
HW §1.4
2. Case a = φ : B = f(A) = φ. ∴ B is finite.

Case a 6= φ : Since A 6= φ, A is finite⇔ ∃ n ∈ N and a 1-1 function g from {1, 2, 3, . . . , n}
onto A. Then f ◦ g is a 1-1 function from {1, 2, 3, . . . , n} onto B. ( f ◦ g is 1-1 and
onto by §1.4 Ex9(a). ) Therefore, B is finite.

4. (a). f (E) = (−4, 16),
f−1(E) = (0, 4

5
)

(b). f (E) = [0, 16],
f−1(E) = [−2, 2]

(c). f (E) = [−1
4
, 2],

f−1(E) = (−1−√5
2

, −1+
√

5
2

)

(d). f (E) = (ln 7
4
, ln 31),

f−1(E) = [−1−√4e5−3
2

,
−1−

√
4e1/2−3

2
) ∪ (

−1+
√

4e1/2−3

2
, −1+

√
4e5−3
2

]

(e). f (E) = [−1, 1],
f−1(E) = ∪n∈N [2nπ, (2n + 1)π]

6. (a) ⇒ (b) :
If y ∈ f(A)\f(B), then y ∈ f(A) and y /∈ f(B). Therefore,

y = f(x1) for some x1 ∈ A
y 6= f(x) ∀x ∈ B

}
⇒ x1 /∈ B ⇒ x1 ∈ A\B

⇒ y = f(x1) ∈ f(A\B). ∴ f(A)\f(B) ⊂ f(A\B).
If y ∈ f(A\B), then y = f(x1) for some x1 ∈ A\B. ⇒ y = f(x1) ∈ f(A)
Suppose that y ∈ f(B), then y = f(x2) for some x2 ∈ B. But f is 1-1 and
y = f(x1) = f(x2) ⇒ x1 = x2 ∈ B. This contradicts to that x1 ∈ A\B. Hence
y /∈ f(B). ∴ y ∈ f(A)\f(B). ⇒ f(A\B) ⊂ f(A)\f(B).
∴ f(A\B) = f(A)\f(B) for all subsets A and B of X.

(b) ⇒ (c) :
For each x ∈ E, f(x) ∈ f(E) ⇒ x ∈ f−1(f(E)). ∴ E ⊂ f−1(f(E)).
For each x ∈ f−1(f(E)), f(x) ∈ f(E). Then by (b),

f(E\{x}) = f(E)\f({x}) = f(E)\{f(x)} $ f(E)

∴ E\{x} $ E ⇒ {x} ⊂ E ⇒ x ∈ E. ∴ f−1(f(E)) ⊂ E
∴ f−1(f(E)) = E.

(c) ⇒ (d) :
For y ∈ f(A ∪B) , y = f(x) for some x ∈ A ∩B.

x ∈ A ∴ y = f(x) ∈ f(A)
x ∈ B ∴ y = f(x) ∈ f(B)

}
⇒ y ∈ f(A) ∩ f(B).

∴ f(A ∩B) ⊂ f(A) ∩ f(B).
For y ∈ f(A) ∩ f(B),

y ∈ f(A) ⇒ ∃ x ∈ A 3 y = f(x)
y = f(x) ∈ f(B) ⇒ x ∈ f−1(f(B)) = B by (c)

∴ x ∈ A ∩B ⇒ y = f(x) ∈ f(A ∩B). ∴ f(A) ∩ f(B) ⊂ f(A ∩B).
Hence f(A ∩B) = f(A) ∩ f(B).
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(d) ⇒ (a) :
Suppose f(x1) = f(x2) for some x1, x2 ∈ X. Apply (d) by A = {x1} , B = {x2}, we
get

f(A) ∩ f(B) = {f(x1)} ∩ {f(x2)} = {f(x1)} 6= φ
||

f(A ∩B) = f({x1} ∩ {x2})
∴ {x1} ∩ {x2} 6= φ ⇒ x1 = x2 . ∴ f is 1-1 on X.

9. (a). ( i) Suppose (g ◦ f)(x1) = (g ◦ f)(x2) for some x1, x2 ∈ A. i.e. g(f(x1)) = g(f(x2)).
Then

g : B → C is 1-1 ∴ f(x1) = f(x2)
f : A → B is 1-1 ∴ x1 = x2

∴ g ◦ f is 1-1 if g, f are 1-1.

(ii) Let z ∈ C.
z ∈ C and g : B → C is onto ∴ ∃y ∈ B 3 z = g(y)
y ∈ B and f : A → B is onto ∴ ∃x ∈ A 3 y = f(x)

∴ z = g(f(x)) = (g ◦ f)(x) for x ∈ A. ⇒ g ◦ f is onto.

(b). Given y ∈ f(A), there is x ∈ A such that y = f(x). If there is another x̃ ∈ A such
that y = f(x̃), then

y = f(x) = f(x̃) and f is 1− 1 ⇒ x = x̃

Therefore we can define f−1 : f(A) → A by the way that f−1 maps y ∈ f(A) to
the unique x ∈ A which has y as its image. By the definition of f−1, if f−1(y1) =
f−1(y2) = x ∈ A, then y1 = f(x) = y2. ∴ f−1 is 1-1. Now to prove that f−1 is
onto. For x ∈ A , f(x) ∈ f(A). By our definition of f−1, we have f−1(f(x)) = x for
f(x) ∈ f(A). ∴ f−1 is onto.

(c). f is 1-1 ⇔ g◦f is 1-1 :
(⇒) By (a).
(⇐) If f(x1) = f(x2) for some x1, x2 ∈ A. Then (g ◦ f)(x1) = g(f(x1)) =
g(f(x2)) = (g ◦ f)(x2) and g ◦ f is 1-1 ⇒ x1 = x2. ∴ f is 1-1.

f is onto ⇔ g◦f is onto :
(⇒) By (a).
(⇐) For each y ∈ B , g(y) ∈ C and g ◦ f is onto.

⇒ ∃x ∈ A 3 g(y) = (g ◦ f)(x) = g(f(x))

. Then since g is 1-1 , y = f(x). ∴ f is onto.

11. (a). n ∈ N, q ∈ Q
( i) q ≥ 0. Then q = r

p
for some p ∈ N, r ∈ N∪{0}.

(nq)p = (n
r
p )p = nr

∴ nq is a root of the polynomial xp − nr.
( Note that p ∈ N and r ∈ N∪{0} ⇒ nr ∈ N )
∴ nq is algebraic.
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(ii) q < 0. Then q = r
p

for some p ∈ −N, r ∈ N{0}.

(nr)(nq)−p = (nr)(n
r
p )−p = (nr)(n−r) = 1.

∴ nq is a root of the polynomial nrx−p − 1
(Note that −p ∈ N and nr ∈ N)
∴ nq is algebraic.

(b). For each n ∈ N, the set Zn[x] of all polynomials with integer coefficients of degree n
is countable. ( By considering the choice of coefficients, it is easy to see that there
is a 1-1 and onto function from Zn[x] to Nn. Hence Pn[x] is countable. ) And each
of the polynomial has at most n roots. Hence the set of all roots of polynomials in
Zn[x] is countable. The collection of algebraic numbers of degree n is a subset of the
previous set , hence it is countable too.

(c). Let An = the collection of all algebraic numbers of degree n,
A = the collection of all algebraic numbers,
T = the collection of all transcendental numbers.

∴ A =
⋃∞

n=1 An is countable. ( Note that a countable union of countable sets is still
countable. ) Then since R is uncountable and R= A ∪ T , T is uncountable ( or
R= A ∪ T is countable, a contradiction. ).

HW §2.1

4. (a). Given ε > 0, there is N ∈ N such that | bn − 0| = bn < ε if n ≥ N . ∴ For n ≥ N , n
large

|xn − a| ≤ bn

⇒ −ε < −bn ≤ xn − a ≤ bn < ε
⇒ |xn − a| ≤ ε

i.e. limn→∞ xn = a.

(b). Let b̃n = cbn, then b̃n ≥ 0 and limn→∞ b̃n = C limn→∞ bn = C · 0 = 0.
And | xn − a| ≤ Cbn = b̃n. Hence {b̃n} satisfies the same condition as {bn} in (a).
∴ xn converges to a.

6. (a). limn→∞ xn = limn→∞ yn
∆
= l.

Given ε > 0, there are N1, N2 ∈ N such that

| xn − l| < ε

2
if n ≥ N1

| yn − l| < ε

2
if n ≥ N2

Let N = max{N1, N2} ∈ N , then n ≥ N ⇒

| xn − yn| ≤ | xn − l|+ |l − yn|
< ε

2
+ ε

2
(∵ n ≥ N ≥ N1andn ≥ N ≥ N2)

= ε

∴ xn − yn → 0 as n →∞.
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(b). For each M ∈ R , by Archimedean Principle , there is nM ∈ N such that n0 > M .
Therefore, {n} is not bounded above. ⇒ {n} is not bounded. ⇒ {n} does not
converge by Theorem 2.8 .

(c). Let xn = n , yn = n + 1
n

, then | xn − yn| = 1
n
→ 0 as n →∞. But {xn} = {n} does

not converge by (b). ( Note that {yn} does not converge too. )

HW §2.2

5. Let rn = [10nx]
10n ∈ Q. Then {rn} → x as n →∞.

10. (a). 0 ≤ y < 1
10n ⇒ 0 ≤ 10n+1y < 10. Let A = {k ∈ N : k ≤ 10n+1y}. Then 0 ∈ A 6= φ

and ∀k ∈ A , k ≤ 10n+1y < 10 i.e. A has an upper bound 10. ⇒ A has a supremum
w. It is easy to see that w ∈ A. ∴ 0 ≤ w ≤ 10n+1y < 10. ( ⇒ 0 ≤ w ≤ 9. ) w is the
supremum of A, so w + 1 /∈ A. ∴ w + 1 > 10n+1y. Hence w ≤ 10n+1y < w + 1. This
implies that

w

10n+1
≤ y ≤ w

10n+1
+

1

10n+1

(b). 0 ≤ x < 1
100 = 1. By (a), there is 0 ≤ x1 ≤ 9 , x1 ∈ Z such that

x1

10
≤ x <

x1

10
+

1

10

⇒ 0 ≤ x− x1

10
<

1

10
If there are x1, x2, . . . , xn ∈ {0, 1, . . . , 9} such that

n∑

k=1

xk

10k
≤ x <

n∑

k=1

xk

10k
+

1

10n

⇒ 0 ≤ x−
n∑

k=1

xk

10k
<

1

10n

By (a), there is xn+1 ∈ Z , 0 ≤ xn+1 ≤ 9 such that

xn+1

10n+1
≤ x−

n∑

k=1

xk

10k
<

xn+1

10n+1
+

1

10n+1

n+1∑

k=1

xk

10k
≤ x <

n+1∑

k=1

xk

10k
+

1

10n+1

By induction on n. q.e.d.

(c). According to (b),
∑n

k=1
xk

10k is a increasing sequence on n, bounded above by x. ⇒∑n
k=1

xk

10k converges as n →∞. Let n →∞ in the inequality in (b), we get

lim
n→∞

n∑

k=1

xk

10k
≤ x ≤ lim

n→∞

n∑

k=1

xk

10k
+ lim

n→∞
1

10n
= lim

n→∞

n∑

k=1

xk

10k

i.e. lim
n→∞

n∑

k=1

xk

10k
= x
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4. Note that xn ≤ 1 for all n ∈ N. ⇒ xn = 1−√1− xn−1 ≥ 1−√1− 1 = 0 ∀n ∈ N , n ≥ 2.

∴ 0 ≤ xn ≤ 1 ∀n ∈ N
√

1− xn = 1− xn+1

⇒ 1− xn = 1− 2xn+1 + x2
n+1

⇒ xn − xn+1 = xn+1(1− xn+1) ≥ 0

∴ xn ≥ xn+1

{xn} decreases and is bounded below by 0. Hence it converges to some x ∈ R.
Let n →∞ in the equality xn+1 = 1−√1− xn, we get

x = 1−√1− x

⇒ x = 0 or 1

But xn is decreasing, therefore x ≤ x1 < 1. ∴ x = 0. i.e. xn ↓ 0 as n →∞.

xn+1

xn
= 1−√1−xn

xn

= 1−(1−xn)

xn(1+
√

1−xn)

= 1
1+
√

1−xn

→ 1
1+
√

1−0
= 1

2
as n →∞

9. (a). For n = 1 , x1 > y1 > 0. Suppose that xn > yn > 0 for some n ∈ N, then

xn+1 =
xn + yn

2
> 0

yn+1 =
√

xnyn > 0

x2
n+1 − y2

n+1 =
(xn − yn)2

4
> 0

⇒ x2
n+1 > y2

n+1

⇒ xn+1 > yn+1 > 0

By induction on n, 0 < yn < xn for all n ∈ N.

(b).

xn+1 =
xn + yn

2
<

xn + xn

2
= xn

yn+1 =
√

xnyn >
√

ynyn = yn

y1 < yn < xn < x1 by (a)

Therefore {xn} is strictly decreasing and bounded below by y1 and {yn} is strictly
increasing and bounded above by x1. By Monotone Convergence Theorem , the two
sequences converge.
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(c).

0 < x2 − y2 =
x1 + y1

2
−√x1y1 <

x1 + y1

2
−√y1y1 =

x1 − y1

2
.

Suppose that xn+1 − yn+1 < x1−y1

2n , then

xn+2 − yx+2 =
xn+1

yn+1

−√xn+1yn+1 <
xn+1

yn+1

−√yn+1yn+1 =
xn+1 − yn+1

2
<

x1 − y1

2n+1

By induction on n , xn+1 − yn+1 < x1−y1

2n for all n ∈ N.

(d). limn→∞
x1−y1

2n−1 = 0, and 0 < xn − yn < x1−y1

2n−1 for all n ∈ N, n ≥ 2.
⇒ 0 = limn→∞(xn − yn) = limn→∞ xn − limn→∞ yn = 0. ∴ limn→∞ xn = limn→∞ yn.

11. (a). Claim : xn > yn > 0 for all n ∈ N∪{0}.

x0 = 2
√

3 > 3 = y0 > 0

Suppose xn > yn > 0 for some n ∈ N

xn+1 =
2xnyn

xn + yn

>
2xnyn

xn + xn

= yn > 0

∴ yn+1 =
√

xn+1yn <
√

xn+1xn+1 = xn+1

By induction on n, the Claim holds for all n ∈ N∪{0}
According to the Claim, for each n ∈ N

xn =
2xn−1yn−1

xn−1 + yn−1

<
2xn−1yn−1

yn−1 + yn−1

= xn−1

yn =
√

xnyn−1 >
√

ynyn−1 ⇒ √
yn >

√
yn−1 ⇒ yn > yn−1

⇒ x0 > xn > yn > y0

∴ {xn} decreases and is bounded below by y0, hence has limit x ∈ R; {yn} increases
and is bounded above by x0, hence has limit y ∈ R

(b).
x0 > xn > yn > y0

2
√

3 = x0 ≥ x ≥ y ≥ y0 = 3 > 0

Let n →∞ in xn = 2xn−1yn−1

xn−1+yn−1
to get x = 2xy

x+y
.

⇒ x2 + xy = 2xy ⇒ x2 = xy ⇒ x = y ( ∵ x > 0 )
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