1. Let U be an open set of \mathbb{R}^n and $p \in U$. Show that the tangent space $T_p(U)$ of U at p is a vector space of dimension n.

2. Let $p \in S^n \subset \mathbb{R}^{n+1}$ and define
 \[
 T_p(S^n) = \{ \langle s \rangle_p \in T_p(\mathbb{R}^{n+1}) | s : (-\epsilon, \epsilon) \to \mathbb{R}^{n+1} \text{ has image}(s) \subset S^n \}.
 \]
 Prove that $T_p(S^n)$ is the linear subspace of $\mathbb{R}^{n+1} = T_p(\mathbb{R}^{n+1})$ consisting of all $v \perp p$.

3. Let G_p^k be the germs of $C^k(U, p)$ functions. Denote $G_p^\infty = G_p$. Is the identification $T(G_p^k) \cong T_p(U)$ still valid when $k < \infty$?

4. Let $G_p^* \subset G_p$ be the kernel of the evaluation map e_p and let $G_p^{**} \subset G_p^*$ be the vector subspace spanned by the germs of functions gf, where $g, f \in C^\infty(U, p)$ and $f(p) = g(p) = 0$. Prove that the quotient space G_p^*/G_p^{**} is canonically isomorphic to the vector space dual of $T_p(U)$. The quotient space G_p^*/G_p^{**} is defined in the sense that for $f_1, f_2 \in G_p^*$, $f_1 \sim f_2$ whenever $f_1 - f_2 \in G_p^{**}$.