1. (Boothby, p.122 #11) Let $F : \tilde{M} \to M$ be a C^{∞} covering and Y any C^{∞} vector field on M. Show that there is a unique C^{∞} vector field X on \tilde{M} such that X and Y are F-related.

2. (Boothby, p.122 #12) Show that any C^{∞} vector field Y on $\mathbb{S}^{n-1} \subset \mathbb{R}^n$ is the restriction of a C^{∞} vector field X on \mathbb{R}^n .

3. We have shown that if $F : M \to N$ is a diffeomorphism then for every $X \in \mathfrak{X}(M)$ there is a unique $Y \in \mathfrak{X}(N)$ which is *F*-related to *X*. Does the same result hold if one replaces that *F* is a diffeomorphism by that *F* is smooth and bijective?

4. Let \mathfrak{g} and \mathfrak{h} be Lie algebras and $F : \mathfrak{g} \to \mathfrak{h}$ a linear map. F is called a Lie algebra homomorphism if it preserves Lie brackets, i.e., F[X, Y] = [FX, FY]. Lie algebras \mathfrak{g} and \mathfrak{h} are called isomorphic if there exists an invertible Lie algebra homomorphism from \mathfrak{g} onto \mathfrak{h} . Now let $A \subset \mathfrak{X}(\mathbb{R}^3)$ be a subspace with the base:

$$X = y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}, \ Y = z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z}, \ Z = x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}$$

Show that A is a Lie subalgebra of $\mathfrak{X}(\mathbb{R}^3)$, which is isomorphic to \mathbb{R}^3 with the cross product.

5. Use the stereographic projection to show that there exists a smooth vector field on \mathbb{S}^2 which vanishes at exactly one point.