1. Let X be the set $\mathbb{R} \times \{0\} \cup \mathbb{R} \times \{1\}$ considered as a subset of \mathbb{R}^2 . Define the equivalence relation ~ by identifying (x, 0) and (x, 1) whenever $x \neq 0$. Show that X/\sim with quotient topology is second countable and locally Euclidean, but not Hausdorff.

2. Use stereographic projection (not the method we used in class) to show that \mathbf{S}^n is a topological manifold of dimension n.

3. Let X_i , $i = 1, \dots, n$, be topological spaces. Topologize $X = X_1 \times \dots \times X_n$ by the product topology. Show that any projection map $\pi_i : X \mapsto X_i$ is a quotient map.

4. Let $\pi : X \mapsto Y$ be a quotient map and U be a saturated open set of X. Show that $\pi|_U$ is a quotient map. Also, show by an example that "saturated" is necessary in the proceeding result.

5. Consider the following subset of \mathbb{R}^2 : $X = A_+ \cup A_- \cup B$ with

$$A_{+} = \{(x, y) : x \ge 0, y = +1\},\$$
$$A_{-} = \{(x, y) : x \ge 0, y = -1\},\$$

and

$$B = \{(x, y) : x < 0, y = 0\}.$$

Define a topology as follows: We use the subspace topology (open intervals as a basis) on $A_+ \setminus \{(0,1)\}, A_- \setminus \{(0,-1)\}$, and B; then for $\varepsilon > 0$ we let $N_{\varepsilon}^{\pm} = \{(x,\pm 1) : 0 \le x < \varepsilon\} \cup \{(x,0) : -\varepsilon \le x < 0\}$ and use N_{ε}^+ and $N_{\varepsilon}^$ as a basis of neighborhoods of (0,1) and (0,-1), respectively. Show that the space X is locally Euclidean but is not a topological manifold.