1. Let $X = [0, 1] \times [0, 1]$. Define the equivalence relation \sim on X by $(x, 0) \sim (x, 1), (0, y) \sim (1, y)$, and (x, y) = (x, y) for 0 < x < 1, 0 < y < 1. Show that X/\sim is homeomorphic to $T^2 = \mathbb{S}^1 \times \mathbb{S}^1$.

2. Define $f : \mathbb{S} \mapsto \mathbb{R}^4$ by the formula

$$f(x, y, z) = (yz, xz, xy, x^{2} + 2y^{2} + 3z^{2}).$$

Prove that f passes to a well-defined, topological imbedding

$$\bar{f}:\mathbb{R}P^2\hookrightarrow\mathbb{R}^4.$$

(Conlon, 1.5, Exercise (1))

3. Show that topologist's sine curve is an immersed, but not imbedded, manifold in \mathbb{R}^2 .

4. (1) Let X be compact and X/\sim be a quotient space obtained from X. Show that X/\sim is compact, too. (2) Let $f: X \mapsto Y$ be continuous, one-to-one, and onto, where X is compact and Y is Hausdorff. Show that f is a homeomorphism.