6. No, no matter $n > 1$ or $n = 1$.
 For example, let $V = V_1 \cup V_2$ where $V_1 = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 > 0\}$
 $V_2 = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 < -1\}$. V is open in \mathbb{R}^n.
 Define $f : V \to \mathbb{R}^n$ by

 \[f(x) = f(x_1, \ldots, x_n) = \begin{cases} x & \text{for } x \in V_1 \\ x + (3, 0, \ldots, 0) & \text{for } x \in V_2 \end{cases} \]

 Then $f \in C(V)$ and $Df(x) = I_n$ which is invertible $\forall x \in V$.
 But $f(1, 0, \ldots, 0) = (1, 0, \ldots, 0) = f(-2, 0, \ldots, 0)$
 i.e. f is not 1-1 on V.

7. (i) Yes. By Thm 10.46.
 (ii) No. By Rmk 10.47.
 (iii) Yes. By Heine-Borel Thm, compact \iff bdd & closed.
 By §10 1 Ex 10.(a), sequentially compact \Rightarrow bdd & closed.
 By §10 4 Ex 10.(a), compact \Rightarrow sequentially compact.
 (iv) No. Let p be the discrete metric in \mathbb{R}^n, then p is bounded.
 (v) No. See Example 11.11.