Solutions to Advanced Calculus Midterm 1

5. Since $g: [c,d] \to \mathbb{R}$ is one-to-one and continuous, $g^{-1}: g([c,d]) \to [c,d]$ exists and is continuous as well. On the other hand, both g and g^{-1} are strictly monotone. Therefore, g([c,d]) is a bounded closed interval in \mathbb{R} . In other words, g^{-1} is uniformly continuous on g([c,d]). Note that f(x) = $(g^{-1} \circ h)(x)$ and h is uniformly continuous on (a,b). Thus, we can choose a $\delta > 0$ small enough such that if

$$|x-y|<\delta \Rightarrow |h(x)-h(y)|<\widetilde{\delta} \Rightarrow |(g^{-1}\circ h)(x)-(g^{-1}\circ h)(y)|<\varepsilon$$

for all $x, y \in (a, b)$.

6. Step (2) is incorrect. According to the definition, if $x \in \bigcup_{j \in \mathbb{N}} E_j$ then $x \in E_j$ for some $j \in \mathbb{N}$. However, elements of $\mathbb{N} \times \mathbb{N} \times \cdots$ do not belong to any E_j .