HW §1.4
2. Case a=¢ : B= f(A)=¢. .. B is finite.
Case a # ¢ : Since A # ¢, Ais finite & In € N and a 1-1 function g from {1,2,3,...,n}

onto A. Then f o g is a 1-1 function from {1,2,3,...,n} onto B. ( fogis 1-1 and
onto by §1.4 Ex9(a). ) Therefore, B is finite.

4. (a). f(E) =(—4,16)
fHE) =(0,3)
(b). f(E) =10,16],
fYE) =[-2,2]
(c). f(E) =[-3,2],
fUE) = (155, 215
(d). f(BE) =(nin31),
fﬁl(E) _ [—1—\/2m’ —1—\/361/2_3) U (—1+~/;1e1/2_3’ _1+\/2m]
(e). f SE) =[-1,1]

6. (a) = (b) :

Ifye f(A)\jf((B)) ,fthen y € f(A)Aand y ¢ f(B). Therefore,
= Jj(z1) 1or some x1 €
z;éf(x)VxeB }:>x1¢B:>xleA\B
Sy = f(n) € FANB). - f(AN(B) C F(A\B).
If y € f(A\B), then y = f(z1) for some z; € A\B. =y = f(x;) € f(A)
Suppose that y € f(B), then y = f(zy) for some zo € B. But f is 1-1 and
y = f(z1) = f(z2) = 21 = 29 € B. This contradicts to that 1 € A\B. Hence
y & f(B). .y € fF(A\F(B). = f(A\B) C f(A)\f(B).
. f(A\B) = f(A)\f(B) for all subsets A and B of X.
(b) = (c) :
For each x € E, f(z) € f(E) = x € f7Y(f(E)). .. EC [~ (f(E)).
For each x € f~1(f(E)), f(x) € f(E). Then by (b),
(

FIE\{z}) = F(E)\f({z}) = FIEN{f(2)} & f(E)
ZE{s} S E={s}cE=zcE . [T (f(E)CE

S ITHS(E) = E
(c) = (d) :
ForyEf(AUB) y = f(z) for some z € AN B.
veA y=f(z)e f(4)
x€B -.y=flz) € f(B )}:>y6f( )N f(B).
- f(ANB) C f(A)n (B).

Foryef() f(B),
y € f(A) = erAay:f()
y=f(z)e f(B) = xe f'(f(B))=B by ()
(B)

f
x€ANB=y=f(x)e f(ANB). .. f(A) N f(B) C f(ANB).
Hence f(ANB) = f(A) N f(B).
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(d) = (a) :
Suppose f(x1) = f(xq) for some z1, 22 € X. Apply (d) by A= {x1}, B = {z2}, we

get
f(A)ﬂf(B> = {fl)}n{f(z)} ={f(z)} #¢
fLANB) = f({aa} N {a})

{xl}ﬂ{xg}#gb:>$1:m2 . flS 1-1 on X.

9. (a). (1) Suppose (go f)(x1) = (go f)(xs) for some x1, 25 € A. ie. g(f(x1)) = g(f(x2)).
Then
g:B—Cisl-1 o f(z) = fae)
f:A— Bis1-1 ST = Xo
c.go fis 1-1if g, f are 1-1.
(i) Let z € C.
z€ (Cand g: B — Cisonto S.dye Boz=g(y)
y € Band f: A— B isonto LdreAsy= f(x)
Sz=g(f(x))=(go f)(x) for x € A. = go f is onto.
(b). Given y € f(A), there is © € A such that y = f(z). If there is another Z € A such
that y = f(Z), then

y=fx)=f(2) and f is 1-1 =>2x=2

Therefore we can define f~! : f(A) — A by the way that f~! maps y € f(A) to
the unique z € A which has y as its image. By the definition of f=1, if f=1(y;) =
[ Hy2) = x € A, then y; = f(x) = yo. .. f~!is 1-1. Now to prove that f~! is
onto. For z € A | f(z) € f(A). By our definition of f~!, we have f~(f(x)) = z for
f(z) € f(A). . f~!is onto.

(c). fis 1-1 & gof is 1-1 :

(=) By (a).

(<) If f(z1) = f(x2) for some z1,29 € A. Then (go f)(z1) = g(f(z1)) =
g(f(z2)) = (go f)(x2) and go fis 1-1 = x1 = xy. . fis 1-1.

f is onto < gof is onto :

(=) By (a).
(<) For each y € B, g(y) € C and go f is onto.

=3JdreA 39y = (90 f)(x) =g(f(z))
. Then since g is 1-1 , y = f(x). .. f is onto.
11. (a). neN, ¢ Q
(i) ¢ >0. Then q = ; for some p € N, r € NU{0}.
(1 = () =t

.. n?is a root of the polynomial ¥ — n".
( Note that p € N and r € NU{0} == n" € N)
.. n? is algebraic.



(ii) ¢ <0. Then g = 7 for some p € —N, r € N{0}.

(n") ()" = (n")(n»)"" = (n")(n"") = 1.
.. n% is a root of the polynomial n"x7? — 1

(Note that —p € N and n” € N)
.. n is algebraic.

. For each n € N, the set Z,[z] of all polynomials with integer coefficients of degree n

is countable. ( By considering the choice of coefficients, it is easy to see that there
is a 1-1 and onto function from Z,[z] to N". Hence P,[x] is countable. ) And each
of the polynomial has at most n roots. Hence the set of all roots of polynomials in
Z,|x] is countable. The collection of algebraic numbers of degree n is a subset of the
previous set , hence it is countable too.

. Let A,, = the collection of all algebraic numbers of degree n,

A = the collection of all algebraic numbers,

T = the collection of all transcendental numbers.
o A=J7, A, is countable. ( Note that a countable union of countable sets is still
countable. ) Then since R is uncountable and R= AU T | T is uncountable ( or
R= AUT is countable, a contradiction. ).
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4. (a).

Given € > 0, there is N € N such that | b, —0| =0, <eif n > N. . Forn> N,n
large
|x, —a| < b,
= —e< b, <z,—a< b, < €
= |z, —al] <e

ie. lim, . x, = a.

. Let l;n = c¢b,, then lN)n >0 and lim,,_, l~)n =Clim,—sb,=C-0=0.

And | , — a| < Cb,, = b,. Hence {b,} satisfies the same condition as {b,} in (a).
.. & converges to a.

. . A
dimy, ooy = limy, oo Y = 1.

Given € > 0, there are Ny, Ny € N such that

NN e

|y — 1] < if n> N,

Let N = max{N;, N2} € N, thenn > N =

. ((vmn>N > Nandn > N > Ns)
€

| xn_ynl

A A

S Ty — Yp — 0 as n — oo.



(b). For each M € R, by Archimedean Principle , there is ny; € N such that ng > M.
Therefore, {n} is not bounded above. = {n} is not bounded. = {n} does not
converge by Theorem 2.8 .

(c). Let &, =n , y, =n+ =, then | z, — y,| = = — 0 as n — oo. But {z,} = {n} does
not converge by (b). ( Note that {y,} does not converge too. )
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5. Let r,, = [110(;:5] € Q. Then {r,} — x as n — oc.

10. (a). 0<y< = =0<10""y <10. Let A={keN: k<10""y}. Then0€ A # ¢

and Vk 61?4 k < 10"ty < 10 i.e. A has an upper bound 10. = A has a supremum
w. ItiseasytoseethathA. S0<w <10y <10, (= 0<w<9.) wis the
supremum of A, sow+1¢ A. - w+1> 10"y, Hence w < 10"y < w + 1. This
implies that

w 1

w
10n+1 S Yy S 10n+1 + 10n+1

(b). 0 <2 < 15 = 1. By (a), there is 0 < 2y <9, 2y € Z such that

ZL‘1< < + 1
10 — 10 10
T 1

< p_ = _
=0<z 10<1O

If there are x1, 9, ..., 2, € {0,1,...,9} such that

kz 0F = <Z10k 0m
=1

n

T 1
S0S7-2 35 < i
k=1

By (a), there is 2,41 € Z , 0 < 2,41 < 9 such that

Tn+41 Tn+1 1
10n+1 = Z 1()k 10n+1 + 10n+1
n+1 n+1
x <

By induction on n. g.e.d.

(¢). According to (b), >°,_, 1o is a increasing sequence on n, bounded above by z. =

> h_1 e converges as n — 0o. Let n — oo in the inequality in (b), we get

n

1 . T
Il ok
Jim Z v < lim Z or Ao 7oy = lm ; 10%
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4. Note that z, <lforallneN. =z, =1—-y/1—2,1>1—+/1-1=0VneN, ,n>2.
S 0<x, <1 VneN

Vi—z, = 1—x,11

= l—z, = 1—2x,4+22,,
= Tp — Tpy1 = :Bn—i-l(l - xn-&—l) >0
. Tn 2 Tni1

{z,} decreases and is bounded below by 0. Hence it converges to some x € R.
Let n — o0 in the equality x,11 =1 — /1 — z,,, we get

r=1—-vV1—-=x
=2=0 or 1

But x,, is decreasing, therefore x < z; < 1. .2 =0. i.e. x, | 0 as n — oo.

Tnt1 . 1=vl-—an

Tn

9. (a). Forn =1,z >y >0. Suppose that z,, > y, > 0 for some n € N, then

Tn+ Yn

T+l = 9 >0
Yn+1 = \/TnlYn > 0
2
Ty — yn
-7331+1 _yi+1 = % >0

2 2
= Tnt1 = Yni
= Tpt1 > Yny1 > 0
By induction on n, 0 < y, < z,, for all n € N.

Tp+Yn  Tp+ Ty
Ln+1 = < = Tn

2 2
Yn+1 = \/xnyn > \/ynyn =Yn
Y1 < Yp <z, <x1 by (1)

Therefore {x,} is strictly decreasing and bounded below by y; and {y,} is strictly
increasing and bounded above by x;. By Monotone Convergence Theorem , the two
sequences converge.



T1+ ) 1+ U 1 — U
U<Ta—pp=——F— Vo <—5— —Vvhn=—5
Suppose that T,41 — Yp1 < Z52, then
Ln+1 Ln+1 Tn+1 = Yn+1 11—
Tnt2 = Yz+2 = — VTnp1Ynt1 < — VYn+1Yn+1 = < ot
Yn+1 Yn+1 2 2

By induction on n , xpy1 — Y < P52 for all n € N.

(d). limy oo 5= =0, and 0 < 2, —y, < 52f foralln € N, n > 2.
= 0=lim, o (Tp — Ypn) = lim, oo &, — lim,, oy, = 0. . lim,, oo x,, = lim,, 0 Y-

11. (a). Claim : x, > y, > 0 for all n € NU{0}.
T0=2V3>3=yy>0
Suppose x, >y, > 0 for some n € N

22,Yn 22,Yn
Tnt1 = Y > Y :yn>0
Tpn + Yn Tn + Ty

oY1 = \/l‘n-l—lyn < \/mn—l—lwn—i—l = Tn+1

By induction on n, the Claim holds for all n € NU{0}
According to the Claim, for each n € N

anflynfl anflynfl
Ty = <
Tn—1 + Yn—1 Yn—1 + Yn—1

= Tp-1

Yn = \/xnynfl > \/ynynfl = VUn 2> VYn-1 = Yn > Yn-1
= To > Ty > Yn > Yo

- {x,} decreases and is bounded below by g, hence has limit x € R; {y,} increases
and is bounded above by x, hence has limit y € R
(b).
Zo > Tn > Yn > Yo
2V3=wo>u>y>y=3>0

: 2y 1Yn_
Letn%mlnxn:;pi—f;itogetx:%.
n— n—

s> +ay=2ry=>’=zy=ax=y (. ox>0)



