
HW §1.2

7. Let c = b− a > 0, then

bn = (a + c)n ≥ an + nan−1c ( by §1.2 Ex2(b). )
> an ≥ 0 ( ∵ nan−1c > 0 )

Notice that n
√

a ≥ 0 and n
√

b > 0 as the statements in page 6. Suppose that n
√

a ≥ n
√

b > 0
, then by the previous result,

a = ( n
√

a)n ≥ (
n
√

b)n = b > 0

A contradiction to the fact that a < b. Hence 0 ≤ n
√

a < n
√

b for all n ∈ N.

8. (a). √
n + 3 +

√
n = q ∈ Q ( Obviously,q > 0 )

⇒ √
n + 3 = q −√n

⇒ n + 3 = q − 2q
√

n + n
⇔ √

n = q−3
2q
∈ Q ( ∵ q 6= 0 )

⇒ n = k2 for some k ∈ N
⇒ √

n + 3 = q − n ∈ Q
⇒ n + 3 = l2 for some l ∈ N

Solve

{
n = k2

n + 3 = l2
n, k, l ∈ N

to get {
n = k = 1
l = 2

Substitute n = 1 into
√

n + 3 +
√

n to verify that it is really a rational.

(b). Similar to (a) . ( Solution: n = 9 )

10. (a). To prove that ck − bk = 1 ∀ k ∈ N by induction on k.
b1 = 2a0 + b0 + 2 = 12
c1 = 2a0 + c0 + 2 = 13

∴ c1 − b1 = 1. Suppose that ck − bk = 1 for some k ∈ N , then

ck+1 − bk+1 = (2ak + ck + 2)− (2ak + bk + 2)
= ck − bk

= 1.

Hence ck − bk = 1 ∀ k ∈ N.
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(b). To prove the equality by induction on k. For k = 1 , a1 = 5, b1 = 12, c1 = 13 ⇒
the equality c2

1 = a2
1 + b2

1 is true. Suppose that c2
k = a2

k + b2
k for some k ∈ N , then

c2
k+1 − b2

k+1 = (c2
k+1 − b2

k+1)(c
2
k+1 + b2

k+1)
= 1 · (c2

k+1 + b2
k+1)

= 2ak + ck + 2 + 2ak + bk + 2
= 4 + 4ak + ck + bk

= 4 + 4ak + (ck + bk)(ck − bk)
= 4 + 4ak + c2

k − b2
k

= 4 + 4ak + a2
k

= (2 + ak)
2

= a2
k+1

i.e. c2
k+1 = a2

k+1 + b2
k+1. Therefore, c2

k = a2
k + b2

k ∀ k ∈ N

§1.3

1. (f). E = {x ∈ R : x = 1
n
− (−1)n for n ∈ N}. Then sup E = max E = 2, inf E = −1.

Sol: For each x ∈ R , x = 1
n
− (−1)n for some n ∈ N .

−1 = 0 + (−1) ≤ x =
1

n
− (−1)n =

1

n
+ (−1)n+1 ≤ 1 + 1 = 2

∴ 2 is an upper bound of E , −1 is a lower bound of E .
Since 2 = 1

1
− (−1)1 ∈ E, 2 = sup E by §1.3 Ex7(a).

For any a > −1 ,
a− (−1) > 0 ⇒ ∃n0 ∈ N � . 1

n0
< a− (−1) = a + 1

⇒ 1

2n0

− (−1)2n0 =
1

2n0

− 1 <
1

n0

− 1 < a + 1− 1 = a

And 1
2n0

− (−1)2n0 ∈ E. ∴ a is not a lower bound of E if a > −1. ⇒ a ≤ −1
for any lower bound a of E . ∴ inf E = −1.

(g). E = {1 + (−1)n

n
: n ∈ N}. Then sup E = 3

2
, inf E = 0.

Sol: For each n ∈ N and n ≥ 2 , ( 0 < 1
n
≤ 1

2
)

0 <
1

2
= 1− 1

2
< 1− 1

n
≤ 1 +

(−1)n

n
≤ 1 +

1

n
≤ 1 +

1

2
=

3

2

For n = 1,

0 = 1 +
(−1)1

1
<

3

2

∴ 0 ≤ 1 + (−1)n

n
≤ 3

2
for all n ∈ N.

i.e. 0 is a lower bound of E , and 3
2

is an upper bound of E . Note that

0 = 1 + (−1)1

∈ E , 3
2

= 1 + (−1)2

2
∈ E. ∴ 0 = inf E, 3

2
= sup E by §1.3 Ex7.

3. a < b , a, b ∈ R ⇒ a−√2 < b−√2. By Theorem 1.24 (Density of rationals), there is a
q ∈ Q such that a − √2 < q < b − √2 ( ⇒ a < q +

√
2 < b ) . Take ξ = q +

√
2, then

a < ξ < b. Note that ξ is an irrational because it is a sum of a rational and an irrational
( See §1.1 Ex6(c) ).
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5. (a). ( Omitted )

(b). By Theorem 1.28 (ii), E has a finite infimum ⇔ −E has a finite supremum, and

sup(−E) = − inf E

∴ Given ε > 0, there is b ∈ (−E) such that

sup(−E)− ε < b ≤ sup(−E)
⇔ − inf E − ε < b ≤ − inf E
⇔ inf E + ε > −b ≥ inf E

Take a = −b ∈ E. q.e.d.

7. (a). x ∈ E, and x is an upper bound of E ⊂ R. If M is an upper bound of E, then
M ≥ x ( ∵ x ∈ E ). This implies x = sup E.

(b). If x is a lower bound of a set E ⊂ R , and x ∈ E , the x = inf E.
The proof is similar to (a).

(c). Let E = (0, 1) , then sup E = 1 , inf E = 0 , but 1 /∈ E, 0 /∈ E.

8. For each n ∈ N,
| xn| ≤ M ∀n ∈ N

∴ {xn, xn+1, . . .} is bounded above and nonempty.
⇒ sn = sup{xn, xn+1, . . .} exists.

{xn, xn+1, . . .} ⊃ {xn+1, xn+2, . . .}
⇒ sn = sup{xn, xn+1, . . .} ≥ sup{xn+1, xn+2, . . .} = sn+1

∴ {sn} is decreasing.
The result about {tn} is similar to {sn}
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