§8.3 # 4

(a) A union of open sets is open. So if \(V = \bigcup_{\alpha \in A} B_\alpha \) with \(B_\alpha \) open, then \(V \) is open. For the other direction, we assume that \(V \) is open, then for \(x \in V \), there exists \(B_{r_x}(x) \subset V \) for some \(r_x > 0 \). Since \(B_{r_x}(x) \) is a subset of \(V \) for all \(x \in V \), we have \(\bigcup_{x \in V} B_{r_x}(x) \subset V \). On the other hand, for any \(x \in V \), we must have \(x \in B_{r_x}(x) \). Thus, \(V \in \bigcup_{x \in V} B_{r_x}(x) \).

(b) Using the complement argument, we can see that if \(V \) is closed then there is a collection of \(B_\alpha^c \) for \(\alpha \in A \) such that \(V = \bigcap_{\alpha \in A} B_\alpha^c \).

§8.3 # 5

\(E \) is closed iff \(E^c \) is open. If \(a \notin E \) then \(x \in E^c \). So there exists \(\varepsilon > 0 \) such that \(B_\varepsilon(x) \subset E^c \). Therefore, \(\|x - a\| \geq \varepsilon > 0 \) for all \(x \in E \). Hence inf_{x \in E} \|x - a\| > 0.

§8.3 # 8

(a) If \(C \) is closed in \(\mathbb{R}^n \) and \(C = C \cap E \) (\(C \) is a subset of \(E \)), then \(C \) is relatively closed in \(E \). On the other hand, if \(C \) is relatively open in \(E \), then there exists a closed set \(B \) such that \(C = B \cap E \). Hence \(C^c = B^c \cup E^c \). For both \(B^c \) and \(E^c \) are open, we know that \(C^c \) is open. So \(C \) is closed.

(b) \(C \) is relatively closed iff there exists a closed set \(B \) such that \(C = B \cap E \). Thus, we have \(E \setminus C = E \cap B^c \). So \(E \setminus C \) is relatively open. The proof of the other direction is similar.

§8.3 # 9

Assume that \(E \) is not connected. That is, there exist open sets \(U \) and \(V \) such that \(U \cap E \neq \emptyset \), \(V \cap E \neq \emptyset \), \(U \cap V = \emptyset \), and \(E \subseteq U \cup V \). From \(E = \bigcup_{\alpha \in A} E_\alpha \) we have \(U \cap (\bigcup_{\alpha \in A} E_\alpha) = \bigcup_{\alpha \in A} (U \cap E_\alpha) \neq \emptyset \). Therefore \(U \cap E_{\alpha_1} \neq \emptyset \) for some \(\alpha_1 \in A \). Likewise, we can show that \(V \cap E_{\alpha_2} \neq \emptyset \) for some \(\alpha_2 \in A \). If \(\alpha_1 = \alpha_2 = \alpha \), then \(E_\alpha \) is not connected. Then we have a contradiction. The problem is that \(\alpha_1 \) is not necessarily equal to \(\alpha_2 \). However, in fact, we want to show that either \(U \cap E_\alpha \neq \emptyset \) or \(V \cap E_\alpha \neq \emptyset \) for all \(\alpha \in A \). Assume not, namely, \(U \cap E_\alpha = \emptyset \) for some \(\alpha \in A \) and \(V \cap E_{\alpha'} = \emptyset \) for some \(\alpha' \in A \). Thus, \(U \cap \bigcap_{\alpha \in A} E_\alpha = \emptyset \) and \(V \cap \bigcap_{\alpha \in A} E_\alpha = \emptyset \). This implies that \(E \subseteq U \cup V \) is not true since \(\bigcap_{\alpha \in A} E_\alpha \neq \emptyset \). So we must have \(U \cap E_\alpha \neq \emptyset \) and \(V \cap E_\alpha \neq \emptyset \) for some \(\alpha \in A \). Additionally, \(E_\alpha \subseteq E \subseteq U \cup V \). Therefore, \(E_\alpha \) is not connected. This is a contradiction.

§8.3 # 10

(i) Any connected set in \(\mathbb{R} \) is an interval (single point is included). If \(\emptyset \neq E = \bigcap_{\alpha \in A} E_\alpha \) is not connected, then there exists at least one point \(c \) in \(E \) such that \((a, c) \subset E \) and \((c, b) \subset E \). In other words, \((a, c) \subset E_\alpha \) and \((c, b) \subset E_\alpha \) for all \(\alpha \). Hence \(E_\alpha \) is not connected. This is a contradiction.
(ii) Let $E_1 = \{(x, y) : x^2 + y^2 = 1, y \geq 0\}$ and $E_2 = \{(x, y) : y = 0\}$. Then $E_1 \cap E_2 = \{(-1, 0), (1, 0)\}$. Both E_1 and E_2 are connected, but $E_1 \cap E_2$ is not connected.

§8.4 # 2

(a) $E^0 = \{(x, y) : x^2 + 4y^2 < 1\}$, $\overline{E} = E$, and $\partial E = \{(x, y) : x^2 + 4y^2 = 1\}$.

(b) $E^0 = \emptyset$, $\overline{E} = E$, and $\partial E = E$.

(c) $E^0 = \{(x, y) : y > x^2, y < 1\}$, $\overline{E} = \{(x, y) : y \geq x^2, 0 \leq y \leq 1\}$, $\partial E = \{(x, y) : y = x^2, -1 \leq x \leq 1\} \cup \{(x, y) : -1 < x < 1, y = 1\}$.

(d) $E^0 = E$, $\overline{E} = \{(x, y) : x^2 - y^2 \leq 1, -1 \leq y \leq 1\}$, and $\partial E = \{(x, y) : x^2 - y^2 = 1, -1 \leq y \leq 1\} \cup \{(x, y) : -\sqrt{2} < x < \sqrt{2}, y = 1\} \cup \{(x, y) : -\sqrt{2} < x < \sqrt{2}, y = -1\}$

§8.4 # 3

$A \subseteq B \subseteq \overline{B} \Rightarrow \overline{A} \subseteq \overline{B}$; $A^0 \subseteq A \subseteq B \Rightarrow A^0 \subseteq B^0$.

§8.4 # 7

Suppose that A is not connected. Then there exist two open sets U and V such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $U \cap V = \emptyset$, and $A \subseteq U \cup V$. It is clear that $E \subseteq U \cup V$. Since $A \subseteq \overline{E}$, we have $U \cap \overline{E} \neq \emptyset$ and $V \cap \overline{E} \neq \emptyset$. Then both $U \cap E$ and $V \cap E$ are non-empty. For if $U \cap E = \emptyset$ then $E \subseteq U^c$. Since U^c is closed, we get $\overline{E} \subseteq U^c$, i.e., $U \cap \overline{E} = \emptyset$. This is again a contradiction. Similar proof works for $V \cap E$. Now because $U \cap E \neq \emptyset$ and $V \cap E \neq \emptyset$, E is not connected. This is a contradiction. So A must be connected.

§8.4 # 8 Note that we use the canonical metric in \mathbb{R}^n here.

(a) \emptyset and \mathbb{R}^n.

(b) We assume that E is connected. We know that \emptyset and E are relatively clopen sets. Assume that E contains another relatively clopen set, say U. Then $E \setminus U$ is relatively open. So $E = U \cup U^c$ and $U \cap U^c = \emptyset$. Thus E is not connected. This is a contradiction.

On the other hand, if E has only two relatively clopen sets, i.e. \emptyset and E, and E is not connected. Hence, there exist relatively open sets U and V such that $E = U \cup V$ and $U \cap V = \emptyset$. So V and U are relatively clopen. This is a contradiction.

(c) If $\partial E = \emptyset$, then $E^0 = \overline{E}$. Hence E is clopen. Hence E and E^c are open and $\mathbb{R}^n = E \cup E^c$. Also, $E \neq \emptyset$, $E^c \neq \emptyset$, and $E \cap E^c = \emptyset$. So \mathbb{R}^n is not connected. This is a contradiction since \mathbb{R}^n is connected.

§8.4 # 10 Answers can be found in the proof of Theorem 10.40.

§8.4 # 11
(a) U is relatively open iff \exists open set Ω in \mathbb{R}^n such that $U = E \cap \Omega$. Since $U \subset E^0$, we have $U = E^0 \cap \Omega$, i.e. U is open in \mathbb{R}^n. Thus, $U \cap \partial U = \emptyset$.

(b) If $x \in U \cap \partial E$, then $x \in U$ and $B_r(x) \cap E \neq \emptyset$, $B_r(x) \cap E^c \neq \emptyset$ for all $r > 0$. From $U \subset E$, we know that $E^c \subset U^c$. So $B_r(x) \cap U^c \neq \emptyset$. That $x \in U$ implies $B_r(x) \cap U \neq \emptyset$ for all $r > 0$. Therefore, we have $U \cap \partial E = U \cap \partial U$.

3