, $x - x^k$, is continuous for all x. The denominator, $\log x$, is continuous for $x > 0$. So f is continuous on $x > 0$ except possibly at $x = 1$ where the denominator is 0. However, the numerator is also 0 at $x = 1$. To apply L'Hôpital's Rule, we consider the ratio of the derivatives

$$
\frac{1-kx^{k-1}}{1/x} = x - kx^k \to 1 - k = f(1) \quad \text{as} \quad x \to 1.
$$

By L'Hôpital's Rule, $\lim_{x \to 1} (x-x^k)/\log x = \lim_{x \to 1} f(x)$ also exists and is equal to $f(1)$. So f is continuous at 1. As $x \to 0^+$, the numerator of $f(x)$ tends to 0 and the denominator to $-\infty$. So $\lim_{x \to 0^+} f(x) = 0 = f(0)$. So f is continuous from the right at 0. So f is continuous on $[0, \infty]$ and on the smaller domain $[0, 1]$. Since the latter is compact, f is uniformly continuous on it by the uniform continuity theorem, 4.6.2.

4E-37. Prove the following intermediate value theorem for derivatives: If f is differentiable at all points of $[a, b]$, and if $f'(a)$ and $f'(b)$ have opposite signs, then there is a point $x_0 \in [a, b]$ such that $f'(x_0) = 0$.

Sketch. Suppose $f'(a) < 0 < f'(b)$. Since f is continuous on $[a, b]$ (why?), it has a minimum at some x_0 in $[a, b]$. (Why?) $x_0 \neq a$ since $f(x) < f(a)$ for x slightly larger than a. (Why?) $x_0 \neq b$ since $f(x) < f(b)$ for x slightly smaller than b. (Why?) So $a < x_0 < b$. So $f'(x_0) = 0$. (Why?) The case of $f'(b) > 0 > f'(b)$ is similar.

Solution. We know from Proposition 4.7.2 that f is continuous on the compact domain $[a, b]$. By the maximum-minimum theorem, 4.4.1, it attains a finite minimum, m, and a finite maximum, M, at points x_1 and x_2 in $[a, b]$.

CASE ONE: $f'(a) < 0 < f'(b)$: Since $f'(b) > 0$, and it is the limit of the difference quotients at b, we must have $(f(x) - f(b))/(x-b) > 0$ for x slightly smaller than b. Since $x - b < 0$, we must have $f(x) < f(b)$ for such x. So the minimum does not occur at b. Since $f'(a) < 0$, and it is the limit of the difference quotients at a, we must have $(f(x) - f(a))/(x-a) < 0$ for x slightly larger than a. Since $x - a > 0$, we must have $f(x) > f(a)$ for such x. So the minimum does not occur at a. Thus the minimum must occur at a point $x_0 \in [a, b]$. By Proposition 4.7.9, we must have $f'(x_0) = 0$.

CASE TWO: $f'(a) > 0 > f'(b)$: Since $f'(b) < 0$, and it is the limit of the difference quotients at b, we must have $(f(x) - f(b))/(x-b) < 0$ for x slightly smaller than b. Since $x - b < 0$, we must have $f(x) > f(b)$ for such x. So the maximum does not occur at b. Since $f'(a) > 0$, and it is the limit of the difference quotients at a, we must have $(f(x) - f(a))/(x-a) > 0$ for x slightly larger than a. Since $x - a > 0$, we must have $f(x) > f(a)$ for such x. So the maximum does not occur at a. Thus the maximum must occur at a point $x_0 \in [a, b]$. By Proposition 4.7.9, we must have $f'(x_0) = 0$.
Suggestion. Show that the upper and lower sums are both 0 for every partition of \([0, 1]\). Consider a function which is 0 except at finitely many points.

Solution. Since \(f\) is integrable on \([0, 1]\), the upper and lower integrals are the same and are equal to the integral. Let \(P = \{0 = x_0 < x_1 < x_2 < \cdots < x_n = 1\}\) be any partition of \([0, 1]\). For each subinterval \([x_{j-1}, x_j]\) there is a point \(c_j\) in it with \(f(c_j) = 0\). So

\[
\eta_j = \inf \{f(x) \mid x \in [x_{j-1}, x_j]\} \leq \sup \{f(x) \mid x \in [x_{j-1}, x_j]\} = M_j.
\]

So

\[
L(f, P) = \sum_{j=1}^{n} \eta_j (x_j - x_{j-1}) \leq 0 \leq \sum_{j=1}^{n} M_j (x_j - x_{j-1}) = U(f, P).
\]

This is true for every partition of \([0, 1]\). So

\[
\int_0^1 f(x) \, dx = \int_0^1 f(x) \, dx = \sup_{P \text{ a partition of } [0, 1]} L(f, P) \leq 0 \leq \inf_{P \text{ a partition of } [0, 1]} U(f, P) = \int_0^1 f(x) \, dx = \int_0^1 f(x) \, dx.
\]

So we must have \(\int_0^1 f(x) \, dx = 0\).

The function \(f\) need not be identically 0. We could, for example, have \(f(x) = 0\) for all but finitely many points at which \(f(x) = 1\).

If \(f\) is continuous and satisfies the stated condition, then \(f\) must be identically 0. Let \(x \in [0, 1]\). By hypothesis there is, for each integer \(n > 0\), at least one point \(c_n\) in \([0, 1]\) with \(x - (1/n) \leq c_n \leq x + (1/n)\) and \(f(c_n) = 0\). Since \(c_n \to 0\) and \(f\) is continuous, we must have \(0 = f(c_n) \to f(x)\). So \(f(x) = 0\).

4E-45. Prove the following second mean value theorem. Let \(f\) and \(g\) be defined on \([a, b]\) with \(g\) continuous, \(f \geq 0\), and \(f\) integrable. Then there is a point \(x_0 \in [a, b]\) such that

\[
\int_a^b f(x)g(x) \, dx = g(x_0) \int_a^b f(x) \, dx.
\]

Sketch. Let \(m = \inf(g([a, b]))\) and \(M = \sup(g([a, b]))\). Then

\[
m \int_a^b f(x) \, dx \leq \int_a^b f(x)g(x) \, dx \leq M \int_a^b f(x) \, dx.
\]

(Why?) Since \(\int_a^b f(x) \, dx\) depends continuously on \(f\), the intermediate value theorem gives \(t_0\) in \([m, M]\) with

\[
\int_a^b f(x)g(x) \, dx = t_0 \int_a^b f(x) \, dx.
\]

Now apply that theorem to \(g\) to get \(x_0\) with \(g(x_0) = t_0\). (Supply details.)

Solution. Since \(g\) is continuous on the compact interval \([a, b]\), we know that \(m = \inf(g([a, b]))\) and \(M = \sup(g([a, b]))\) exist as finite real numbers.
and that there are points x_1 and x_2 in $[a, b]$ where $g(x_1) = m$ and $g(x_2) = M$. Since $m \leq g(x) \leq M$ and $f(x) \geq 0$, we have $m \int_a^b f(x) \, dx \leq \int_a^b f(x)g(x) \, dx \leq M \int_a^b f(x) \, dx$ for all x in $[a, b]$. Assuming that f and $f \circ g$ are integrable on $[a, b]$, Proposition 4.8.3(iii) gives

$$m \int_a^b f(x) \, dx = \int_a^b mf(x) \, dx \leq \int_a^b f(x)g(x) \, dx \leq \int_a^b Mf(x) \, dx = M \int_a^b f(x) \, dx.$$

The function $h(t) = t \int_a^b f(x) \, dx$ is a continuous function of t in the interval $m \leq t \leq M$, and $\int_a^b f(x)g(x) \, dx$ is a number between $h(m)$ and $h(M)$. By the intermediate value theorem there is a number t_0 in $[m, M]$ with $h(t_0) = \int_a^b f(x)g(x) \, dx$. Since g is continuous between x_1 and x_2 and t_0 is between $m = g(x_1)$ and $M = g(x_2)$, another application of the intermediate value theorem gives a point x_0 between x_1 and x_2 with $g(x_0) = t_0$. So

$$\int_a^b f(x)g(x) \, dx = h(t_0) = t_0 \int_a^b f(x) \, dx = g(x_0) \int_a^b f(x) \, dx$$

as desired.