¢ 4.2-4. Let A, B C R, and suppose A x B ¢ R? is connected.

(a) Prove that A is connected.
(b) Generalize to metric spaces.

Suggestion. Use Exercise 4.1-1(b). ¢

Solution. (a) Let m; : R? — R be the projection onto the first coordinate.
That is, 7(((z,y)) = x. Then 7y is continuous. (See Excrcisc 4.1-1(b).)
If B is not empty, then m;(A x B) = A. So 4 is connected by Theorem
42.1.If B =10, then Ax B =0, and m (4 x B) = . We are still all
right provided we realize that the empty set is connected. (Could there
be sets U and V' which disconnect it?)

To generalize to metric spaces, let M; and M, be metric spaces with
metrics d; and dz. One way to put a metric on the cross product M =
My x My, is to imitate the “taxicab” metric on R?

d((:l' :U)r ((1/5 b)) = dl (IL', a) + d2(y1 b)

(b

.

so that a set § C M would be open if and only if for each (a,b) € §
there is an » > 0 such that (x,y) € S whenever d;(z,a) + da(y, b) < 7.
We could also use a forinula analogous to the Euclidean metric on R2:

p((2,y), (6. b)) = V/di(z,a)2 + da(y, b)2.

Then
d((z.y). (a,8))* = (di(z,a) + da(y.b))?

=dy(x,a)? + 2d, (2, a)dy(x,a) + da(x, a)?
> di(x,a)? + da(z.a)?
= (p((z.y). (a.b)))?.

On the other hand,

di(z,a) + da(y,b) < Vdi(z,a)? + da(y. b)2 + Vd) (z,a)? + da(y, b)?
< 2p((z,y), (a,b)).

So
p((wvy)r (a'r b)) < d((‘”»z»: ((l, b)) < 2/’((‘”#!/)’ ((L, b))

These inequalities show that d and p produce the same open sets, the
same closed sets, and the samc convergent sequences with the same
limits in M. Also, since
dl(zs a’) < d((l'y)1 ((L, b)) and d'z(y: b) < d((:l":l/)' (a! b))'
and d((x,y), (¢, b)) < max(d;(x,a), d2(y. b)),

we sec that

(e yn) = (a,b) in M <= p((@r.yx). (a,0)) = 0
<= d{(xk, yi): (a,8)) — 0
< di(z,a) — 0 and dy(ys,b) — 0
< T — ain My and yp — b in M.

This last observation shows that if we define the projections 7y : M —
My and mo : M — My by

mi((a,y) =2 € M; and m2((x,y)) =y € My,

then mp and w9 are coutinuous by Theoremn 4.1.4(ii).

If AC M, and B C M, then A = (A x B) and 8 = m2(4 x B). So
Theoremn 4.2.1 says that if A x B is connected, then so are A and B. If
A x B is compact, then so arc A and B.

L3
[For implications in the opposite direction, sce Excrcise 3E-15. ¢



o 4.2-5. Lect A and B be subsets of R with B not empty. If Ax B C R? is
open, must A be open?

Answer. Yes. O

Solution. Since B is not enpty, there is a point b € B. If a € A,
then (a,b) € A x B. Since A x B is open, therc is an r > 0 such that
V@& —a)2+(y—b2 < r implies (z,y) € A x B. If [g—af < r, then
VE=aZ+(G-0)72 = |z —a| <r so0(sb) € Ax B Thus z € A. For
each ¢ € A there is an r > 0 such that & € A whenever |» —a| < 7. S0 A
is open.

o 4.4-3. Let f: K c R* — R be continnous on a compact set K and let
M = {z € K | f(z) is the maximum of f on K'}. Show that M is a compact
set.

Suggestion. M = f~!(sup(f(z))). Why does this exist; why compact?
¢

Solution. The function f is a continuous function from the compact
set I into R. We know from the Maximum-Minimum Theorem that b =
sup{f(z) € R | & € K} exists as a finite real number and that there
is at least one point zo in K such that f(zo) = b. So M = {z € K |
f(x) is the maximum of f on I} is not cmpty. In particular, xg € M. The
single point sct {b} is a closed sct in R. So M = f —1({b}) is a closed sct

in IC. Since it is a closed subsct of the compact sct K, it is also a compact
set by Lemma 2 to Theorem 3.1.3 (p. 165 of the text). ¢

o 4.5-3. Let f:[0.1] — [0. 1] be continuous. Prove that f has a fixed point.

Suggestion. Apply the intermediate value theorem to glz) = f(z) -z

¢

Solution. For z € [0,1], let g(z) = f(x) — &. Since f is continuous and
x — —u is continuous, g is continuous. We have

g(0) = f(O)-0=f(0)20 and g(1)=f(1)-1<1-1=0

By the intermediate value theorcm, there must be at least one point ¢ in
[0,1] with g(¢) = 0. For such a point we have fle) ~c=0. 80 f(c) =c

Thus ¢ is a fixed point for the mapping f as required.
- . R - N

o 4.5-4. Let f: [a.b] — R be continuous. Show that the range of f is a
bounded closed interval.

Sketch. The interval [a, b] is compact and connected and f is continuous.

o

Solution. Suppose f : [eh] — R is continuous. The interval [a,b] is
a connected sct and f is continuous. So the image f([0,1]) must be a
connected subset of R. So it must be an interval, a half-line, or the whole
linc. But [, b] is a closed, bounded subset of R, so it is compact. Since f
is continuous, the image f([0,1]) must be compact in R. It must thus be
closed and bounded. Of the possibilities listed above. this leaves a closed,
hounded interval. 0

¢ 4.5-5. Prove that there is no continuous map taking [0, 1] onto ]0. 1].

Sketch. f([0.1]) would be compact, and ]0, 1] is not compact. ¢
L
Solution. The interval [0,1] is a closed bounded subset of R and so it is
compact. If f wore a continuous function on it, then the image would have
to be compact. The open interval |0, 1] is not compact. So it cannot be the
image of such a map. ¢




o 4.6-6. (a) Show that f: R — R is not uniformly continuous iff there

exist an £ > 0 and sequences z,, and y, such that |z, —y.| < 1/n
and |f(w,) — fyn)| = =. Generalize this statement to metric spaces.
(b) Use (a) on R to prove that f(x) = a2 is not uniforly continuous.

Solution. (a) First suppose that f : R — R is not uniformly continuous.

Then there is an € > 0 for which no ¢ > 0 will work in the definition
of uniform continuity. In particular, 4 = 1/n will not work. So there
must be a pair of numbers x,, and y, such that |z, — y.| < 1/n but
|f(za) — f(yn)| > &. These z, and y,, form the required sequences.
Converscly, if there arc such sequences, then for that € no 6 > 0 can
work in the definition of uniform continuity. No matter what § > 0 is
proposed, we can, by the Archimedean Principle, select an integer n with
0 < 1/n < 8. For the corresponding =, and y, we have |f(z,) — f(yn)| >
¢ cven though |&, — y.| < 1/n < 4. Since this can be done for every
§ > 0, the function f cannot bc uniformly continuous on R.

-

o 4E-2. (a) Prove that if f: A — R™ is continuous and B C A, then

the restriction f|B is continuous.
(b) Find a function g : A — R and a sct B C A such that ¢g|B is
continuous hut g is continuous at no point of A.

Solution. (a) Suppose € > 0 and xp € B. Then zg € 4, so thereisad > 0

such that || f(z) = f(wo) || < £ whenever z € A and ||z —zo || < 4. If
x € B, then it is in A, so

(x€Band |z -zl <8) = |[f(zx)— fl=za) |l

So f is continuous at zg. Since 2y was arbitrary in B, f is continuous
on B.

(b) Let A =R, B=Q,and definecg: A - Rbyglz)=1ifxreQ

and g(x) = 0 if 2 ¢ Q. The restriction of g to B = Q is constantly
equal to 1 on B. So it is continuous on B. (See Excrcise 4E-1(b).)
But, if g € R, then there are rational and irrational points in every
short interval around xg. So ¢ takes the values 1 and 0 in every such
interval. The values of g(x) cannot be forced close to any single value
by restricting to a short interval around zy. So, as a function on R, g is
not continuous at zy. This is true for every zp € R. ¢

o 4E-3. (a) If f: R — R is continuous and K C R is connected, is

™YK necessarily connected?
(b) Show that if f: R™ — R™ is continuous on all of R" and B C R™ is
bounded, then f(B) is hounded.

Sketch. (a) No. Let f(x) =sinz and K = {1}.
(b) f is continuous on all of R™, so f is continuous on cl(B) which is compact.

f(cl(B)) is compact and thus bounded. So, since f(B) € f(cl(B)). f(B)
is also bounded. o

Solution. (a) The continudus image of a connected set must be connected,

~

but not necessarily a preimage. For example. Let f(z) = sinx for all

z € R, and let K = {1}. The one point sct K is certainly connected.
but f~Y(K) = {(4n + 1)7/2 | n € Z}. This discrete set of points is not
connected.

For an easier example, let f(z) = 22 and K = {1}. Then f is continuous
and f~'(K) = {—1,1}. This two point set is not connected:

Suppose f : R* — R™ is continuous and B is a hounded subset of
R™. Since B is bounded, there is a radius R such that ||¢| < R for
cvery v € B. If w € cl{B), then there is a v € B with v € D{(w,1). Sq .
lwl < Jlw—v]+]|lv] <1+ R. So cl(B) is a bounded sct in R™. It
is also closed, so it is compact. The function f is continuous on all of
R", so it is continuous on cl(B). (Sec Excrcise 4E-2(a).) So the image
F(cl(B)) is compact by Theorem 4.2.2. Since it is compact, it must be

of a bounded sct, the image f(B) is bounded. ¢




o 4E-7. Consider a compact set B C R™ and let f: B — R™ e continu-
ous and onc-to-one. Then prove that f~!: f(B) — B is continuous. Show
by example that this may fail if B is connccted but not compact. (To find
a counterexample, it is nccessary to take m > 1.)

Sketch. Suppose C is a closed subset of B. Then C is compact. (Why?)
So f(C) is closed. (Why?) Thus £~ is continuous. (Why?) For a counterex-
ample with n = 2 consider f : [0, 27— R? given by f(¢) = (sint,cost).

Solution. FIRST PROOF: We use the characterization of continuity in
terms of closed scts. To show that f~!: f(B) — B is continuous on f(B),
we need to show that if C' is a closed subset of the metric space B, then
(f~H7Y(C) is closed relative to f(B). Since B is a compact subset of R™, it
is closed, and a subset C of it is closed relative to B if and only if it is closed
in R™. Since it is a closed subset of the compact set B it is closed. (In R™ this
follows since it is closed and bounded. However, it is true morc generally.
See Lemma 2 to the proof of the Bolzano-Weicrstrass Theorem, 3.1.3, at
the end of Chapter 3: A closed subset of a compact space is compact.) Since
C is a compact subset of B and f is continuous on B and hence on C, the
image f(C) is compact. Since it is a compact subset of a metric space, it
is closed. (Sce Lemma 1 to the proof of 3.1.3.) But since f is onc-to-one,
f(C) = (f71)7Y(C). Thus (f~)"Y(C) is closed for cvery closed subset C
of f(B). The inverse f~! is thus a continuous function from f(B) to B.

SECOND PROOF: Here is a proof using sequences. Suppose y € f(B)
and {yx)3° is a sequence in f(B) with yx — y. We want to show that z; =
Y ye) — = = f~Y(y) in B. Since B is compact, there is a subsequence
Tp(1)s Th(2)s Th(): - - - CONVErging to sorne point £ € B. Since f is continuous
on B, we must have yi(jy = flze) — F(£). But ygyy — y. Since limits
arc unique in the metric space f(B), we must have y = f(Z). But y = f(z)
and f is one-to-one, so & = £. Not only doces this arguinent show that there
must be some subsequence of the z, converging to z, it shows that z is the
only possible limit of a subsequence. Since B is compact, every subsequence
would have to have a sub-subsequence converging to something, and the
only possible “something” is . Thus xx — 2 as needed.

If the domain is not compact, for example the half-open interval B =
[0.27], then we can get a counterexample. The map f : [0, 2r[— R? given
by f(t) = (sint, cost) takes [0, 27| onto the unit circle. The point (0, 1) has
preimnages near () and near 27. So the inverse function is not continuous at
(0,1).

It turns out that a continuous map fromn a half-open interval one-to-one
into R must have a continuous inverse. Challenge: Prove it. ¢

o 4E-8. Decfine maps s: R*" xR" — R" and m : R x R* — R" as addition
and scalar nltiplication defined by s(z,y) = = + y and m(\ x) = Az
Show that these mappings are continuous.

Solution. Ifz = (z;, 29,...,2,) and y = (y1.¥2,...,¥a). Then s(x,y) =
z+y=(x1+y.T2+Y2, .. T +yn). and m(A, x) = (Ax1.AZ2, ..., ALy).




We compute
5@ y) = su.0) g = [ (@ +3) = (@F0) e = [ (& = 1) + (4 = ) [gn

Slz—ulrn + 1y =2z

<2/le = ullfa +lly - vl

<2 (e = wy = ) goxze = 20 (€9) = (00) lgnge -

So. if || (z,y) = (4, 0) |lgn xmn < /2. then || s(z,y) — s(u.v) |z <. Sosis
continuous.
Fix (u.u) € R x R*. We have
T ; " 2 - 2 2
IA2) = (10 [ g = I3 = o = 1) 2 = A=)+ 2 = w20
Thus if || (A 2) — (1) g ge < 9 then [A—p| <6 and [z —u|lg. < d.
Im(X, ) —mp.w) lge = | A2 = g llge = || Az = du+ Au — g ||zn
SNAT = M lgn + [ M= pte[lgn = A 2 = 2 flgn + [A = pel || ||
SIMO+ 0] ulgn < (el + 80+ +0] ullgn -

If we require that § < 1 and § < £/2(|p| + 1) and § < £/2(||u]| + 1), we
have :

[N, &) =, ) llgn < (el +0)0 + 6| wllgn
< (lul+1)

& £
+ ul| < €.
20+ T aag e el

Thus 7n is continuous. L
o 4E-10. Show that f: A -» R™, A C R”, is continuous iff for every set
B c A, f(ci(B)NA) Ccl(f(B)).

Solution. Suppose f is continuouson A and B € A. Then B C f~1(f(B))
C F~H(f(B))). So f~(cl(f(B))) = ANF for some closed sct F since f
is continuous on A and cl(f(B)) is closed. So B C F and cl(B) C F. Thus

(BYNAC FNA = fcl(f(B))).

This implics that f(cl(B) n A) C f(Ftel(f(B))) = cl(f(B)) as required.

For the converse, suppose f(cl(B)N A) C cl(f(B)) for every subset B of
A. Let C be any closed set in R™ and put B = f~1(C). The hypothesis
gives

FE(FHC)) N A) € A(F(F7HEN) S (@) = C.
So

A(f=1(C) NAC FH(F(E(f-1(C)) N A)) € F7H(C) C el(f~1(C)) N A.

We must have f~HC) = cl(f—1(C)) " A. So f~1(C) is closed rclative to
A. Since this is true for every closed set ¢ in R™, f is continuous on A.

L/

o 4E-11. (a) For f : u,b — R, show that if f is continuous, then its
graph [ is path-connécted. Argue intuitively that if the graph of f
is path-counected, then f is continuous. (The latter is true, but it is
a little more difficult to prove.)

(b) For f: A — R"™, A C R", show that for n > 2, connectedness of the
graph docs not iinply continuity. [Hint: For f : R2 — R, cut a slit in
the graph.|

(c) Discuss (b) for m = n = 1. [Hint: On R, consider f(z) =0ifz =0
and f(z) =sin(l/x) if z > 0] )




Sketch. (a) If (¢, f(c)) and (d, f(d)) arc on the graph, put ¥(¢) = (¢, f(¢)).
¢

Solution. (a) If (¢, f(¢)) and {d. f(d)) are two points on the graph, then
eitheru < e <d<bora<d<ce<b Wemay as well assume the first.
The map 7 : [¢,d] — R? given by 4(t) = (¢, f(£)) is a continuous path
in the graph joining (c, f(c)) to d, f(d)) by Worked Example 4WE-1
since both coordinate functions arc continuous. Thus the graph is path-
connected.

An intuitive argument for the converse is that the only paths possible
in the graph nust be of the form v(¢) = (u(t), f(u(t))). For this to be
continuous, u and f should be continuous.

(b) Represent a point v € R? in polar coordinates v = (r,9) where » = || v ||
and 0 € ¥ < 27 is the polar angle counterclockwise from the positive
horizontal axis. Define f: R?> — R by f(v) = rd and £(0,0) = 0. Then
the graph of f is connected since it is path-conmected. But f is not
continuous since it has a jump discontinuity across the positive z-axis.

(c) Let f : R — R be defined by f(r) = sin(1/x) if x £ 0 and f(0) = 0.
Although the graph of f is not path-connccted, it is connected since
any open sct containing (0,0) would also contain points in the path-
connected portion of the graph. The function is not continuous since it
attain all values in the interval [—1,1] in every neighborhood of 0. ¢

o 4E-13. Let f be a bounded continuous function f : R® — R. Prove
that f(U) is open for all open sets U C R” iff for all nonempty open sets
VcR,

inf f(z) < f(y) < sup f(x)
L€V zEV

forall ye V.

Sketch. If inf(f(V)) or sup(f(V)) were in f(V'), then f(V) could not be
open since it could not contain an interval around either of these points.

0

Solution. First supposc that f(u) is an open subset of R for every open
U C R”, and let V be a nonempty subset of R™. If inf(f(V)) = a = f(y) for
some y € V, then a = f(y) cannot be an interior point of f(V) since f(V)
can contain no points smaller than a. So f(V') would not be open contrary to
hypothesis. Similarly, if sup(f(V')) = b = f(y) for some y € V, then b would
be in f(V) but could not be an interior point of f(V) since f(V) could
contain no points larger than b. Again f(V') would not be open contrary to
hypothesis. Since we always have inf,ev f(2) < f(y) < sup,ey f(x) for all
vy in V and we have just shown that ncither equality can occur, we must
have infeev f{x) < f(y) < sup,ev f(x) as claimed.

For the converse, suppose that for every open set V in R™ we have
infeev f(r) < f(y) < sup, gy f(2) for every y in V, and let U be an open
subset of R". We want to show that f(U) is open. So let y = f(x) € f(U).
Since © € U and U is open, there is an r > 0 with D(z,2r) C U. So
c(D(x,r)) € U. Let K = cl(D(z,r)). The closed disk K is a closed
bounded set in R™ and so s compact. Since f is continuous, the image,
f(K), is a connected, compact set in R. So it must be a closed, bounded
interval containing y. y € f(K) = [a,b]. Let V be the open disk D(x,r).
We have y € f(V) C f(K) = [a,b]. By hypothesis,

a = inf(f(K)) < inf(f(V)) <y <sup(f(V)) < sup(F(K)) =b.

Let p be the smaller of (b—y)/2 and (y—a)/2. Theun Ja+p, b— p} is an open
interval in f(U) containing y. Since this can be done for any y in f(U), the
set F(U) is open as claimed. ¢




o 4E-18. Let A € M be connected and lot f @ A — R he continuous with
f(2) # 0 for all x € A. Show that f(x) > 0 for all € A or clse f(z) <0
for all x € A.

Solution. If there were a points z; and 23 with f{z() < 0 and f(zz) > 0.
then by the interinediate value theoren, 4.5.1, there would be a point 2 in
A with f(z) = 0. By hypothesis, this docs not happen. So f(z) must have
the same sign for all z in A.




