o 1.4-4. Let a,, be a Cauchy sequence. Suppose that for every £ > 0 there
is some n > 1/= such that |z,| < . Prove that ,, — 0.

Discussion. The assumiption that (2,,){° is a Cauchy sequence says that
far out in the sequence. all of she terms are close to cach other. The sccond
assuniption, that for every € > 0 there is an n > 1/ such that |z,| < &,
says, more or less, that no natter how far out we go in the sequence there
will be at least onc term out beyond that, point which is small. Combiniug
these two produces the proof. If sonic of the points far out in the sequence
are small and all of the points far out in the scquence arc close together,
then all of the terns far out in the scquence must be small. The technical
tool nused to merge the two asswnptions is the triangle incquality. ¢

Solution. Let £ > 0. Since the sequence is a Cauchy sequence, there is
an N such that |z,, — x| < £/2 whenever n 2 Ny and k> N,

Pick N, > N, large.cnough so that 1/N; < =/2. By hypothcals there is
at least onc index n > 1/(1/N;) = No with |&,| < 1/Ns.

If k > Ny, then both & and n are at least as large as V) zuld we call
compute
+

I;l‘kl = |;L‘k - x| < — :L‘,L| + |;l‘,-,,‘| < <&

i m

Ny

Thus z; — 0 as claimed. ¢

o 1.4-5. Truc or falsc: If z, is a Cauchy scquence, then for n and m large
(‘llOllgh, d(-,l;u-{—h I'rn-i—l) S d(:rn: $1n)~

Answer. False. 0
Solution. If this were true. it would hold in particular with m sclected

as m = n + 1. That is, we should have d(&ny1, Tng2) < d(zn,zp41) for
large enough n. But this need not be true. Consider the sequence

1 1 1 1
~.0,0,-.0.0.-,0.0. =, ...
1.,0,0,2()‘0,3 0.0 1 0. 5
Then
d($1:$2) =1
d(.l‘z,lfg) =0
1
d(ag, wq) = 3
1
d(xq, z5) = 3 .
d(.l':,,.l'(;‘) =0
1
(l(.)'(;,:l,'7) = 3—
1
d(z7, x3) = 3

(l(.l's, .l'g‘) =

This scquence converges to 0 and is certainly a Cauchy scquence. But the
differences of succeeding terms kecp dropping to 0 and then coming back
up a bit. ¢




o 1.7-5.  Show that ||| is not the norm defined by the inner procuct in
Example 1.7.7.

Sketch. For f(z) ==z.| f|l.,. =1 but {f, _f)l’hz =1/v3. So these norns
are different. &

Solution. All we have to dd to show that the norms are different is to
display a function to which they assign different numbers. Let f(x) = x.
The norm defined by the inner product of Example 1.7.7 assigns to f the

nuniber
1 1/2 1 1/2 1
1= (fiae) = ([oar) ==
0 0 V3
But
1 fll« =sup{|f(x)] [z €[0.1]} =sup{e |z € [0.1]} = 1.
Sincc 1/ V3 is not equal to 1, these norins are different. ¢

o 1E-28. Lect z, be a convergent sequence in R and define A, = sup{xn.
Zup1.-.-} and B, = inf{zn.zu41,...}. Prove that A, converges to the
sarne limit as B,,, which in turn is the samc as the limit of z,.

Solution. Supposc x, — a € R. Let < > 0. There is an index N such that
a—¢ < 1 < a+e whenever k > N. Thus if n > N we havea—e <x < a+¢
for all  in the set S, = {ZTny €041, Tngo.. .. }- That is. e—e is a lower hound
for S,.. and a + ¢ is an upper bound. Hence

a—£< B,=ifS, <supS,=A,La+e.

So '
Apn—a|l<e and |Bu—al <€

whenever n > N. We conclude that

liin A, =a= lim B,

N =00

as claimed. ¢

o 1E-30. Let V be the vector space C([0,1]) with the norm || f]|< =
sup{|f(z)| | * € [0,1]}. Show that the parallclogram law fails and con-
clude that this norm docs uot come from any inuer product. (Refer to
Excrcise 1E-12.) '

Solution. Let f(x) = r and g(0) = 1 — x. Both of thesc functions are
in C([0.1]), and || fll. =sup{ejx e [0,1]} =1 and | g||,. =sup{l ~ =
x € [0.1]} = 1. For the sum and difference we have, (f + g){z) = 1 and
(f-¢)(x)=2r-1 S0

[f+alletlf-gle=1+1=2

while , _
21£01% +20gl =2-12+2-1° =4.

Since 2 and 4 are not the saine, we see that this norm does not satisfy the
parallelogram law. If there were any way to define an iuner product (-, )
on C([0.1]) in such a way that || h ||‘i = (h,h) for cach A in the space. then
the parallelogram law would have to hold by the work of Exercise 1E-12(a).
Since it does not, there can be no such inner product.




o 1E-31. Let AABCRaud f: Ax B — R be bounded. Is it true that

sup{ f(x.y) | (z.y) € A x B} =sup{sup{ f(z.y) | x € A} |y € B}
or, the same thing in different notation,
sup  f(r.y) = sup (sup flx, y)) ?
cB

(r,)EAXB y €A

Answer. Truc. \ ¢

Solution. First suppose (s.t) is a point in A x B. Then s € A and t € B,
S0

f(s.t) < sup f(z,t)
we A

< sup (sup f(rvy)>

yEB \x€A

Since this is true for every point (s.¢) in A x B, we can conclude that

sup  f(z.y) < sup (Sup f(ﬂ;t/)) :

(r.y)EAxB yEB \z€A

For the opposite incquality, let £ > 0. There is a t € B such that

sup f(x,t) > sup (sup f(;z:,y)> - /2.

LEA yEB \2€A4

So there nst be an s € 4 with

fls.t) > sup (sup f(.lf,y)) —e/2—¢/2.

yeB \r€A

sup  fle,y) 2 sup (sup f(.?:,y)) - £,

(£.y)EAXB yeERB \z€A

Since this holds for cvery ¢ > 0, we must have

sup  f(z.y) = sup (sup f(a:,y)) .

(r.y)EAXB yEB \rsd
We hiave incquality in both directions, and thus cquality as claimed. ¢
o 1E-32. (a) Give a reasonable definition for what lim,, .z, = oo

should mean.
(b) Let z; = 1 and defiue inductively x4, = (x1 + -+ + z,,)/2. Prove
that x, — .

Solution. (a) Definition. We say the sequence (x,)7° tends to infinity
and write lim, _,» &, = oc if for cach B > 0 there is an N such that
T, > B whencver n > N.
(b) Computation of the first few terms of the sequence shows that

ry =1 To=1/2 ry =3/4 24 =9/8

If xy, r9, €3, ... . x, arc all positive, then &, = (T + -+ + 2,)/2
must be positive also. Since the first few terms are positive, it follows by
induction that all terms of the sequence are positive. With this in hand
we can get a lower estimate for the terms. If n > 4, then
T +x2+---+2 T+ T4
Tyl = 5 = > = >1

If we feed this information back into the formula we find
n—3 tenns
Ty +xa+ -+ T, > 1+1/243/d+1+1+1+---+1
2 2

T4l =
n—1
5




Thus z, > (n/2)—1forn=5,6,7,... . IfB>0and n > 28 +2. then
z, > B. Thus lin,, ., = oc as clainied. l
Method Two: Observation of the first few terms night lead to the con-
jecture that @, = 3"72/2""1 = (1/2)(3/2)"2 for n = 2.3.4.... . We
can confirm this by induction. It is true by direct computation for n =
2, 3, and 4. If it is truc for 1 < k£ < n, then
T+ T2+ +x,

2

(1+é +%(§-)+

(=501 ()

This is exactly the desired form for the (n + 1)* term. Since z, =

(1/2)(3/2)"~2, a straightforward computation shows that x,, > B when-

log(28 B . .
cver 1 > mf(m—ﬁ + 2. Again we can conclude that lim,,_ . x, = oc.

Tnt1 =

W= W=

[T

Mecthod Three: A bit of clever ianipulation with the formula first along
with a much casier induction produces the same formula for the nth

term.
ry 4o+ T+t Ty T
$n+l - 5 7 — . n—1 + ?z
Ty 3
=.’L‘n+7=§.'l:,‘ forn=23,...

With this and the first two terms, a much simpler induction produces
the same general fornula for i, as in Mcthod Two.

¢

o 1E-46. Prove that each nonempty set S of R that is bounded above has
a least upper bound as follows: Choose zy € S and My an upper bound.
Let ag = (2o + Mg)/2. If ¢ is an upper bound, lot M, = ¢y and @, = zq¢;
otherwise let M = My and =, > ay, 2, € S. Repcat, generating sequences
z, and M,,. Prove that they both converge to sup(S).

Solution. Since S is bounded, there is an
My with z < My for all z in S. Since S is not cnipty, we can sclect xg in
S and let ag = (xy + My)/2. If this is an upper bound, let Ay = ¢y and
z, = My. If not, then there is an x in S with & > ay. Let 2 = « and
M, = My. Repeat with a; = () + M)/2 and a2 = (23 + M3)/2, and
so forth. Each My, is cither Ay or (x4 + My)/2. Since My, is an upper
bound and zy € S, we have zx < My, and My < M. The My form a
monotone decreasing sequence and since every term is greater than some
z in 8, it is bounded below and must converge to some number M in R by
completeness.

Similarly, the 2y, form a monotone increasing sequence hounded above
by any of the M's. So they niust converge to something. We clain that
they converge to A and that M is a lcast upper bound for S.

Let dy = My — xp = d{My,x9). For cach & we have that My — xx =
d(My, xg) is cqual cither to xp—y + Me_1)/2 = Ty o My — (tp1 +
Mi_1)/2. Both of these are cqual to (Me—y — z4—1)/2 = d(Mi-1.2k-1)/2.
hiductively we obtain d(AL,, z,,) = dy/2" for each n. This tends to 0 as
n — oo, so the limits of the two convergent sequences must be the saine.

To show that M is an upper bound for S, supposc that there were a
point z in § with & > M. Sclect & with M, — M < x — M. This would
force My < z contradicting the fact that My is an upper bound for §. To
show that M is a least upper bound for S, suppose that b were an upper
hound with b < Af. Since the points «, couverge to Af. there is a k with
| = | < M ~ b. This forees b < 2, contradicting the supposition that
it was an upper bound. ¢




