1. Let *e* be the identity of the Lie group *G* and *V* be any neighborhood of *e*. Then there exists a neighborhood *W* of *e* such that $W^{-1}W \subset V$, and a neighborhood *U* of *e* such that $U^2 = UU = \{g_1g_2 : g_1, g_2 \in U\} \subset V$.

2. (Boothby, p.95, #3) Let G act transitively on X and let x_0 be a point of X. Define $\tilde{F}: G \to X$ by $\tilde{F}(g) = gx_0$. Prove: (i) that there is a unique one-to-one mapping $F: G/G_{x_0} \to X$ such that $\tilde{F} = F \circ \pi, \pi: G \to G/G_{x_0}$, the natural projection to cosets, (ii) that \tilde{F} and F are continuous if the action is continuous and in this case F is a homomorphism if and only if \tilde{F} is open.

3. (Boothby, p.95, #10) Let G be a Lie group and H be a closed subgroup and define a left action $\theta : G \times G/H \to G/H$ by $\theta(g, xH) = (gx)H$. Show that this action of G on the coset space G/H is continuous and that the isotropy group of [e] = H is exactly H itself.

4. Let SO(n) be the special orthogonal group, i.e., $SO(n) = O(n) \cap SL(n, \mathbb{R})$. Show that when n > 1, SO(n) acts transitively on \mathbb{S}^{n-1} .