o 1.2-4. Let x,, be a monotone increasing sequence such that @, — z, <
1/n. Must x,, converge?

Answer. No, not nccessarily. ¢

[

Solution. [f we put ®; = 1 and suppose that z,,; =z, + (1/n), then
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Since we know that the harmonic serics diverges to infinity, we see that the
sequence (£, cannot converge. ¢

o 1.2-5. Lct F be an ordered ficld in which every strictly monotone increas-
ing sequence bounded above converges. Prove that F is complete.

Sketch. From a (nontrivial) monotone sequence (i, ), extract a subse-
quence which is strictly monotone. ¢

Solution. We nced to show that cvery increasing sequence which is bounded
above mnust converge to an clement of F whether the increasc is strict or
not. If the sequence is constant beyond somne point, then it certainly con-
verges to that constant. If uot, then we can inductively extract a strictly
increasing subsequence from it as follows. Let (x,)~ be the sequence, and
net n(1) = 1. Let n(2) be the frst integer larger than 1 with 2,01y < Zy,(2)-
There must be such an index since the sequence never again gets sialler
than x,,1y and it is not constantly cqual to x,(y beyond that point. Re-
peat this process. Having sclected n(l) < n(2) < --- < n(k) < ... with
Ty < Inzy < -0 < Togky -+ let n(k + 1) be the first index larger thau
n(k) with 2,4y < £nk41)- Such an index exists since the sequence never
again is sialler than @, ). and it is not constantly equal to ) beyond
this point. This inductively produces indices (1) < n(2) < n(3) < ... with
Tu(1y < Ty(2) < Tue) < .- .- By hypothesis, this strictly increasing sequence
must converge to some clement A of F since it is bounded above by the samc
hound as the original sequence. We claim that the whole sequence must con-
verge to A. If £ > 0, then there is a J such that ‘1‘,1(,‘.) — /\‘ < ¢ whenever
k>.J Put N =n(J). If n > N.there is a k > J with n(J) < n < n(k).
S0 wuig) € Tn L xS A Thus |a = A = A =2y €A = 25,0y <. Thus
Hm, .z, = X as claimed. )
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0°1.3-4. Let A TR and B ¢ R be bounded below and define A + B =

{r+y|eedandye B} Isit truc that inf(A + B) = inf A +inf B?

Answer. Ycs. 0

Solution. First suppose = € A + B, then there are points € A and
y € B with z =x+ y. Cortainly inf A <« and inf B <. So

imfA+infB<z+y =1z

Thus inf A + inf B is a lower bound for the set A+ B. So inf A + inf B <
inf(A + B).

To get the opposite inequality. let ¢ > 0. There mmust be points & € A
and y € B with

inffA<z <infd+ % and infB<y<inf B+ %
Since  + y € A+ B we must have
nf(A+B)<z+y< ian+%+infB+ % =infA+inf B+=.

Since this holds for every ¢ > 0. we must have inf(4 + B) <inf A + inf B.
We have inequality in both dircctions, so inf(A+ B) = inf A+inf B. ¢

1.3-5. Let S C [0,1] cousist of all infinite decimal expausions
r = 0.q1asa; - -+ where all but finitely many digits are 5 or 6. Find sup S.

Answer. sup(S) =1. O
Solution. The numbers x, = (0.99999...9995555555. .. consisting of n
9's followed by infinitely inany 5°s are all in S. Since these come as close to
1 as we want, we must have sup § = 1. ¢

¢

1.5-3. Let z, be a scquence with limsupar, = b € R and liminfa,, =
o € R. Show that z, has subscquences u,, and [, with »,, — b and [,, — a.

Sketch. Use Proposition 1.5.5 to show that there are points 2y () within
1/n of a (or b). Make sure you end up with a subsequence. 4]

Solution. Ifbis a finite real nuinber and b = limsup z,,, then for cach N
and for each & > 0 therc is an index n withn > Nand b—¢ < 2, < b+e.
Usc this repeatedly to generate the desired subscquence.

Step One: There is an index n(1) such that |b — T, )| <1.

Step Two: There is an index n(2) such that n(2) > n(1) and |b — z,2)| <
1/2.

. and so forth.
Induction Step: Having selected indices

n(l) <n(2) < n(3) <+ <nlk)

with |b —:c,l(j)| < 1/j. for 1 < j < k, thore is an index n(k + 1) with
n(k+1) > n(k) and |b — Zoesn| < 1/(k+1)

By induction, this gives a subscquence converging to b.

The inductive definition of a subsequence converging to the limit inferior
is similar. Notice that the tricky part is to make the sclection of indices
cdlepeudent on the carlier oucs so that the indices used are increasing. This
is what wmakes the sclection of terns a subscquence. They remain in the
sanc order as they appeared in the original sequence. ¢




o 1E-6. ILct A and B be two uoucnupty sets of real nummbers with the
property that = < y for all & € 4, y € B. Show that tliere exists a number
¢ € R such that z < ¢ <y for all z € A, y € B. Give a counterexample
to this statcinent for rational mumbers (it is, in fact, cquivalent to the
completeness axiom and is the basis for another way of formulating the
completencess axiom known as Dedekind cuts).

Solution. Let yp be in B. Then z < yy for every & in A. So 4 is bounded
above. Since we are given that it is not cnipty, » = sup 4 exists in R. Since
r is an upper bound for A, we have # < for every = in 4. If y € B, then
y = z for every « in A, s0 y is an upper bound for A4, and » < y. Thus we
have < r <y for every z in 4 and cvery y in B.

In Q this fails. Let A={x € Q|e<0ora?<2}and B={yecQ|y>
0 and y* > 0}. The & < y for every 2 in A aud every y in B. But there is
no ratioual number r with 12 =2. So ANB =0, A B = Q, aud there is
no rin Q with x <» <y for every zin 4 and y in B. ¢

o 1E-8. For noncipty scts 4, B C R, deterinine which of the following
statcments arc truce. Prove the truc statcinents and give a counterexample
for those that arc falsc:

(a) sup(AN B) < inf{sup(A),sup(B)}.
(b) sup(A N B) = inf{sup(A),sup(B)}.
(c) sup(A U B) > sup{sup(4),sup(B)}.
(d) sup(A U B) = sup{sup(4),sup(B)}.

Solution. (a) sup(AN B) < iuf{sup 4,sup B}.

This is true if the intersection is not empty.

Ifr € ANB, thenz € A.sox < sup A. Also, z € B;sox <sup B. Thus «
is 1o larger than the smaller of the two numbers sup A, and sup B. That
is, x < inf{sup 4, sup B} for cvery z in AN B. Thus inf {sup 4, sup B}
is an upper bound for AN B. So sup(A N B) < inf{sup 4,sup B}.

Here is another argument using Proposition 1.3.3. We notice that sup(An
B) € A, so by Proposition 1.3.3 we should have sup{A N B) < sup A.
Similarly, sup(A N B) < sup B. So sup(A N B) is no larger than the

sinaller of the two numbers sup A and sup B. That is
sup(A N B) < inf{sup A, sup B}.

There is a problam if the intersection is empty. We have defined sup(f)
to be +o0, and this is likely to be larger than inf{sup A, sup B}.

One can make a rcasonable argument for defining sup(#) = ~oo. Since
any rcal number is an upper bound for the ecmpty sct, and the supremum
is to be smaller than any other upper bound, we should take sup(@) =
—ac. (Also, since any real number is a lower bound for ¥, and the infimumn
is to be larger than any other lower bound, we could sct inf(@) = +c).
If we did this then the inequality would be true even if the intersection
were einpty.




(b) sup(An B) = inf{sup A, sup B}
This one need not be true even if the intersection is not cinpty. Cousider
the two clement sets A = {1,2} and B = {1,3}, Then An B = {1}. So
sup(ANB) =1. But sup A = 2 and sup B = 3. So inf{sup A,sup B} = 2
We do have 1 < 2, but they are certainly not cqual.
We know that sup(AN B) < inf{sup A, sup B}. Can wc get the opposite
incquality?

(c) sup(A U B) > sup{sup A, sup B}

(d) sup(Au B) = sup{sup 4.sup B}
Neither A nor B nor the union is cinpty, so we will not be troubled with
problems in the definition of the supremum of the cmpty sct.
IfrisinaUB,thena € Aorx€ B. Ifx € A, thenx <sup A. Ifz € B,
then < sup B. In cither case it is no larger than the larger of the two
numbers sup A and sup B. So x < sup{sup A, sup B} for every z in the
union. Thus sup{sup A4, sup B} is an upper bound for AU. So

sup{A U B) < sup{sup A, sup B}

In the opposite direction, we note that A C AU B, so by Proposition
1.3.3, we have sup 4 < sup(A U B). Similarly sup B < sup(A U B). So
sup(A U B) is at lcast as large as the larger of the twe numbers sup A
aud sup B. That is

sup(A U B) > sup{sup A,sup B}

We have incquality in both dircctions, so in fact equality must hold.

¢

o 1E-23. Let P C R be a set such that 2 > 0 for all z € P and for each
integer k there is an g € P such that kxy < 1. Prove that 0 = inf (P).

Sketch. Since 0 is a lower bound for P, 0 < inf(P). Usc the given condi-
tion to rule out 0 < inf(P). o

Solution. With £ = 1 the hypothesis gives an clement z; of the sct P
with z; < 1. In particular, P is not cmpty. We have assumeod that z > 0
for every 2 in P. So 0 is a lower bound for P. We conclude that inf P exists
as a finite real number and that 0 < inf P.

Now let € > 0. By the Archimedean Principle there is an integer & with
0 < 1/k < <. By hypothesis, there is an clement xy of P with kay < 1. So
0 <zr £ 1/k < €. S0 ¢ is not an lower hound for P aud inf P < e. This
holds for every £ > 0. so inf P < 0. We have incquality in both directions,
50 inf P =0 as claimed. ¢

o 1E-26. Assumethat A= {¢,n{m=1,2,3,... andn=1,2,3,.. s
a bounded sct and that a,,., > @, whenever m > p and n > ¢. Show that

lim a,,, =sup A.
x

n—

Solution. Since A is a bounded, nonempty subsct of R, we kuow that
¢ = sup A exists as a finite real nuber and that a4 < ¢ for all j and &. For
convenienee, let by, = a0 If n <k, we have b, = «,,, < ik = bi. So the
sequence {(b,)7¢ is inereasing and bounded above by ¢. So b = lim, . b,
exists and b < ¢. Let d < ¢, then there is a ag; in 4 with d < agy <ec If
n > max(k, j). then

d< g, <y = bn, < bn,+l <.

So b = him b, > d. This is truc for every d < ¢, so b > ¢. We have inequality
in both directions, so

lim ay, = lim b, =b=c=sup A
x r— o

o

as claimed. ¢




