o 2E-2. Determine the interiors, closures, and boundaries of the sets in
Excrcise 2E-1.

Answer. (a) If 4 =[1,2[ in R' = R, then int(4) = A =|1,2[, cl(4) =
[1.2], and bd(A4) = {1,2}.
(b) If B =[2,3] in R, then int(B) =2, 3], cl(B) = B = [2. 3], and bd(B) =
{2.3}.

(c) If C =z, [-1,1/n[in R, then int(C') =] = 1.0[, cl(C) = [~1,0], and
bd(C) = {-1,0}. N

(d) If D =R" in R", then int(D) = cl(D) = D aund bd(D) = b.

(e) If E is a hyperplane in R™, then int(E') = @ and cI(E) = bd(E) = E.

(f) If F={r €]0.1[| » € Q} in R, then int(F) = 0 aud cl(F) = bd(F)
[0.1].

(8) f G = {(x,y) € R? | 0 < 2 £ 1} in RZ, then int(G) = {(2.y) € R?

Mm _—

0<x <1}, (G = {(z,y) e R? |0 <z < 1}. and bd(G) = {(z.y)
R? |z=0o0rx=1}

(h)y f H={xreR" " |z =1} in R", then int(H) = @ and cl(H) =
bd(H) = H. 0

Solution. (a) If A =]1,2[ in R! = R, then we know from Exercise 2E-
1(a) that A is open, so int(A) = A. The cndpoints 1 and 2 are certainly
accuinulation points, so they are in the closure. From Exercise 2E-1(b).
we know that closed intervals arc closed sets, so [1,2] is closed. Thus
cl(A) = [1,2]. Similarly ¢I(R\ A) = {z | 2z £ 1}u{x | £ =2 2}. s0
bd(4) =cl(d)ncl(R\ 4) = {1.2}.

(b) If B =[2,3] in R, then we know from Exercise 2E-1(b) that B is closed,
so cl(B) = B. The situation is just like that of part (a). We have a fuite
interval in R. The interior is the open interval, the closure is the closed
interval, and the boundary is the sct consisting of the two endpoints. So
int(B) =]2.3[, c/(B) = B =[2,3], and bd(B) = {2.3}.

(¢) If ¢ =M,_,[-1.1/n] in R, then as we saw in Excrcise 2E-1(c), C =
[-L.0]. Again we have an interval in R and, as discussed above, we niust
have int(C) =] = 1,0, cl(C) = [-1,0), and bd(C) = {-1,0}.

(dy If D = R" in R", then we¢ know that D is both open and closed, so
int(D) = cl(D) = D. Since the complenent of D is crupty, the closure
of the complement is empty, and we must have bd(D) = §.

(e) Supposc E is a hyperplanc in R™. As in Excrcisc 2E-1(c), E is closed,
so ¢l(F) = E. Let e,, be a unit vector orthogonal to E. then if w € E,
the poiuts v = w + (1/k)e,, are in the complement of E and converge
to w. So w is in the closure of the complement and is not in the interior
of E. This is true for cvery w € E, so int(E) = @ and bd(F) = cl(E)N
c(R*"\E)=ENR" =FE.

(f) Let F={rel0,1{|reQ}inR. U re Fand € > 0. then we have scen
that the iuterval | — ¢, 7 +¢[ contains irrational numbers. So r cannot be
an interior point. So int(F) = @. On the other hand, if 0 < 29 < 1. then
there are rational numbers between g — € and 20 and between xy and
xg +¢. So «xp is an accumulation point of F. We must have ¢l(F) = [0, 1].
But for similar rcasons, cl(R\ F) = R, so bd(F) =cl(F)ncl(R\ F) =
[0.1NR =0, 1]. '




(g) Consider the scts

G={(r,y) eR? [0<x<1}

S={{z.y) cR* |0<z<1}

T={(x,y)eR?|0< <1}

U={(z.y)eR® |z <0}

V= {(zx,y) ER? [z > 1}

W= {(z.y) € R? |2 > 1)

P={(z.y) eR® |z <0}
We cortainly have S*C G_C T. As in Example 2.1.4 of the text, the
sct S is open. So S C int{G). As in Example 2.1.5, none of the points
(x,y) with int(H) = § = {(2,y) € R* | 0,z < 1}. The half plancs U
and V are open by an arguinent similar to that of Example 2.1.5 which

we have seen heforc. For example, suppose (a,b) € U. Then o < 0. If
” (.’L,U) - (aa b) “ < |(L|‘ then

lo —al € V(x —a)2+ (y—b)2 < la|.

So
La=—|e|<w—a<]a = —a

Adding a to both sides of the sccond inequality gives 2 < 0. Thus
(r,y} € U. Thus D((a,b),|a]) C U. The sct U contains an open disk
around cach of its points and so is opcn. The argument for the half planc
V is similar. Since U and V arc open, so is their union. But that unioun is
the comnplement of 7. So T is closed. Thus cl(G) € T. On the other hand.
the points {1/n,y) are in G for each n = 1,2,... and converge to (0,y).
So (0.y) € cl(G). We must have cl(G) =T = {(z,y) e R? |0 <z < 1}.
Finally. W and P arc closed since they are the complements of V' and
U7. So their union is closed and must be the closure of the complement
of G.Sobd(G)=TN(WuUP)={{z,)) eR? |z=00rx=1}.

(h) Let H = {2z ¢ R* | || z|| = L} in R*. Thus f is closed (Excrcisc 2E-
1(h)). So cl(A) = H. If z € H, then the points w, = (1 + (1/n)z arc
not in H but do converge to x. So - cannot be an interior point and
int{H) = @. This also shows that = € cl(R™\ H). So H C cl(R"\ H),
and bd(H) =cl(H)nec(R*"\ H)=HnNcl(R"\ H) = H. ¢

o 2E-10. Dectermine which of the following statcments are truc.

(a) int(cl(A)) = int(A).

(b) cl(A)N A = A.

(c) cl(int(A4)) = A.

(d) bd(cl(A)) = bd(A).

(e) If Ais open, then bd(A) C M\ A.

Solution. (a) The cquality int(cl(A)) = int(A4) is not always truc. Con-
sider the example A = [—1, 1]\ {0} C R. Then cl(A) is the closed interval
[=1,1], and int(cl(A)) is the open interval |- 1, 1. But int(A) is the open
interval with zero deleted. int(A4) =] — 1,1[\{0}.

(b) True: Since A C cl(A), we always have cl{A)N A = A.

(c) The proposed cquality, cl{int(A)) = A, is not always truc. Consider the
example of a one point sct with the usual metric on R. Take 4 = {0} C
R. Then [ 4 = #. So cl(int(4)) = . But A is not empty.

{d) The proposed cquality, bd{cl{A)) = bd(A), is uot always truc. Consider
the same cxample as in part (a). A = [=1,1]\ {0} C R. Then cl(A) is
the closed interval [—1.1] and bd(cl(4)) is the two point sct {—1,1}.
But bd(A) is the three point set {~1,0, 1}.

(¢) The proposed inclusion, bd(A4) C M \ A, is truc if A is an open subset
of the netric space M. The sct A is open, so its complement, M\ A, is
closed. Thus

bd(A) = cl(A) P el(M\ A) = cl(A) N (M \ A) C A\ A




o 2E-15. Prove the following for subscts of a metric space M:

(a) bd(A) =bd(M \ A).

(b) d(bd(A)) C bd(4).

(c) bd(Au B) Cc bd(A)ubd(B) Cc bd(Au B)u AU B.
(d) bd(bd(hd(4))) = bd(hd(A)).

Sketch. (a) Usc M\ (M \ A) = A and the dcfinition of boundary.
(b) Use the fact that bd(A) is closed. (Why?)
(c) The facts cl(AU B) = cl(4) ucl(B) and cl{AN B) C cl{A)ucl(B) from
Excrcise 2E-14 arc useful. -

(d) Onc approach is to show that cl(M \ bd(bd(A))) = M or, equivalently,
that int(bd(bd(A4))) = @, and use that to compute bd(bd(bd(4))). ¢

Solution. (a) If A is a subset of a metric space M, we can compute

hd(M \ A) = cl(M \ A) Nel(M\ (M \ 4)) = cl(M \ 4) Ncl(4)
= cl{A) Nel(M \ A) = bd(A)

as claimed.
(b) Since bd(A) is the intersection of cl(A) and cl(M \ A4), both of which
are closed, it is closed. In particular, cl(bd(A4)) = bd(A), and we have

bd(bd(4)) = el(bd(A)) Ncl(M \ bd(A)) = bd(A) Ncl(M \ bd(A))

Since bd(bd(A)) is the intersection of bd(A) with sowcthing clse, we
have bd(bd(A)) € bd(A) as claimed.

(c) A key to part (c) arc the obscrvations that cl(A U B) = cl(A) U cl(B)
and cl(AN B) C cl(A)Ucl(B) for any subscts A and B of a mctric space
M. (Sce Excrcise 2E-14.) Using themn we can compute

bd(AUB) =cl(AUB)Ncl(M\ (AU B))
=cl(AUB)Ncl((M\ A)n(M\ B))
Cel(AuB)ncl(M\ A)ncl(M\ B)
= [cl(A) ucl(B)] Ncl(M\ A)Nncl(M \ B)
= [cl(4) nel(M \ A) Nel(M \ B)]
U [el(B) Nel(M \ A) Necl(AM \ B)]
C [el(A) nel(M\ A)] U [el(BY nel(M \ B)] = bd(A) ubd(B).

)
This is the first inclusion elaiined. Now suppose a € bd(A)Ubd(B). Then
x €cl(A)or 2 € cl(B).Sorx € cl(A)Ucl(B) = cl(AUB). If z is in neither
Anor B, then z € (M\ A)N(M\ B) = M\ (AUB) C cl((M\ (AU B)).
Since we also have 2 € cl(4A U B), this puts = in bd(4A U B). So z
must be in at least one of the three sets A, B, or bd(A U B). That is,
bd(A4)Uhd(B) € bd(AU B)U AU B as claimed.
(d) From part (a) we know that bd(bd(C)) € bd(C) for every set C. So, in
particular, bd(bd(bd(A))) C bd(bd(A)). But now we want equality:
bd(bd(hd(A))) = cl{bd(bd(A))) N cl(M \ bd(bd(A)))
= bd(bd(A)) N cl(M \ bd(bd(A))).
But '
cl(AM\ bd(bd(A))) = cl(M \ (cl(bd(A)) Ncl(M \ bd(A))))
= cl(M \ (bd(A) N cl(M \ bd(A))))
= cl((M \ bd{A)) U (M \ cl{M \ bd(A))))
= cl(A \ bd(A)) U cl(M \ cl(AM \ bd(A)))
Cel(M\ bd(A)) U cl{M \ (M \ bd(A)))
C (M \ bd(A)) U (M\ (M\bd(A))) = .
Combining the last two displays gives
bd(bd(bd(A4))) = bd(bd(A)) N A = bd(bd(A4))

as claimed.
Remark: The identity in the next to last display is equivalent to the
assertion that

int(bd(bd(A))) = 0. ¢



o 2E-16. Lot a; = V2. ap = (V3 )i G = (\/_ )*». Show that

@, — 2 as n — 0. (You may usc any reclevant facts from calculus.)

Suggestion. Show the sequence is increasing and bounded above by 2
Conclude that the limit A exists and is a solution to the cquation A =
A . ) . . .
(\/f) . Show A = 2 and A = 4 arc the only solutions of this equation.
Conclude that the limit is 2. O

Solution. First: a; > 1, antl if a;, > 1, then agy, = (\/5)'“' > V2> 1
also. By induction we have

a, >1 “for every n=1,2.3,....
- , V2 5
Second: The sequence is increasing: a; = 2 and az = (\/2) >2 =
11 If ap—y < ag, we can conipute

Qg1 (\/2)"‘k _ ( /i)“"'—“’k—l oL

So apy1 > ap. By induction we find that a,4, > a, for cach n so the
sequence is increasing.

Third: The sequence is I)oundcd above by 2: ¢, = V2 <2 Ifay <2,
then agy) = (\/_)“L ( ‘)) 2 also. By induction we couclude that
a,, < 2 for every n.

Fourth: Siuce the sequence {a,,)3¢ is incrcasing and bounded above by 2,
the completeness of R implies that it niust couverge to some A € R.

Fifth: a,4, — A But also @, = (\/5)(l — (\/5)'\ Since limits in R
arc unique we niust have

A log 2
A= (\/5) or cquivalently logA = lj A
These equations have the two solutions A = 2 and A = 4 as may be checked

dircetly. There can be no other solutions since the solutions occur at the
intersection of a straight line with an cxponential curve (or a logarithm
curve in the second equation). The exponential curve is always concave up
and the logarithm curve is always concave down. Either can cross a straight
line at most twice. Thus the limit inust be cither 2 or 4. But all terins of
the sequence are smaller than 2. so the limit cannot be 4. It must be 2.
limy,, e €0, = 2. ¢

o 2E-20. For asct A in a metric space M and = € M, let
d(z. A) = inf{d(z,y) | y € A},
and for £ >0, let D(A,2) = {2 | d(x, A) < &}

(a) Show that D(A,€) is open.
(b) Let AC Mand N, = {r € M | d(z.4) < =}, where £ > 0. Show
that N, is closed and that A is closed iff A=nN {N: |2 > 0}.

Suggestion. For (a), show that D(A,¢) is a union of open disks. For the
first part of (b), consider convergent scquences in N(A, ) and their limits
in M. ¢

Solution. (a) First supposc & € D(A.g). Theu d(w, A) = inf{d(r,y) |y €
A} = r < & So there is a point y € A with r € d(r,y) < . Thus
a € D{y. ). This can he done for cach @ € D(4,¢). We conclude that

D(4 s,QUDyE
Jc‘\

Conversely, if there is a y in A with @ € D(y,<). then d(z,y) < e
So d(x, A) = int{d(x,y) | y € A} < £, and « € D(A,g). This proves
inclusion in the other direction. We conclude that

D(A,s) = | D(y.¢).

yEA

BEach of the disks D(y.¢€) is open by Proposition 2.1.2, so their union,
D(A.¢) is also open by Proposition 2.1.3(ii).




(b) To show that N(A,e) is closed we will show that it contaius the limits of
all convergent sequences in it. Suppose (€e) i is a sequence in N(A, )
and that o, — = € M. Sincc cach 2, € N(A, ), we have d(zr, 4) <2 <
&+ (1/k). So there are points yx in A with d(zx, yx) < ¢ + (1/k). Since
xp — . we know that d(w, 2;) — 0. and can compute

1
d(x.yx) < d(x, xr) + (. ye) < da,zp) + € E—-s as k — x.

Thus
d(z. Ay = inf{d(r,y) |y € A} <e.

So x € N(A,¢e). We have shown that if (zx)® is a sequence in N(A. €)
and Tx — « € M, then 2 €°N(A, ). So N(A,¢e) is a closed subsct of M
by Proposition 2.7.6(i)

We have just shown that cach of the sets N (4, €) is closed, and we know
that the intcwoctiou of any family of closed subsets of M is closed. So
if A =.50N(A.€), then A is closcd.

Conversely, if A is cloacd and y € M \ A, then there is an + > 0 such
that D(y,r) € M \ A since the latter 5Ct is open. Thus y is not in
N(A,r/2). So y is not in [, N(A,¢). This establishes the opposite
inclusion [, N(A.€) € A

If A is closed, we h(wo inclusion in both directious, so A = (1, o NV(A. <)
as claimed.

o 2E-24. Identify R"*™ with R™ x R™. Show that A C R**™ is open iff
for cach (r,y) € 4, with z € R, y € R™, there exist open sets U < R™,
VCR™ withx € U.y €V such that UxV C A. Deduce that the product
of open sets is open.

Suggestion. Try drawing the picturc in R? and writing the norms out
in coordinates in R*+", R", and R™, ¢

Solution. The spaces R**™ and R" x R™ arc identificd as scts by iden-
tifying the clement (2, y) = (1, %2 ... T ). (1, V2. -+ - - Y )) Of R x R
with the poiut

(€120 -, Ty YLy Y2u - - oo Yon) OF R With this ideutification, we have

T P =ai+ +a o+ rylh =zl + 1y P (D)
Using this we sec that if z and s arc in R™ and y and ¢ arc in R™, then
(s,8) = @) P = s =2 |” + [t - y|f? (2)
and this certainly implics that
s =2l <l (s,t) = ) 1P and Jt =yl <[ (st) = (o) I
so that
fs—xll <) =@yl and flt—yll <I(s:8) = (y)ll. (3)

Now Let A C R**™ and let (x,y) € 4 with & € R" and y € R™.

First supposc that A is open. Then there is an 7 > 0 such that D{{(#,y),7)
C A Letp=+/r/2 andsct U = D(r, p) CR*and V = D(y,p) S R™. We
want to show that U x V C D((z.y),7) € A. Since x € D(x,p) = U, and
y € D(y.p) =V, we certainly ha\c (r.y) € U x V. If (s, f) € U x V, then
using (2) we have || (s, ) — (x.y) = s —x P +1t-y I> < 2p% =7 So
(s.t) € D{z.y) 1) C A Thus U x V¥ C D&, y),r) € A as we wanted.

For the converse, supposc that there arc open sets U € R™ and V C R™
with (r,y) € UxV C A. Since U and V arc open in R™ and R™ respectively,
there are radii p1 > 0 and pa > 0 such that D(x, ;) € U and D(y, p2) € V.
So

(x,y) € D{x.p1) x D(y, ) CU XV C A

Let » = min(py. p2). and supposc that (s,t) € D((x,y).r). then by 3
we have {|s —zf < |[(s.8) ( gl <r < p.Sos € Dxz.p) ©U.
Also lt—yll < (s,t) = ew) || <7 < p2. Sot € D(y,p2) € V. Thus
(s,t) € D(r.py) x D(y.p2) €U x V. This is truc for cvery such (s,t). So

(z.y) € D((a,y).¥) € D(x,m) x D(y.p2) CUxV C A

The set A contains an open disk around cach of its points, so A is open.




o 2E-25. Prove that asct A ¢ Af is open iff we can write A as the union
of some fanily of e:disks.

Sketch. Since e-disks arc opeu, so is any union of them. Converscly, if
A is open and & € A4, there is an g > 0 with & € D(zr,e,) € A. So
A = UJ'EA D(I, 5:::)- O

Solution. To say that A is a uniou of e—disks is to say that there is a sct of
points {z; | 3 € B} C A and a set of positive radii {rs | B € B} such that
A=Upep D(rs,rs). (B is Just any convenient index sct for listing these
things.) We know froin Proposition 2.1.2 that cach of the disks D(xg.rp)
is open. By 2.1.3(ii), the union_ of any family of open subscts of Af is open.
So A must be open. .

For the converse, suppose 4 is an open subsct of A. Then for cach z in
A, there is a radins 7, > 0 such that D(.x, ) C A. Since » € D(z,r;) C A,

we have
A=t e U D) C A
wed ©€A
So we must have A = (J,c 4 D(z.72), a union of open disks. as required.

—— S o . ¢

o 2E-27. Supposc ¢, > 0 and @, — 0 as n — co. Given any € > 0, show
that there is a subsequence b, of ,, such that 217:1 b, <c.

Suggestion. Pick b, with b, = |b,| < £/2". (Why can vou do this?) ¢

Solution. Sclect the subsequence inductively.

STEP ONE: Since ¢,, > 0 and a,, — 0, there is an index n(1) such that
0 § an(l) < 6/2

STEP TWO: Siuce a,, > 0 and ¢, — 0, there is an index n(2) such that
n(2) >n(l) and 0 < a,2) <e/4.

STEP THREE: Since a,, > 0 and @,, — 0, there is an index n(3) such that
1n(3) > n(2) and 0 < a3y < /8.

STEP k+1: Having sclected indices n(1) < n(2) < -+ < n(k) such that
0 < anyy < €/2 for j = 1,2,...,k, we observe that since ¢, > 0 and
ar, — 0, there is an index n(k + 1) such that n(k + 1) > n(k) and 0 <
Uplk+1) < S/2k+l.

This process inductively generates a subsequence with indices n(1) < n(2)
< n(3) < -+ such that 0 < agqy < £/2% for cach k. So 0 < 3277 @k <
S a2k = Y0 (1/25) = =, as we wanted. ¢

e g

o 2E-31. Let A’ denote the set of accumulation points of a set A. Prove
that A is closed. Is (A4") = A’ for all A?

Sketch. What nceds to be doue is to show that an accumulation point
of A’ must be an accumulation point of A. (A')’ need not be cqual to A’
Consider A = {1/2,1/3....}. ¢

Solution. To show that A’ is closed, we show that it contains all of its
accumulation points. That is, (4’) € A’. Supposc x is an accumulation

point of A’, and let U be an open set containing x. Then U contains a
point ¥ in A’ with y not cqual to z. Let V = U\ {z}. Then V is an open
sct containing y. Since y € A’ there is a point z in VN 4 with z not cqual
to y. Since & is not in V, we also know that = is not cqual to x. Since
V C U. we know that 2z € U. Every ueighborhood U of z contains a point
= of A which is not cqual to . So x is an accumulation point of A. This
works for cvery x in A’. So (A')’ C A’. Since the sct A’ contaius all of its
accumulation points, it is closed as claimed.

Although we now know that (4’) C A’ for all subscts of a metric space
M, the inclusion might be proper. Cousider 4 = {1,1/2,1/3...} C R.
Then A' = {0}. and (A")Y = @. ¢




o 2E-41. Let A, be subscts of a metric space M, Apns1 C Ay and A, # 2,
hut asstume that N7, A, = 2. Suppose ¢ € Ny, cl(A,). Show that  is an
accmuulation poiut of A;.

Sk'etch. Lot U be a neighborhood of «. There is an n with 2 € cl(A,)\ A,
(Why?) So Un (A, \ {x}) is not cmpty. ¢

Solution. Let U be an open sct containing x. We must show that U/
contains somc point of Ay not cqual to . Since M., 4, = 8, there is an
ny such that & is not in A,,,. But = € (>2, cl(4,,). So « € cl(A,,) Since x
is in the closure of A, but not in Ap,. It 1nust be an accmnulation point
of A,,. So thereis a y in U N (A, \ {z}). But 4,, C A,y—1 € --- C 4.
Soy € U (A \ {z}). This can be done for every open set coutainiug z.
So x is an accurnulation point of A, as claimed. e

o 2E-48. Prove the following generalizations of the ratio and root tests:

(a) If an > 0 and limsup,_, . ¢ny1/a, < 1, then Y~ @, converges, and if
liminf, .« @u41/a, > 1, then Y a, diverges.

(b) If @, > 0 and if limsup,,_, . 3/a, <1 (respectively, > 1), then T a,,
converges (respectively, diverges).

(¢) In the ratio comparison test, can the linits be replaced by lim sup’s?

Suggestion. (a) For large n, the series is comparable t¢ au appropriately
sclected geometric serics.
(b) For large n, the scries is comparable to an appropriately sclected geo-
metric serics.
(c) Not quite, but we can replace the [imit in the convergence statement by
lim sup and the once in the divergence statcment by lim inf. ¢

Solution. (a) Supposc eaclt ¢,, > 0 and that limsup,, o ¢ny1/tn < 1.
Sclect a number » such that limsup,, . a,41/a, < r < 1. Then there is
an integer AN such that a,,4/a, < 7 whenever n > N. Since the numbers
arc nonncgative, this gives 0 < a4y <ra, forn =N N+1,N+2,....
Apply this repeatedly.

0<awy Sray
0 <any2 <ranyr < rlan

0<anys STanez < ray
0 <unsp Sranip-r < Pay

Since 0 < r < 1, we know that the geometric scrics Y -, 7Pan con-
p=0

verges. By comparison, we couclude that 377 v ax = 377 an4p also
converges. Reintroducing the finitely many terms a,+- - -+any - docs not
change the fact of convergence. We conclude that 77 | @, converges.
Now supposc each «,, > 0 and that liminf, o, an4+1/an > 1. Sclect
a number 7 such that 1 < » < liminf,, . a,+1/¢, Then there is an
intcger N such that a,41/a, > r > 1 whenever n > N. Since the
numbers arc nouncgative, this gives ¢, > 14, > @, > 0 for n =
N, N+ 1,N+2,.... Apply this rcpcatedly.

uny1 2ray 2 ay > 0
aN+2 2ran+1 2 ax > 0

an+3 2ran42 = ax > 0

AN+p 27~aN+p—l 2 aN > 0




(c)

-

Since ay > 0, we know that the constant scrics Z;iu ax diverges to
+00. By corlnparisol?. we cor}cl.ud(.\, that 3500 v ar = Y olgan+p also
diverges. Reintroducing the finitely many tenns o) + -+ + ay—; does
not change the fact of divergence. We conclude that Y > | a, diverges.
Supposc cach @, > 0 and that limsup, . /@, < 1. Scleet a nunber
r such that limsup,_, . {/a,, < 7 <1 Then there is an integer N such
that 0 < /@, < » < 1 whenever n > N. Taking n** powers gives
0<a, £ forn=NN+1LN+2.. .. Thatis, 0 € anyp <
N for p = 1,2,3,.... Since 0 < r < 1, we know that the geometric

series Z::_O pN¥P = N Z;C; o " converges. By comparison, the scrics
Y in @n = 302 an+p also converges. Reintroducing the finitely many
terms @y + - 4+ ay—, does not change the fact of convergence. We
conclude that 3 | an converges.

Now suppose cach a,, > 0 and that limsup,,_,. /4, > 1. Sclect a nun-
ber r such that 1 < v < limsup,_, . {/@,. Then there is an integer
N such that 1 < r < /@, whenever 11 > N. Taking n** powers gives
1<r <<apforn=NN+1N+2,....  That is, 1 < ayy, for
p=12.3..... The constant scrics 3° 1 certainly diverges. By com-
parison, the series Y an = }:;“:0 an +p also diverges. Reintroducing
the finitely many terins ap + - - + an—3 does not change the fact of
divergence. We conclude that 377 | @, diverges.

Following the pattern in the ratio test of part (a), we can replace the
limnits by lim sup in the convergence part of the result and by tim inf in
the divergence part.

Proposition. Let 3°°°  a, and 3., by be series with b, > 0 for
each n.
(1) If la.| < by, for each n or limsup,,_, . an| /b < x, and if 300 by,

n=
converges, then Y| a. also converges (in fact absolutely).
(2) If an = by for each n or liminfa— o tnfbn > 0. and if 3 .o by,
diverges, then 3> | a. also diverges.

s
x

Proof: Suppose cach 0 < |a,| < by, and that 3> b, converges. Then
-1 lan| also converges by comparison. Since R is complete, absolute
convergence implies convergence, and Y| a,, also converges.

Now supposc limsup,,_ . |an] /bn < 20 and $oo | b, converges. Select
a number r > 0 such that limsup,, ... |an| /b < 7 < . Then there
is an integer NV such that |a,| /0, < 7 whenever n > N. Since the
numbers b, arc positive, this gives 0 < |a,| < rb, for n = N, N +
1. N +2,....Since the soricsz:f:\, b, converges, it still does after cach
term is multiplied by the coustant r. By comparisou, we conclude that
S n laa| also converges. Reiutroducing the finitely many terms |a, | +
<+ + |an—1| docs uot change the fact of convergence. We conclude that
3= | lay] converges. We use again the fact that absolute convergence

iniplies convergence to conclude that >, a,, also converges.




o 2E-53. Given asct A in a metric space, what is the maximum nmuber
of distinct subsets that can be produced by successively applying the op-
erations closure, interior, and complenent to 4 (in any order)? Give an
example of a set, achieving your maximum.

Answer. 14. ¢

/

Solution. It is convenicnt to set up some shorthand. Lot 7 .C,N,and FE
stand for the oporations of taking the interior, closure, or complement of a
set S iu a metric space M, or of leaving it alonc.

L]

E(S)=S. I(S)=int(S), C(S)=cl($), and. N(S)=M\S

We know rather a lot about these operations. For cxample, if S is any
subsct of M, then

int(int(S)) = int(S). cl(cl(S)) = cI(S).  and A\ (M \S)=6.
In our new shorthand these beconie
I1(S)=I(S). CC(S)=C(S), and NN(S)= E(S).
So, as operators on the subscts of M, we have
II=1 CC=C. and NN=E.

What we want to know is how many different operators we can get by
compositions of these four, in effect, by [orming words from the four leiters
E. N, C, and I. There are infinitely many different words, but different
words niay give the same operator. We have just seen, for cxainple, that
the words CC and C represent the same operator on scts. Four more such
facts arc in the next lemma.

Lemma. If S is a subset of a metric space M, then

(1) CN(S) = NI(S).
(2) NC(S) = IN(S).
(3) CICI(S) = CI(S).
(4) ICIC(S) = IC(A).

Proof: For (1)

z ¢ ON(S) &> o ¢ dA(M\S)
< D(X,r)0(M\S) =0 for some r >0
< D(a,r)C S for some r >0
<= x € int(S)
< z€l(S)

Soxr € CN(S) < x ¢ I(S) < x€ NI(S).
For (2), onc can give a proof like that for (1), or apply (1) to the set N(S).
Since NN(S) =5, this gives

C(S) = CNN(S) = CN(N(S)) = NI(N(S)).

So
NC(S) = NNI(N(S)) = I[(N(S)) = IN(S).

For (3) we start with the fact that any sct is contained in its closurc ap-
plied to the interior of S. This becomes I(S) € CI(S). If A C B, then
int(4) € int(B). and cl{A) C cI(B). So I[(8) = I(I(S)) C ICI(S), and
CI(S) € CICI(S). But also the interior of any set is coutained in the sct,
so, ICI(S) C CI(S). and CICI(S) € CCI(S) = CI(S). We have inclu-
sion in both dircctions, so CICI(S) = CI({S) as claimed.

The proof of (4) is similar to that of (3). Start with the fact that the
interior of a sct is contained in the set. I(C(S)) € C(S). Now take clo-
sures: C(1(C(S))) € C(C(S)) = C(S), and then interiors: [CIC(S) =
H{(CUCS)) ¢ [{C(S)) = [C(S). In the other dircction, start with the
fact that any sct is contained in its closure: 1C(S) € CIC(S). Then take
interiors: [C/(S) = [(IC(S)) C I{CIC(S)) = ICIC(S). We have iuclusion
in both directions, so the sets are cqual as claimed.

Using these facts we can look at compositions of the operators as words in
the letters B, N, C, and I, noting possibly new ones and grouping ones
which we know produce the same operator (that is, which arc the same for
all scts). If we look at the sixteen possible two letter words, we sec that
ten of them collapse to one letter words, while the remaining six group




tlicniselves into at most four new operators.
EE=F NE=F CE=C IE=1
EN=F NN=E CN=NI IN=NC
EC=C NC=IN C(CC=C c
Er=1 NI=CN Cr Ir=r1
In addition to thc four operators with which we started,
o,=E;, 0o0=N, o3=C, and o4=1,
we have at most four new oncs,
o5 =NC=IN, 0o6=CN=NI, 0:=CI, og=1IC.

To find three letter words, we append a letter to each of the noncollapsing
two letter words. Of the twenty-four resulting words, three collapse to one
letter and thirteen collapsce to two letters leaving cight noncollapsing three
letter words.

ENC = NC NNC=C CNC=NIN INC=IIN=IN
EIN=IN NIN=NNC=NC CIN=CNC IIN =IN
ECN=CN NCN=NNI=1] CCN =CN ICN =1INT
ENI=NI NNI=1 CNI=NII=NI INI=NCI
ECI=CI NCI ccr=cI ICI
EIC=1IC NIC cIc ¢ =1I1C

Again we have at mmost four new operators:

09 =NCI =ICN =INI , 0y,=NIC=CIN=CNC,
01]_=C'IC 5 0]2=IC[.

To seck four letter words which might give new operators, we append a
letter to one representative from cach of the sets of equal three letter words.
This will mean that we do not list all four letter words, but those we do not
list will be equal as operators to somcthing among thosc we do list. Also,
wce do not bother with the colunin appending E sincc it always disappcars
as before.
NNCI=CI CNCI=NICI INCI =NCCI =NCI
NNIC=IC CNIC=NIIC=NIC INIC =NCIC
NCIC ccic=ciIc Icic=1cC
NICI cicr=cr IICI = ICI

Notice where we have used parts (4) and (5) of the lemma. We find at most
two new opcerators.

o3 = NCIC =INIC and ou=NICI=CNCI




N

To sce if we get any new operators with five letters, it is cnough to try
adding N, C, or [ to onc of the four letter words giving cach of o513 and

014.

NNCIC =CIC NNICI =1ICI
CNCIC=NICIC =NIC CNICI=NIICI=NICI
INCIC =NCCIC=NCIC INICI=NCICI=NCI

Since these collapse, all five letter words can be collapsed to four or fewer
lctters. We get no new opcrators.

The argument above shows that composition of the operations of comn-
plementation, closure, and interior, together with the identity operator,
generate at most fourteen different operators on the powerset of a metric
space. Some of these might be equal in some metric spaces. If the met-
ric space has only three points, then there cannot be very many different
operators generated. In any sct with the discrete metric all sets arc both
open and closed, so the closurc operator and the interior operators arc the
saruc as the identity operator, and we get only two operators. But in maost
reasonable spaces they are different. In fact, even in R we can get one set
S such that the fourteen sets 0x(S) for 1 < k < 14 ave all different. The
sct 1nust be fairly complicated to keep gencrating new scts up through the
four letter words above. But it nced not be completely outrageous. One
examnple which works is

S= {—%|n€N} U [0,1[u (]1,2[\{1+%|n€N}) U (]2,3[NQ).

Possibly the easiest way to see that this works is to sketch the fourtcen scts
on the linc. Sce Figure 2-17. ¢




