⋄ 1.1-4. Prove that in an ordered field, if $\sqrt{2}$ is a positive number whose square is 2, then $\sqrt{2} < 3/2$. (Do this without using a numerical approximation for $\sqrt{2}$.)

Solution. It is convenient to set up a lemma first. This lemma corresponds to the fact that the squaring and square root functions are monotone increasing on the positive real numbers.

Lemma. If a > 0 and b > 0, then $a^2 \le b^2 \iff a \le b$.

Proof: Suppose $0 \le a \le b$. If we use Property 1.1.2 xi twice we find $a^2 \le ab$ and $ab \le b^2$. Transitivity of inequality gives $a^2 \le b^2$.

In the other direction, if $a^2 \leq b^2$, then

$$0 \le b^2 - a^2 = (b - a)(b + a).$$

If b+a=0, then a=b=0 since both are non-negative. If it is not 0, then it is positive and so is $(b+a)^{-1}$. So

$$0 \cdot (b+a)^{-1} \le ((b-a)(b+a))(b+a)^{-1} = (b-a)((b+a)(b+a)^{-1}))$$
$$0 \le b-a$$
$$a \le b$$

We have implication in both directions as claimed.

Using this we can get our result. If $\sqrt{2} \ge 3/2$, we would have $2 \ge 9/4$ and so $8 \ge 9$. Subtracting 8 from both sides would give $0 \ge 1$, but we know this is false. Thus $\sqrt{2} \ge 3/2$ has led to a contradiction and cannot be true. We must have $\sqrt{2} < 3/2$ as claimed.

 1.1-5. Give an example of a field with only three elements. Prove that it cannot be made into an ordered field.

Sketch. Let $\mathbb{F} = \{0, 1, 2\}$ with arithmetic mod 3. For example, $2 \cdot 2 = 1$ and 1 + 2 = 0. To show it cannot be ordered, get a contradiction from (for example) 1 > 0 so 1 + 1 = 2 > 0 so 1 + 2 = 0 > 0.

Solution. Let $\mathbb{F} = \{0, 1, 2\}$ with arithmetic mod 3. For example, $2 \cdot 2 = 1$ and 1 + 2 = 0. The commutative associative and distributive properties work for modular arithmetic with any base. When the base is a prime, the result is a field. In particular in arithmetic modulo 3 we have

$$1 \cdot 1 = 1$$
 and $2 \cdot 2 = 1$.

Thus 1 and 2 are their own reciprocals. Since they are the only two nonzero elements, we have a field.

To show it cannot be ordered, get a contradiction from (for example) 1>0 so 1+1=2>0 so 1+2=0>0. We know that $0\le 1$ in any ordered field. So $1\le 1+1=2$ by order axiom 15. Transitivity gives $0\le 2$. So far there is no problem. But, if we add 1 to the inequality $1\le 2$ obtained above, we find $2=1+1\le 2+1=0$. So $2\le 0$. Thus 0=2. If we multiply by 2, we get $0=0\cdot 2=2\cdot 2=1$. So 0=1. But we know this is false.