HW §1.4

2. Case $a = \phi$: $B = f(A) = \phi$. $\therefore B$ is finite. **Case** $a \neq \phi$: Since $A \neq \phi$, A is finite $\Leftrightarrow \exists n \in \mathbb{N}$ and a 1-1 function g from $\{1, 2, 3, \dots, n\}$ onto A. Then $f \circ g$ is a 1-1 function from $\{1, 2, 3, \ldots, n\}$ onto B. $(f \circ g \text{ is } 1\text{-}1 \text{ and }$ onto by $\S1.4 \text{ Ex9}(a)$.) Therefore, B is finite. 4. (a). f(E) = (-4, 16), $f^{-1}(E) = (0, \frac{4}{5})$ (b). f(E) = [0, 16], $f^{-1}(E) = [-2, 2]$ (c). $f(E) = [-\frac{1}{4}, 2],$ $f^{-1}(E) = (\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2})$ (d). $f(E) = (\ln \frac{7}{4}, \ln 31),$ $f^{-1}(E) = \left[\frac{-1 - \sqrt{4e^5 - 3}}{2}, \frac{-1 - \sqrt{4e^{1/2} - 3}}{2}\right) \cup \left(\frac{-1 + \sqrt{4e^{1/2} - 3}}{2}, \frac{-1 + \sqrt{4e^5 - 3}}{2}\right]$ (e). f(E) = [-1, 1], $f^{-1}(E) = \bigcup_{n \in \mathbb{N}} [2n\pi, (2n+1)\pi]$ 6. (a) \Rightarrow (b) : If $y \in f(A) \setminus f(B)$, then $y \in f(A)$ and $y \notin f(B)$. Therefore, $\begin{cases} y = f(x_1) \text{ for some } x_1 \in A \\ y \neq f(x) \ \forall x \in B \end{cases} \\ \end{cases} \Rightarrow x_1 \notin B \Rightarrow x_1 \in A \setminus B$ $\Rightarrow y = f(x_1) \in f(A \setminus B). \quad \therefore f(A) \setminus f(B) \subset f(A \setminus B).$ If $y \in f(A \setminus B)$, then $y = f(x_1)$ for some $x_1 \in A \setminus B$. $\Rightarrow y = f(x_1) \in f(A)$ Suppose that $y \in f(B)$, then $y = f(x_2)$ for some $x_2 \in B$. But f is 1-1 and $y = f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \in B$. This contradicts to that $x_1 \in A \setminus B$. Hence $y \notin f(B)$. $\therefore y \in f(A) \setminus f(B)$. $\Rightarrow f(A \setminus B) \subset f(A) \setminus f(B)$. $\therefore f(A \setminus B) = f(A) \setminus f(B)$ for all subsets A and B of X. (b) \Rightarrow (c) : For each $x \in E$, $f(x) \in f(E) \Rightarrow x \in f^{-1}(f(E))$. $\therefore E \subset f^{-1}(f(E))$. For each $x \in f^{-1}(f(E))$, $f(x) \in f(E)$. Then by (b), $f(E \setminus \{x\}) = f(E) \setminus f(\{x\}) = f(E) \setminus \{f(x)\} \subseteq f(E)$ $\therefore E \backslash \{x\} \subsetneqq E \Rightarrow \{x\} \subset E \Rightarrow x \in E. \ \therefore f^{-1}(f(E)) \subset E$ $\therefore f^{-1}(f(\vec{E})) = E.$ $(c) \Rightarrow (d)$: For $y \in f(A \cup B)$, y = f(x) for some $x \in A \cap B$. $\begin{array}{c} x \in A \\ x \in B \\ x \in B \\ x \in B \end{array} \begin{array}{c} y = f(x) \in f(A) \\ f(B) \end{array} \end{array} \right\} \Rightarrow y \in f(A) \cap f(B).$ $\therefore f(A \cap B) \subset f(A) \cap f(B).$ For $y \in f(A) \cap f(B)$, $\begin{array}{ll} y \in f(A) & \Rightarrow & \exists \ x \in A \ \ni \ y = f(x) \\ y = f(x) \in f(B) & \Rightarrow \ x \in f^{-1}(f(B)) = B \ \text{by} \ (c) \end{array}$ $\therefore x \in A \cap B \Rightarrow y = f(x) \in f(A \cap B). \therefore f(A) \cap f(B) \subset f(A \cap B).$ Hence $f(A \cap B) = f(A) \cap f(B)$.

(d) \Rightarrow (a) : Suppose $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$. Apply (d) by $A = \{x_1\}$, $B = \{x_2\}$, we get $f(A) \cap f(B) = \{f(x_1)\} \cap \{f(x_2)\} = \{f(x_1)\} \neq \phi$

$$f(A \cap B) = f(\{x_1\} \cap \{x_2\})$$

$$\therefore \{x_1\} \cap \{x_2\} \neq \phi \Rightarrow x_1 = x_2 \quad \therefore f \text{ is } 1\text{-1 on } X.$$

- 9. (a). (i) Suppose $(g \circ f)(x_1) = (g \circ f)(x_2)$ for some $x_1, x_2 \in A$. i.e. $g(f(x_1)) = g(f(x_2))$. Then
 - $g: B \to C \text{ is } 1\text{-}1 \qquad \therefore f(x_1) = f(x_2)$ $f: A \to B \text{ is } 1\text{-}1 \qquad \therefore x_1 = x_2$ $\therefore g \circ f \text{ is } 1\text{-}1 \text{ if } g, f \text{ are } 1\text{-}1.$
 - (ii) Let $z \in C$. $z \in C$ and $g : B \to C$ is onto $y \in B$ and $f : A \to B$ is onto $\therefore \exists y \in B \ni z = g(y)$ $\therefore \exists x \in A \ni y = f(x)$ $\therefore z = g(f(x)) = (g \circ f)(x)$ for $x \in A$. $\Rightarrow g \circ f$ is onto.
 - (b). Given $y \in f(A)$, there is $x \in A$ such that y = f(x). If there is another $\tilde{x} \in A$ such that $y = f(\tilde{x})$, then

$$y = f(x) = f(\tilde{x})$$
 and f is $1 - 1 \Rightarrow x = \tilde{x}$

Therefore we can define $f^{-1} : f(A) \to A$ by the way that f^{-1} maps $y \in f(A)$ to the unique $x \in A$ which has y as its image. By the definition of f^{-1} , if $f^{-1}(y_1) = f^{-1}(y_2) = x \in A$, then $y_1 = f(x) = y_2$. $\therefore f^{-1}$ is 1-1. Now to prove that f^{-1} is onto. For $x \in A$, $f(x) \in f(A)$. By our definition of f^{-1} , we have $f^{-1}(f(x)) = x$ for $f(x) \in f(A)$. $\therefore f^{-1}$ is onto.

(c). f is 1-1 \Leftrightarrow gof is 1-1 :

 (\Rightarrow) By (a).

(\Leftarrow) If $f(x_1) = f(x_2)$ for some $x_1, x_2 \in A$. Then $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$ and $g \circ f$ is 1-1 $\Rightarrow x_1 = x_2$. $\therefore f$ is 1-1.

f is onto \Leftrightarrow **g** \circ **f** is onto :

 (\Rightarrow) By (a).

(\Leftarrow) For each $y \in B$, $g(y) \in C$ and $g \circ f$ is onto.

$$\Rightarrow \exists x \in A \quad \exists g(y) = (g \circ f)(x) = g(f(x))$$

. Then since g is 1-1, y = f(x). $\therefore f$ is onto.

11. (a).
$$n \in \mathbb{N}, q \in \mathbb{Q}$$

(i) $\underline{q \ge 0}$. Then $q = \frac{r}{p}$ for some $p \in \mathbb{N}, r \in \mathbb{N} \cup \{0\}$.

$$(n^q)^p = (n^{\frac{r}{p}})^p = n^r$$

 $\therefore n^q \text{ is a root of the polynomial } x^p - n^r.$ (Note that $\underline{p \in \mathbb{N}}$ and $r \in \mathbb{N} \cup \{0\} \Rightarrow \underline{n^r \in \mathbb{N}}$) $\therefore n^q \text{ is algebraic.}$ (ii) $\underline{q} < 0$. Then $q = \frac{r}{p}$ for some $p \in -\mathbb{N}, r \in \mathbb{N}\{0\}$.

 $(n^r)(n^q)^{-p} = (n^r)(n^{\frac{r}{p}})^{-p} = (n^r)(n^{-r}) = 1.$

 $\therefore n^q$ is a root of the polynomial $n^r x^{-p} - 1$ (Note that $\underline{-p \in \mathbb{N}}$ and $\underline{n^r \in \mathbb{N}}$) $\therefore n^q$ is algebraic.

- (b). For each $n \in \mathbb{N}$, the set $\mathbb{Z}_n[x]$ of all polynomials with integer coefficients of degree n is countable. (By considering the choice of coefficients, it is easy to see that there is a 1-1 and onto function from $\mathbb{Z}_n[x]$ to \mathbb{N}^n . Hence $P_n[x]$ is countable.) And each of the polynomial has at most n roots. Hence the set of all roots of polynomials in $\mathbb{Z}_n[x]$ is countable. The collection of algebraic numbers of degree n is a subset of the previous set , hence it is countable too.
- (c). Let A_n = the collection of all algebraic numbers of degree n, A = the collection of all algebraic numbers, T = the collection of all transcendental numbers. $\therefore A = \bigcup_{n=1}^{\infty} A_n$ is countable. (Note that a countable union of countable sets is still countable.) Then since \mathbb{R} is uncountable and $\mathbb{R} = A \cup T$, T is uncountable (or $\mathbb{R} = A \cup T$ is countable, a contradiction.).

HW §2.1

4. (a). Given $\epsilon > 0$, there is $N \in \mathbb{N}$ such that $|b_n - 0| = b_n < \epsilon$ if $n \ge N$. \therefore For $n \ge N$, n large

$$\begin{array}{l} |x_n - a| \leq b_n \\ \Rightarrow & -\epsilon < -b_n \leq x_n - a \leq b_n < \epsilon \\ \Rightarrow & |x_n - a| \leq \epsilon \end{array}$$

i.e. $\lim_{n\to\infty} x_n = a$.

- (b). Let $\tilde{b}_n = cb_n$, then $\tilde{b}_n \ge 0$ and $\lim_{n\to\infty} \tilde{b}_n = C \lim_{n\to\infty} b_n = C \cdot 0 = 0$. And $|x_n - a| \le Cb_n = \tilde{b}_n$. Hence $\{\tilde{b}_n\}$ satisfies the same condition as $\{b_n\}$ in (a). $\therefore x_n$ converges to a.
- 6. (a). $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n \stackrel{\Delta}{=} l$. Given $\epsilon > 0$, there are $N_1, N_2 \in \mathbb{N}$ such that

$$|x_n - l| < \frac{\epsilon}{2}$$
 if $n \ge N_1$
 $|y_n - l| < \frac{\epsilon}{2}$ if $n \ge N_2$

Let $N = \max\{N_1, N_2\} \in \mathbb{N}$, then $n \ge N \Rightarrow$

$$|x_n - y_n| \leq |x_n - l| + |l - y_n|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} \quad (\because n \ge N \ge N_1 \text{and} n \ge N \ge N_2)$$

$$= \epsilon$$

 $\therefore x_n - y_n \to 0 \text{ as } n \to \infty.$

- (b). For each $M \in \mathbb{R}$, by Archimedean Principle, there is $n_M \in \mathbb{N}$ such that $n_0 > M$. Therefore, $\{n\}$ is not bounded above. $\Rightarrow \{n\}$ is not bounded. $\Rightarrow \{n\}$ does not converge by Theorem 2.8.
- (c). Let $x_n = n$, $y_n = n + \frac{1}{n}$, then $|x_n y_n| = \frac{1}{n} \to 0$ as $n \to \infty$. But $\{x_n\} = \{n\}$ does not converge by (b). (Note that $\{y_n\}$ does not converge too.)

HW §2.2

- 5. Let $r_n = \frac{[10^n x]}{10^n} \in \mathbb{Q}$. Then $\{r_n\} \to x$ as $n \to \infty$.
- 10. (a). $0 \le y < \frac{1}{10^n} \Rightarrow 0 \le 10^{n+1}y < 10$. Let $A = \{k \in \mathbb{N} : k \le 10^{n+1}y\}$. Then $0 \in A \ne \phi$ and $\forall k \in A$, $k \le 10^{n+1}y < 10$ i.e. A has an upper bound 10. $\Rightarrow A$ has a supremum w. It is easy to see that $w \in A$. $\therefore 0 \le w \le 10^{n+1}y < 10$. ($\Rightarrow 0 \le w \le 9$.) w is the supremum of A, so $w + 1 \notin A$. $\therefore w + 1 > 10^{n+1}y$. Hence $w \le 10^{n+1}y < w + 1$. This implies that

$$\frac{w}{10^{n+1}} \le y \le \frac{w}{10^{n+1}} + \frac{1}{10^{n+1}}$$

(b). $0 \le x < \frac{1}{10^0} = 1$. By (a), there is $0 \le x_1 \le 9$, $x_1 \in \mathbb{Z}$ such that

$$\frac{x_1}{10} \le x < \frac{x_1}{10} + \frac{1}{10}$$
$$\Rightarrow 0 \le x - \frac{x_1}{10} < \frac{1}{10}$$

If there are $x_1, x_2, \ldots, x_n \in \{0, 1, \ldots, 9\}$ such that

$$\sum_{k=1}^{n} \frac{x_k}{10^k} \le x < \sum_{k=1}^{n} \frac{x_k}{10^k} + \frac{1}{10^n}$$
$$\Rightarrow 0 \le x - \sum_{k=1}^{n} \frac{x_k}{10^k} < \frac{1}{10^n}$$

By (a), there is $x_{n+1} \in \mathbb{Z}$, $0 \le x_{n+1} \le 9$ such that

$$\frac{x_{n+1}}{10^{n+1}} \le x - \sum_{k=1}^{n} \frac{x_k}{10^k} < \frac{x_{n+1}}{10^{n+1}} + \frac{1}{10^{n+1}}$$
$$\sum_{k=1}^{n+1} \frac{x_k}{10^k} \le x < \sum_{k=1}^{n+1} \frac{x_k}{10^k} + \frac{1}{10^{n+1}}$$

By induction on n. q.e.d.

(c). According to (b), $\sum_{k=1}^{n} \frac{x_k}{10^k}$ is a increasing sequence on n, bounded above by $x. \Rightarrow \sum_{k=1}^{n} \frac{x_k}{10^k}$ converges as $n \to \infty$. Let $n \to \infty$ in the inequality in (b), we get

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{x_k}{10^k} \le x \le \lim_{n \to \infty} \sum_{k=1}^{n} \frac{x_k}{10^k} + \lim_{n \to \infty} \frac{1}{10^n} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{x_k}{10^k}$$

i.e.
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{x_k}{10^k} = x$$

HW §2.3

4. Note that $x_n \leq 1$ for all $n \in \mathbb{N}$. $\Rightarrow x_n = 1 - \sqrt{1 - x_{n-1}} \geq 1 - \sqrt{1 - 1} = 0 \ \forall n \in \mathbb{N}$, $n \geq 2$.

$$\therefore 0 \le x_n \le 1 \quad \forall n \in \mathbb{N}$$

$$\sqrt{1 - x_n} = 1 - x_{n+1}$$

$$\Rightarrow \quad 1 - x_n = 1 - 2x_{n+1} + x_{n+1}^2$$

$$\Rightarrow \quad x_n - x_{n+1} = x_{n+1}(1 - x_{n+1}) \ge 0$$

$$\therefore x_n \ge x_{n+1}$$

 $\{x_n\}$ decreases and is bounded below by 0. Hence it converges to some $x \in \mathbb{R}$. Let $n \to \infty$ in the equality $x_{n+1} = 1 - \sqrt{1 - x_n}$, we get

$$x = 1 - \sqrt{1 - x}$$
$$\Rightarrow x = 0 \text{ or } 1$$

But x_n is decreasing, therefore $x \leq x_1 < 1$. $\therefore x = 0$. i.e. $x_n \downarrow 0$ as $n \to \infty$.

$$\begin{array}{rcl} \frac{x_{n+1}}{x_n} & = & \frac{1-\sqrt{1-x_n}}{x_n} \\ & = & \frac{x_n}{1-(1-x_n)} \\ & = & \frac{1}{x_n(1+\sqrt{1-x_n})} \\ & = & \frac{1}{1+\sqrt{1-x_n}} \\ & \rightarrow & \frac{1}{1+\sqrt{1-0}} = \frac{1}{2} \quad \text{as} \quad n \to \infty \end{array}$$

9. (a). For n = 1, $x_1 > y_1 > 0$. Suppose that $x_n > y_n > 0$ for some $n \in \mathbb{N}$, then

$$\begin{aligned} x_{n+1} &= \frac{x_n + y_n}{2} > 0\\ y_{n+1} &= \sqrt{x_n y_n} > 0\\ x_{n+1}^2 - y_{n+1}^2 &= \frac{(x_n - y_n)^2}{4} > 0\\ &\Rightarrow x_{n+1}^2 > y_{n+1}^2\\ &\Rightarrow x_{n+1} > y_{n+1} > 0 \end{aligned}$$

By induction on $n, 0 < y_n < x_n$ for all $n \in \mathbb{N}$.

(b).

$$x_{n+1} = \frac{x_n + y_n}{2} < \frac{x_n + x_n}{2} = x_n$$
$$y_{n+1} = \sqrt{x_n y_n} > \sqrt{y_n y_n} = y_n$$
$$y_1 < y_n < x_n < x_1 \quad \text{by (a)}$$

Therefore $\{x_n\}$ is strictly decreasing and bounded below by y_1 and $\{y_n\}$ is strictly increasing and bounded above by x_1 . By Monotone Convergence Theorem , the two sequences converge.

(c).

$$0 < x_2 - y_2 = \frac{x_1 + y_1}{2} - \sqrt{x_1 y_1} < \frac{x_1 + y_1}{2} - \sqrt{y_1 y_1} = \frac{x_1 - y_1}{2}$$

Suppose that $x_{n+1} - y_{n+1} < \frac{x_1 - y_1}{2^n}$, then

$$x_{n+2} - y_{x+2} = \frac{x_{n+1}}{y_{n+1}} - \sqrt{x_{n+1}y_{n+1}} < \frac{x_{n+1}}{y_{n+1}} - \sqrt{y_{n+1}y_{n+1}} = \frac{x_{n+1} - y_{n+1}}{2} < \frac{x_1 - y_1}{2^{n+1}}$$

By induction on n, $x_{n+1} - y_{n+1} < \frac{x_1 - y_1}{2^n}$ for all $n \in \mathbb{N}$.

(d).
$$\lim_{n \to \infty} \frac{x_1 - y_1}{2^{n-1}} = 0, \text{ and } 0 < x_n - y_n < \frac{x_1 - y_1}{2^{n-1}} \text{ for all } n \in \mathbb{N}, n \ge 2.$$

$$\Rightarrow 0 = \lim_{n \to \infty} (x_n - y_n) = \lim_{n \to \infty} x_n - \lim_{n \to \infty} y_n = 0. \therefore \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n.$$

11. (a). <u>Claim</u> : $x_n > y_n > 0$ for all $n \in \mathbb{N} \cup \{0\}$.

$$x_0 = 2\sqrt{3} > 3 = y_0 > 0$$

Suppose $x_n > y_n > 0$ for some $n \in \mathbb{N}$

$$x_{n+1} = \frac{2x_n y_n}{x_n + y_n} > \frac{2x_n y_n}{x_n + x_n} = y_n > 0$$

$$\therefore y_{n+1} = \sqrt{x_{n+1} y_n} < \sqrt{x_{n+1} x_{n+1}} = x_{n+1}$$

By induction on n, the <u>Claim</u> holds for all $n \in \mathbb{N} \cup \{0\}$ According to the <u>Claim</u>, for each $n \in \mathbb{N}$

$$x_{n} = \frac{2x_{n-1}y_{n-1}}{x_{n-1} + y_{n-1}} < \frac{2x_{n-1}y_{n-1}}{y_{n-1} + y_{n-1}} = x_{n-1}$$
$$y_{n} = \sqrt{x_{n}y_{n-1}} > \sqrt{y_{n}y_{n-1}} \Rightarrow \sqrt{y_{n}} > \sqrt{y_{n-1}} \Rightarrow y_{n} > y_{n-1}$$
$$\Rightarrow x_{0} > x_{n} > y_{n} > y_{0}$$

 $\therefore \{x_n\}$ decreases and is bounded below by y_0 , hence has limit $x \in \mathbb{R}$; $\{y_n\}$ increases and is bounded above by x_0 , hence has limit $y \in \mathbb{R}$

0

(b).

$$\begin{split} x_0 > x_n > y_n > y_0 \\ 2\sqrt{3} = x_0 \ge x \ge y \ge y_0 = 3 > \\ \text{Let } n \to \infty \text{ in } x_n = \frac{2x_{n-1}y_{n-1}}{x_{n-1}+y_{n-1}} \text{ to get } x = \frac{2xy}{x+y}. \\ \Rightarrow x^2 + xy = 2xy \Rightarrow x^2 = xy \Rightarrow x = y \text{ (} \because x > 0 \text{)} \end{split}$$