A NONVANISHING THEOREM FOR Q-DIVISORS

ALFRED JUNGKAI CHEN, MENG CHEN, AND DE-QI ZHANG

Abstract. We prove a non-vanishing theorem of the cohomology H^0 of the adjoint divisor $K_X + [L]$ where $[L]$ is the round up of a nef and big \mathbb{Q}-divisor L.

1. Introduction

We work over the complex numbers field \mathbb{C}. The motivation of this note is to find an effective version of the famous non-vanishing theorem of Kawamata and Shokurov (see [KMM], [Sh]). We propose the following:

Conjecture 1.1. Let X be a nonsingular projective variety. Let L be a \mathbb{Q}-divisor on X satisfying the conditions below:

1. L is nef and big,
2. $K_X + L$ is nef, and
3. either L is a Cartier integral divisor, or L is effective.

Then $H^0(X, K_X + [L]) \neq 0$, where $[L]$ is the round up of L.

This kind of non-vanishing problem has been considered by Ambro [Am], A. Chen-Hacon [CH], Kawamata [Ka], Kollar [Ko], Takayama [Ta], and others. When L is an integral Cartier divisor, Kawamata [Ka] has proved the above Conjecture 1.1 if either $\dim X = 2$, or $\dim X = 3$ and X is minimal (i.e., the canonical divisor K_X is nef).

Conjecture 1.1 is slightly different from that of Kawamata’s in [Ka]. It is somewhat general in the sense that the divisor L in question is not assumed to have integral coefficients. It is precisely this non-Cartierness of L that causes a lot of trouble when estimating $h^0(X, K_X + [L])$. To elaborate, the Kawamata-Viehweg vanishing ([KV], [Vil]) implies that $h^0(X, K_X + [L]) = \chi(K_X + [L])$ when the fractional part of L is of normal crossings. However, the formula for χ may not be effective because $[L]$ may not be nef and hence $[L].(K_X + [L])$ may not be non-negative. The worse thing is that as remarked in a recent paper of [Xi], there are \mathbb{Q}-Fano 2-folds and 3-folds (see [Fl]) with vanishing $H^0(X, K_X + (−2K_X))$.

Despite of the observations above, in [Xi] it is proved that $H^0(X, (D − K_X) + K_X) \neq 0$ for Picard number one Gorenstein del Pezzo surface X and nef and big \mathbb{Q}-Cartier Weil divisor D. In this note we shall prove the following which is a consequence of Theorems 4.1, 5.1, 8.1 and 8.2 (for the case of integral Cartier L, see [Ka]).

2000 Mathematics Subject Classification. Primary 14F17; Secondary 14J29.

The first author was partially supported by NSC, Taiwan. The second author was supported by the National Natural Science Foundation of China (No.10131010). The third author was supported by an Academic Research Fund of NUS.
Theorem 1.2. Let X be a nonsingular projective surface. Suppose that X and L satisfy the conditions (1) - (3) in Conjecture 1.1. Suppose further that X is relatively minimal. Then either $H^0(X, K_X + [L]) \neq 0$ or $H^0(X, K_X + 4L_{red}) \neq 0$.

The second conclusion may occur when K_X is nef (and the Kodaira dimension $\kappa(X) \geq 1$). In this case, the conditions in Conjecture 1.1 are automatically satisfied whenever L is nef and big. So the coefficients of L can be as small as one likes. Thus the non-vanishing of $H^0(X, K_X + [L])$ is equivalent to that of $H^0(X, K_X + L_{red})$, which is stronger than our conclusion. Remark 8.4 shows that it is hard to replace the coefficient "4" in the theorem above by "1".

In Sections 3 and 6 (Theorems 3.1 and Theorem 6.1), we prove the following non-vanishing results without assuming the condition (3) in Conjecture 1.1, and the proof presented for the first assertion is applicable to higher dimensional varieties.

Theorem 1.3. Let X and L be as in Conjecture 1.1 satisfying the first two conditions only. Then $H^0(X, K_X + [L]) \neq 0$ if either

(i) X is a surface with irregularity $q(X) > 0$, or
(ii) X is a relatively minimal elliptic surface with $\kappa(X) = -\infty$ and $K_X + L$ nef and big.

Remark 1.4.

(1) In Example 2.6, we construct an example of pair (X, L) satisfying the conditions (1) and (2) in Conjecture 1.1 (indeed, both L and $K_X + L$ are nef and big) but with $H^0(X, K_X + [L]) = 0$. So an extra condition such as the (3) in Conjecture 1.1 is necessary.

(2) The same example shows that in Kollar’s result [Ko] on non-vanishing of $H^0(X, K_X + M)$ for big divisor M, the “bigness” assumption on the fundamental group $\pi_1(X)$ is necessary, because in (1) the $M := [L] \geq L$ is big and $\pi_1(X) = (1)$.

(3) The example also shows the necessity to assume the nefness of the Cartier integral divisor D (with (X, B) klt and $D - (K_X + B)$ nef and big) in Kawamata’s conjecture [Ka] for the non-vanishing of $H^0(X, D)$. Indeed, in the example, we have $[L] = L + B$ with B a simple normal crossing effective divisor so that $[B] = 0$, whence (X, B) is klt. To be precise, let $D := [L]$. Then $D - (K_X + B) = [L] - B = L$ is nef and big, $D = K_X + [L]$, and D is not nef for $D.D_1 = -1$ with the notation in the example.

We end the Introduction with:

Remark 1.5. Consider a fibred space $f : V \rightarrow C$ where V is a nonsingular projective variety and C a complete curve. Assume L is a nef and big normal crossing \mathbb{Q}-divisor such that $K_V + L$ is nef. The well-known positivity says that $f_* (\omega_{V/C} \otimes \mathcal{O}_V([L]))$ is positive whenever it is not equal to 0. Pick up a general fibre F of f. The induction of the non-vanishing problem on F may imply that

$$\text{rk}(f_* (\omega_{V/B} \otimes \mathcal{O}_V([L]))) = h^0(F, K_F + [L]|_F) \geq h^0(F, K_F + [L]|_F) \neq 0.$$

The positivity of $f_* (\omega_{V/B} \otimes \mathcal{O}_V([L]))$ has direct applications in studying properties of the moduli schemes for polarized manifolds. Please refer to [Vi2] for more details.

The above remark shows one aspect of the importance of the effective non-vanishing problem.
2. Some preparations and an example

We begin with:

Definition 2.1. A reduced connected divisor \(\Gamma \), with only simple normal crossings, is a rational tree if every component of \(\Gamma \) is a rational curve and the dual graph of \(\Gamma \) is a tree (i.e., it contains no loops).

Before proving Proposition 2.4 below, we need two lemmas in advance.

Lemma 2.2. Let \(D = \sum_{j=1}^{n} D_j \) be a reduced connected divisor on a nonsingular projective surface \(X \). Then \(D.(K_X + D) \geq -2 \) and the equality holds if and only if \(D \) is a rational tree.

Proof. Note that \(\sum_{k<j} D_k.D_j \geq n-1 \) and the equality holds if and only if \(D \) is a tree. We calculate: \(D.(K_X + D) = \sum D_j^2 + \sum K_X.D_j + 2\sum_{k<j} D_k.D_j \geq \sum_j (2p_a(D_j) - 2) + 2(n-1) \geq -2 \). The lemma follows. \(\square \)

Lemma 2.3. Suppose that \(X \) is a nonsingular projective surface with \(\chi(O_X) = 1 \) and \(D \not= 0 \) a connected reduced divisor such that \(H^0(X, K_X + D) = 0 \). Then the following statements are true.

1. \(D \) is a connected rational tree.
2. Suppose further that \(D \) supports a nef and big effective divisor. Then the surjective map \(\pi_1(D) \to \pi_1(X) \) in Nori [No, Cor. 2.3] infers \(\pi_1(X) = (1) \).

Proof. The Serre duality and Riemann-Roch theorem imply \(0 = h^0(X, K_X + D) = h^1(X, K_X + D) + \frac{1}{2}(K_X + D).D + \chi(O_X) \geq 0 + (-1) + 1 \) by Lemma 2.2. Thus \(D.(K_X + D) = -2 \) and hence \(D \) is a connected rational tree by the same lemma. So \(\pi_1(D) = (1) \). Suppose that \(D \) supports on a nef and big effective divisor. Then the surjective map \(\pi_1(D) \to \pi_1(X) \) is simply connected. Theorem 1.2.

The next result is a very important restriction on \(X \) and \(L \) in Theorem 1.2.

Proposition 2.4. Let \(X \) be a nonsingular projective surface with \(q(X) = 0 \) and \(L \) a nef and big effective \(\mathbb{Q} \)-divisor such that \(H^0(X, K_X + L_{\text{red}}) = 0 \). Then \(\chi(O_X) = 1 \), \(L_{\text{red}} \) is a connected rational tree and \(X \) is simply connected.

Proof. Note that \(p_g(X) \leq h^0(X, K_X + L_{\text{red}}) = 0 \). So \(\chi(O_X) = 1 \). Now the proposition follows from Lemma 2.3. \(\square \)

The result below is used in the subsequent sections.

Lemma 2.5. Suppose that \(X \) is a minimal nonsingular projective surface with Kodaira dimension \(\kappa(X) = 1 \), \(p_g(X) = 0 \), and \(\pi_1^{alg}(X) = (1) \) (this is true if \(\pi_1(X) = (1) \)). Let \(\pi : X \to \mathbb{P}^1 \) be the unique elliptic fibration with \(F \) a general fibre. The following statements are true:

1. \(\pi \) has exactly two multiple fibres \(F_1, F_2 \), and their multiplicities \(m_1, m_2 \) are coprime. In particular, if \(E \) is horizontal then \(E.F = m_1m_2m_3 \geq 6 \) for some positive integer \(m_3 \).
2. Suppose further that a reduced connected divisor \(D \) on \(X \) is a rational tree and contains strictly the support of an effective \(\Gamma \) of elliptic fibre type. Then \(\Gamma \) is a full fibre of \(\pi \) and of type II*, \((m_1, m_2) = (2, 3) \) and \(E.F = 6 \) for some \(E \) in \(D \).
We shall construct a nonsingular projective surface X. We can also calculate that from the 9 cusps on X have\[\chi = 0\]However, by the Kawamata-Viehweg vanishing, and Riemann-Roch theorem, we have\[\dim KX = 3\]\[m(F_1/m-F_2/m) \sim 0\]induces an unramified Galois $\mathbb{Z}/(m)$-cover of X, contradicting the assumption $\pi_1(X)\text{alg} = (1)$. If $t \geq 3$, then by Fox’s solution to Fenchel’s conjecture (see [Fo], [Ch]), there is a base change $B \rightarrow \mathbb{P}^1$ ramified exactly over $\pi(F_i)$ ($1 \leq i \leq t$) and with ramification index m_i. Then the normalization Y of the fibre product $X \times_B B$ is an unramified cover of X (so that the induced fibration $Y \rightarrow B$ has no multiple fibres), again contradicting the assumption that $\pi_1(X)\text{alg} = (1)$.

On the other hand, by the canonical divisor formula, we have $K_X = \pi^*(K_{\mathbb{P}^1}) + \chi(\mathcal{O}_X)F_i + \sum_{i=1}^9 (m_i-1)(F_i)\text{red} \sim \mathbb{Q} (-1 + \sum_{i=1}^9 (1 - \frac{1}{m_i}))F_i$ (so π is the only elliptic fibration on X). Since $\kappa(X) = 1$, we see that $t \geq 2$. Now the lemma follows from the results above.

(2) Since Γ is of elliptic fibre type, $0 = K_X \cdot \Gamma = \Gamma^2 = 0$. Hence Γ is a multiple of a fibre of π. Since the support of Γ is a tree, it is of type I_1^*, II^*, III^* or IV^*, whence Γ is a full fibre (and is not a multiple fibre). By the assumption, there is an E in D such that $\text{Supp}(E + \Gamma)$ is a connected rational tree. Thus $E \cdot \Gamma \leq 6$ and the equality holds if and only if Γ is of type II^* and E meets the coefficient-6 component of Γ. Now (2) follows from (1).

The example below shows that an assumption like the condition (3) in Conjecture 1.1 might be necessary.

Example 2.6. We shall construct a nonsingular projective surface X and a \mathbb{Q}-divisor L such that the conditions (1) and (2) in Conjecture 1.1 are satisfied, but that $H^0(X, KX + [L]) = 0$. Indeed, we will see that both L and $KX + L$ are nef and big \mathbb{Q}-divisors.

Let C be a sextic plane curve with 9 ordinary cusps (of type (2, 3)) and no other singularities. This C (regarded as a curve in the dual plane \mathbb{P}^2) is dual to a smooth plane cubic (always having 9 inflectins). Let $\mathcal{X} \rightarrow \mathbb{P}^2$ be the double cover branched at C. Then \mathcal{X} is a normal $K3$ surface with exactly 9 Du Val singularities (lying over the 9 cusps) of Dynkin type A_2. Let X be the minimal resolution. According to Barth [Ba], these $9A_2$ are 3-divisible. That is, for some integral divisor G, we have $3G = \sum_{i=1}^9 (C_i + 2D_i)$ where $\prod(C_i + D_i)$ is a disjoint union of the 9 intersecting \mathbb{P}^1 (i.e., the $9A_2$). Let H be the pull back of a general line away from the 9 cusps on C. Then $H^2 = 2$ and H is disjoint from the $9A_2$, so $H \cdot G = 0$. We can also calculate that $G^2 = -6$. Now let $L = H + G - \frac{1}{3} \sum_{i=1}^9 (C_i + 2D_i)$. Then $[L] = H + G$ and $[L]^2 = -4$. Clearly, $K_X + L = L \equiv H$ is nef and big. However, by the Kawamata-Viehweg vanishing, and Riemann-Roch theorem, we have $h^0(X, K_X + [L]) = \frac{1}{4} [L]^2 + 2 = 0$.

A similar example can be constructed, if one can find a quartic surface with 16 nodes (i.e., a normal Kummer quartic surface).

3. Irregular surfaces

In this section, we shall show that Conjecture 1.1 holds true (with only the first two conditions there but not the last condition) for surfaces X with positive irregularity $q(X)$.
To be precise, let X be a nonsingular projective surface with $q(X) > 0$ and let $\text{alb} : X \to \text{Alb}(X)$ be the Albanese map. Then we have:

Theorem 3.1. Let X be a nonsingular projective surface with $q(X) > 0$. Let L be a nef and big \mathbb{Q}-divisor such that $K_X + L$ is nef. Then $H^0(X, K_X + [L]) \neq 0$.

To see this, we need the following lemma:

Lemma 3.2. Let $\mathcal{F} \neq 0$ be an IT^0 sheaf on an abelian variety A, i.e. for every $i > 0$ we have $H^i(A, \mathcal{F} \otimes P) = 0$ for all $P \in \text{Pic}^0(A)$. Then $H^0(A, \mathcal{F}) \neq 0$.

The proof can be found in [CH], but we reprove it here.

Proof. Suppose on the contrary that $H^0(A, \mathcal{F}) = 0$. Since \mathcal{F} is IT^0, the Fourier-Mukai transform of \mathcal{F} is a locally free sheaf of rank $= h^0(A, \mathcal{F})$, hence the zero sheaf. The only sheaf that transforms to the zero sheaf is the zero sheaf, which is a contradiction. □

Proof of Theorem 3.1. Let $f : X' \to X$ be an embedded resolution for (X, L). It is clear that f^*L is nef and big with simple normal crossing support. Let $\Delta := [f^*L] - f^*L$, then Δ is klt. By a property of nef and big divisor (see e.g. [La], ex 2.2.17), there is an effective divisor N such that $A_k := f^*L - \frac{1}{k}N$ is ample for all $k > 0$. We fix k such that $\Delta + \frac{1}{k}N$ is klt. Now we can write $A_k = (\text{alb} \circ f)^*M + E$ for some ample \mathbb{Q}-divisor M on $A := \text{Alb}(X)$ and effective divisor E on X'. Pick irreducible divisor $B \in [(n - 1)A]$ for $n > 0$ such that $\Delta' := \Delta + \frac{1}{k}N + \frac{1}{n}E + \frac{1}{k}B$ is again klt. Then we have, where $P' = (\text{alb} \circ f)^*P$ with $P \in \text{Pic}^0(A)$:

$$K_{X'} + [f^*L] \otimes P' \equiv K_{X'} + \frac{(\text{alb} \circ f)^*M}{n} + \Delta'.$$

Let $\mathcal{F} := \text{alb}_* f_* \mathcal{O}_X(A_k + [f^*L])$. By Kollár’s relative vanishing theorem (cf. [Ko], 10.19.2), one sees that \mathcal{F} is IT^0.

We claim that $\mathcal{F} \neq 0$.

Grant this claim for the time being. By the above lemma, it follows that

$$h^0(X', K_{X'} + [f^*L]) = h^0(A, \mathcal{F}) \neq 0.$$

Since $K_{X'} + [f^*L] = f^*(K_X + [L]) + \Delta$, where Δ is an exceptional divisor (possibly non-effective). It’s easy to see that $f_* \mathcal{O}_X(\Delta) \subset \mathcal{O}_X$. By the projection formula, one has:

$$0 \neq H^0(X', K_{X'} + [f^*L]) = H^0(X, K_X + [L] \otimes f_* \mathcal{O}_X(\Delta)) \subset H^0(X, K_X + [L]).$$

This is the required non-vanishing.

To see the claim, if $\dim(\text{alb}(X)) = 2$, then $\text{alb} \circ f$ is generically finite. Hence it is clear that $\mathcal{F} \neq 0$. If $\dim(\text{alb}(X)) = 1$. Let F be a general fiber of $\text{alb} \circ f$. Then we have:

$$\text{rank}(\mathcal{F}) = h^0(F, (K_{X'} + [f^*L])|_F) = h^0(F, K_{X'} + [f^*L]|_F).$$

Since f^*L is big, $f^*L.F > 0$. It follows that $\text{deg}([f^*L]|_F) > 0$.

If $g(F) > 0$, then we have $h^0(F, K_F + [f^*L]|_F) > 0$ already. If $g(F) = 0$, note that $K_X + L$ is nef. Note also that $(K_{X'} + f^*L).F = (K_X + L).f(F)$ since F is general. This implies that

$$\text{deg}(K_F + [f^*L]_F) = (K_{X'} + f^*L).F + ([f^*L] - f^*L).F$$

$$= (K_X + L).f(F) + ([L] - L).F \geq 0.$$
Hence \(h^0(F, K_F + [L_F]) > 0 \). We conclude that \(F \neq 0 \) and hence the required non-vanishing that \(h^0(X, K_X + [L]) \neq 0 \).

Remark 3.3. In the proof of Theorem 3.1, without taking log-resolution at the beginning, one can apply Sakai’s lemma [Sa] for surfaces to get the vanishing of higher cohomology. However, our argument here works for higher dimensional situation. It shows that non-vanishing for general fiber gives the non-vanishing.

4. Surfaces of Kodaira dimension 0

In this section, we show that the Conjecture 1.1 in the Introduction is true for surfaces \(X \) (not necessarily minimal) with Kodaira dimension \(\kappa(X) = 0 \).

Theorem 4.1. Suppose that \(X \) is a nonsingular projective surface (not necessarily minimal) of Kodaira dimension \(\kappa(X) = 0 \). Then Conjecture 1.1 is true (for effective \(Q \)-divisor \(L \)).

Proof. By Theorem 3.1, we may assume that \(q(X) = 0 \). We may also assume that 0 = \(h^0(X, K_X + L) \geq 0 \). So \(X \) is the blow up of an Enriques surface by the classification theory. On the other hand, \(\pi_1(X) = (1) \) by Proposition 2.4, a contradiction. This proves the theorem.

5. Surfaces with negative \(\kappa \), Part I: ruled surfaces

In this section, we prove Conjecture 1.1 for relatively minimal surfaces \(X \) of Kodaira dimension \(\kappa(X) = -\infty \). By Theorem 3.1, we may assume that \(q(X) = 0 \), so \(X \) is a relatively minimal rational surface. If \(X = \mathbb{P}^2 \) or \(\mathbb{P}^1 \times \mathbb{P}^1 \), it is easy to verify that Conjecture 1.1 is true since effective divisor is then nef. We thus assume that \(X \) is the Hirzebruch surface \(\mathbb{F}_d \) of degree \(d \geq 1 \) (though, \(\mathbb{F}_1 \) is not relatively minimal).

We first fix some notations. Let \(\pi : \mathbb{F}_d \to \mathbb{P}^1 \) be the ruling. Let \(F \) be a general fibre and \(C \) the only negative curve (a cross-section, indeed) on \(\mathbb{F}_d \). So \(C^2 = -d \).

Theorem 5.1. Let \(X \) be a relative minimal surface of Kodaira dimension \(\kappa(X) = -\infty \). Then Conjecture 1.1 holds (for effective \(Q \)-divisor \(L \)).

Proof. As mentioned above, we assume that \(X = \mathbb{F}_d \) for some \(d \geq 1 \). Let \(L \) be a nef and big effective \(Q \)-divisor such that \(K_X + L \) is nef. If \(\text{Supp}(L) \) does not contain the negative curve \(C \), then \(E := [L] - L \) is effective and nef; so \([L] = L + E \) is nef and big and \(K_X + [L] = K_X + L + E \) is nef; then the Serre duality and Riemann-Roch theorem for Cartier divisor imply that \(h^0(X, K_X + [L]) \geq \frac{1}{2}[L](K_X + [L]) + \chi(X) \geq 0 + 1 \). Therefore, we may assume that \(\text{Supp}(L) \) contains \(C \).

Write \(L = \sum_i c_i C_i + \sum_j f_j F_j \) where \(C_1 = C \), the \(C_i \)'s are distinct horizontal components and \(F_j \)'s are distinct fibres, where \(c_i > 0, f_j > 0 \).

Suppose on the contrary that \(h^0(X, K_X + [L]) = 0 \). Then by Lemma 2.3, \(L_{\text{red}} \) is a connected rational tree. Hence one of the following cases occurs:

Case (i). \(L = c_1 C_1 + \sum_{j=1}^k f_j F_j \) (\(k \geq 0 \)),

Case (ii). \(L = \sum_{i=1}^k c_i C_i + f_1 F_1 \) (\(k \geq 2 \)), and \(L_{\text{red}} \) is comb-shaped, i.e., \(C_i \)'s are disjoint cross-sections.

Case (iii). \(L = \sum_{i=1}^k c_i C_i \) (\(k \geq 2 \)).
Recall that $K_X \sim -2C_1 - (d + 2)F$. The nefness of $K_X + L$ implies:

\[0 \leq (K_X + L) \cdot F = -2 + \sum c_i(C_i, F), \]
\[0 \leq (K_X + L) \cdot C_1 = d - 2 - dc_1 + \sum_{i \geq 2} c_i(C_i, C_1) + \sum f_j, \]
\[\sum f_j \geq 2 + (c_1 - 1)d - \sum_{i \geq 2} c_i(C_i, C_1). \]

In Case (i), the above inequalities imply $c_1 \geq 2$ and $\sum f_j \geq 2 + (c_1 - 1)d \geq d + 2$, whence $[L] = [c_1]C_1 + \sum [f_j]F_j \sim [c_1]C_1 + (\sum [f_j])F \geq 2C_1 + (\sum f_j)F \geq 2C_1 + (d + 2)F_1 \sim -K_X$. Hence $H^0(X, K_X + [L]) \neq 0$.

Consider Case (ii). Then one sees easily that $k = 2$ and $C_2 \sim C_1 + dF_1$ (see [Ha, Chapter V, §2]). By the displayed inequalities, we have $c_1 \geq 2 - c_2$ and $f_1 \geq 2 + (c_1 - 1)d$. If $c_2 > 1$ then $[L] \geq C_1 + 2C_2 + F_1 \sim -K_X$, whence $H^0(X, K_X + [L]) \neq 0$. So we may assume that $c_2 \leq 1$. Then $c_1 \geq 1$ and $f_1 \geq 2$. Thus $[L] \geq C_1 + C_2 + 2F_1 \sim -K_X$, whence $H^0(X, K_X + [L]) = 0$.

Consider Case (iii). Since L is a connected tree, we may assume that $C_1, C_2 = 1$. So $C_2 \sim n(C_1 + dF) + F$ for some integer $n \geq 1$. Since C_1 is irreducible, we have $C_1 \geq C_1 + dF$ by [Ha]. If $k \geq 3$ or $n \geq 2$, then we see that $[L] \geq \sum_{i=1}^k C_i > -K_X$. So assume that $k = 2$ and $n = 1$. By the inequalities displayed above, we have $c_1 \geq 2 - c_2$ and $c_2 \geq 2 + (c_1 - 1)d$. If $c_2 > 1$ then $[L] \geq C_1 + 2C_2 > -K_X$. So assume that $c_2 \leq 1$. Then $c_1 \geq 2 - 1$ and $c_2 \geq 2 + 0d$, a contradiction.

6. Surfaces with negative κ, Part II: relatively minimal elliptic

In this section we consider relatively minimal elliptic surface $\pi: X \to B$ with Kodaira dimension $\kappa(X) = -\infty$. As far as the Conjecture 1.1 is concerned, we may assume that the irregularity $q(X) = 0$ by virtue of Theorem 3.1. So X is a rational surface and $B = \mathbb{P}^1$. By the canonical divisor formula, we see that π has at most one fibre F_0 with multiplicity $m \geq 2$; moreover, such F_0 (if exists) is of Kodaira type I_n ($n \geq 0$), and $-K_X = (F_0)_{\text{red}}$.

We show that Conjecture 1.1 is true if $K_X + L$ is nef and big (but without the assumption of the effectiveness of L):

Theorem 6.1. Let $\pi: X \to B$ be a relatively minimal elliptic surface with $\kappa(X) = -\infty$. Suppose that L is a nef and big \mathbb{Q}-divisor such that $K_X + L$ is nef and big. Then $H^0(X, K_X + [L]) \neq 0$.

Proof. By Theorem 3.1, we may assume that $q(X) = 0$, so $B = \mathbb{P}^1$ and X is a rational surface.

Suppose that the \mathbb{Q}-divisor L is nef and big and $K_X + L$ is nef. Let $F_0 = n(F_0)_{\text{red}}$ be the multiple fiber. We set $m = 1$ and let F_0 be a general (smooth) fibre, if π is multiple fibre free. Then $K_X \sim -(F_0)_{\text{red}}$. Let $a > 0$. Consider the exact sequence:

$0 \to \mathcal{O}_X(K_X + aL - (F_0)_{\text{red}}) \to \mathcal{O}_X(K_X + [aL]) \to \mathcal{O}_X(K_X + [aL] - (F_0)_{\text{red}}) \to 0$.

Let us find the condition for $aL - (F_0)_{\text{red}}$ to be nef and big. Note that $aL - (F_0)_{\text{red}} \sim aL + K_X = (a - 1)L + (K_X + L)$. So $aL - (F_0)_{\text{red}}$ is nef and big if either

(i) $a > 1$, or
(ii) $a = 1$ and $K_X + L$ is nef and big.

Assume that either (i) or (ii) is satisfied. Then $H^1(X, K_X + [aL] - (F_0)_{\text{red}}) = 0 = H^1(X, K_X + [aL])$ by Sakai’s vanishing for surfaces. For the integral divisor $M := K_X + [aL]$ and the reduced divisor $C := (F_0)_{\text{red}}$ on X, the above exact sequence implies that $\chi(O_C(M(C))) = \chi(O_C(M)) - \chi(O_X(M - C)) = C.M - C.(K_X + C)/2$, where we applied the Riemann-Roch theorem for both $O_X(M)$ and $O_X(M - C)$. Now $C.(K_X + C) = 0$ and $C.M \geq (F_0)_{\text{red}}.K_X + aL > 0$ (for $0 \neq C$ being nef and $K_X + aL$ nef and big), so $\chi(O_C(M(C))) > 0$. By the vanishing above, $h^0(X, K_X + [aL]) = \chi(O_X(M)) = \chi(O_X(M - C)) + \chi(O_C(M(C))) = h^0(X, K_X + [aL] - (F_0)_{\text{red}}) + \chi(O_C(M[C])) > 0 + 0$. This proves the theorem. \(\square\)

Remark 6.2. The above argument actually proved the following: let $\pi : X \to B$ be a relatively minimal elliptic surface with $\kappa(X) = -\infty$. Suppose that L is a nef and big Q-divisor such that $K_X + L$ is nef. Then $H^0(X, K_X + [aL]) \neq 0$ provided that either $a > 1$, or $a = 1$ and $K_X + L$ is nef and big.

7. Preparations for surfaces with $\kappa = 1$ or 2

Throughout this section, we assume that X is a nonsingular projective surface with K_X nef and Kodaira dimension $\kappa(X) = 1$ or 2. The main result is Proposition 7.10 to be used in the next section.

Definition 7.1. (1) Let Γ be a connected rational tree on X. This Γ is of type A_n' (resp. D_n', or E_n') if its weighted dual graph is of Dynkin type A_n (resp. D_n, or E_n) but its weights may not all be (-2).

(2) Let Γ be a connected effective integral divisor on X so that $\text{Supp}(\Gamma)$ is a connected rational tree. Γ is of type I_n^* (resp. II^*, or III^*, or IV^*) if Γ is of the respective elliptic fibre type (hence $\text{Supp}(\Gamma)$ is a union of (-2)-curves). Γ is of type I_n^* (resp. II^*, or III^*, or IV^*) if Γ is equal to an elliptic fibre of type I_n^* (resp. II^*, or III^*, or IV^*), including coefficients, but the self intersections of components of Γ may not all be (-2). E.g. $\Gamma = 2\sum_{i=0}^n C_i + \sum_{j=n+1}^{n+4} C_j$ is of type I_n^*, where $C_i + C_0 + C_1 + \cdots + C_n + C_j$ is an ordered linear chain for all $i \in \{n + 1, n + 2\}$ and $j \in \{n + 3, n + 4\}$. The assertion(1) below follows from $C^2 = -2 - C.K_X \leq -2$. The others are clear.

Lemma 7.2. (1) If C is a smooth rational curve on X, then $C^2 \leq -2$.

(2) If Γ is of type A_n', D_n' or E_n' then it is negative definite, i.e., the intersection matrix of components in Γ is negative definite.

(3) If Γ is one of types I_n^*, II^*, III^* and IV^* (resp. I_n^*, II^*, III^* and IV^*), but at least one component of Γ is not a (-2)-curve), then Γ is negative semi-definite (resp. negative definite).

(4) If Γ is a connected rational tree with (the number of irreducible components) $\#\Gamma \leq 5$, then Γ is negative definite, unless Γ supports a divisor of type I_0^*.

The Picard number can be estimated in the following way:

Lemma 7.3. Let Γ be a connected rational tree whose (-2)-components do not support a divisor of type I_0^*. Let $r = \min\{9, \#\Gamma - 1\}$. Then there is a subgraph Γ' of r components with negative definite intersection matrix. In particular, $\rho(X) \geq r + 1$. Also if $\rho(X) \leq 9$ then $\#\Gamma \leq 9$.
Proof. We have only to prove the first assertion. By taking a subgraph, we may assume that \(\# \Gamma \leq 10 \).

If \(\Gamma \) is a linear chain, then it has negative definite intersection matrix, and we are done. Thus we may assume that there exists an irreducible component which meets more than two other irreducible components. Let \(C_0 \) be the irreducible component that meets \(k \) other components with the largest \(k \). Then \(\Gamma - C_0 \) has exactly \(k \) connected components \(\{ \Delta_i \} \). We may assume that \(k \geq 3 \). Let \(C_i \) be the irreducible component of \(\Delta_i \) that meets \(C_0 \).

By Lemma 7.2, if \(\# \Delta_i \leq 5 \) for all \(i \) then each \(\Delta_i \) is negative definite. By taking \(\Gamma' = \sum \Delta_i \), we are done.

The remaining cases of \((\# \Delta_1, \ldots, \# \Delta_k) \) are \(\{(1, 1, 6), (1, 1, 7), (1, 2, 6), (1, 1, 1, 6)\} \).

For the case \((1, 1, 6) \), we take \(\Gamma' = \Gamma - C_4 \), then now \(\Gamma' \) has at least two connected components: \(C_0 + C_1 + C_2 + C_3 \) and others. It is clear that each connected component has at most 5 irreducible components. Hence \(\Gamma' \) is negative definite. For the cases \((1, 1, 6) \) and \((1, 2, 6) \), similar argument works.

It remains to work with the case \((1, 1, 7) \). If \(C_3 \) meets at least 3 components, we take \(\Gamma' = \Gamma - C_3 \). Then \(\Gamma' \) has at least 3 connected components and each one has length \(\leq 5 \). If \(C_3 \) meets 2 components, say \(C_0, C_4 \), then we take \(\Gamma' = \Gamma - C_4 \).

Again, each connected component of \(\Gamma' \) has at most 5 irreducible components. This proves the lemma. \(\square \)

Lemma 7.4. Suppose that \(q(X) = p_g(X) = 0 \) and \(\pi^I_{\text{alg}}(X) = (1) \) (these are satisfied in the situation of Proposition 7.10; see its proof).

(1) We have \(\rho(X) \leq 10 - K_X^2 \leq 10 \), and \(\rho(X) = 10 \) holds only when \(\kappa(X) = 1 \).

(2) For \(L \) in Proposition 7.10, suppose that some \(-2\)-components of \(L \) support an effective divisor \(\Gamma \) of elliptic fibre type. Then \(\Gamma \) is of type II*; \(\kappa(X) = 1 \) and \(\rho(X) = 10 \leq \#L \). Moreover, \(L_{\text{red}} \) supports an effective divisor \(C \) of type \(I_0^* \) whose central and three of the tip components are all \(-2\)-curves.

Proof. (1) follows from: \(\rho(X) \leq b_2(X) = c_2(X) - 2 + 4q(X) = 12\chi(O_X) - K_X^2 - 2 = 10 - K_X^2 \leq 10 \) (Noether’s equality).

(2) Since a surface of general type does not contain such \(\Gamma \), we have \(\kappa(X) = 1 \).

By Lemma 2.5 and its notation and noting that \(L_{\text{red}} > \text{Supp}(\Gamma) \) (for \(L \) being nef and big), \(\Gamma \) is of type II* and \(\text{Supp}(E + \Gamma) \) (\(\leq L_{\text{red}} \)) supports a \(I_0^* \) as described in (2). Also \(\#L \geq \#\Gamma + 1 = 10 \) and \(\rho(X) \geq 2 + (\#\Gamma - 1) = 10 \). Thus \(\rho(X) = 10 \). This proves the lemma. \(\square \)

By the lemma above and Lemma 7.3, to prove Proposition 7.10, we may assume:

Remark 7.5. Assumption: \(\#L \leq 9 \), and the \(-2\)-components of \(L \) do not support a divisor of elliptic fibre type.

We need three more lemmas in proving Proposition 7.10.

Lemma 7.6. Let \(D = \sum_{i=0}^n D_i \) be a reduced divisor on \(X \). Suppose that \(D - D_0 \) has a negative definite \(n \times n \) intersection matrix \((D_i, D_j)_{1 \leq i, j \leq n} \) and \(D \) supports a divisor with positive self intersection.

(1) We have \(\det(D_k, D_\ell)_{0 \leq k, \ell \leq n} > 0 \) (resp. \(< 0 \)) if \(n \) is even (resp. odd).

(2) Assign formally \(G_i := D_i \) and define \(G_i, G_j := D_i, D_j \) (\(i \neq j \)) and \(G_i^2 := -x_i \). Suppose that (*) the \(n \times n \) matrix \((G_i, G_j)_{1 \leq i, j \leq n} \) is negative definite. If \(G_i^2 \geq D_i^2 \) for all \(0 \leq i \leq n \), then (**) \(\det(G_k, G_\ell)_{0 \leq k, \ell \leq n} > 0 \) (resp. \(< 0 \)) if \(n \) is even (resp. odd).
(3) Suppose that $D_i^2 \leq -2$ for all $0 \leq i \leq n$. In (2) above for $0 \leq k \leq n$, choose the largest positive integer m_k (if exists) such that (s) and (**) in (2) are satisfied for $G_i^1 = -m_k$ and $G_i^2 = -2$ ($i \neq k$). Then $D_i^2 \geq -m_k$.

Proof. For (1), suppose that the matrix in (1) is similar (over \mathbb{Q}) to a diagonal matrix J. Then the condition implies that J has one positive and n negative diagonal entries. So (1) follows.

For (2), we have only to show that a linear combination of G_i, with $\sum b_i = 0$, and $\sum b_i b_j G_i G_j \geq \sum b_i b_j D_i D_j = \Delta^2 > 0$. The (3) follows from (2).

Let D be a reduced divisor and let $D = P + N$ be the Zariski decomposition with P the nef and N the negative part so that P and N are effective \mathbb{Q}-divisor with $P.N = 0$ (see [Fu1], [Fu2], [Mi]). D supports a nef and big divisor if and only if $P^2 > 0$.

In Lemmas 7.7 and 7.8 below, we do not need the bigness of P; in Lemma 7.7, K_X is irrelevant.

Lemma 7.7. (1) Write $P = \sum_{i=0}^{n} p_i D_i$. Then $0 \leq p_i \leq 1$, and $p_i < 1$ holds if and only if $D_i \leq \text{Supp}(N)$.

(2) Write $\text{Supp}(N) = \sum_{i=0}^{s} D_i$ after relabelling. Then (p_0, \ldots, p_s) is the unique solution of the linear system $\sum_{i=0}^{s} x_i(D_i D_j) = 0$ ($j = 0, \ldots, s$), where we set $x_j = 1$ ($j > s$).

(3) Assign formally $G_i := D_i$ and $G_i G_j = D_i D_j$ ($i \neq j$). Suppose that for $\alpha \leq i \leq \beta$, we assign G_i^1 such that $-2 \geq G_i^1 \geq C_i^2$ and $(G_i G_j)_{\alpha \leq i, j \leq \beta}$ is negative definite. Let $(x_i = b_i | \alpha \leq i \leq \beta)$ be the unique solution of the linear system $\sum_{i=0}^{n} x_i G_i G_j = 0$ ($0 \leq j \leq \beta$), where we set $x_j = b_j = p_j$ if $j < \alpha$ or $j > \beta$. Then $b_i \geq p_i$ for all $\alpha \leq i \leq \beta$.

Proof. For (1), see [Fu1] or [Mi]. (2) follows from the fact that $P D_j = 0$ ($1 \leq j \leq s$) and that N has negative definite (and hence invertible) intersection matrix.

We prove (3). It suffices to show that (*) the sum $\sum_{\alpha \leq i \leq j} (b_i - p_i) G_i G_j \leq 0$ for all $\alpha \leq j \leq \beta$.

Indeed, write $\sum (b_i - p_i) G_i = A - B$ with $A, B \geq 0$ and with no common components in A and B: then the condition (**) implies that $A.B - B^2 = \sum (b_i - p_i) G_i B \leq 0$; this and $A.B \geq 0$ and $B^2 \leq 0$ imply that $B^2 = 0$ and hence $B = 0$ by the negative-definiteness of $(G_i G_j)$.

Coming to the sum in (**), it is equal to $\sum_{i=0}^{n} b_i G_i G_j - \sum_{i=0}^{n} p_i G_i G_j \leq 0 - \sum_{i=0}^{n} p_i D_i D_j = 0$. This proves the lemma.

Lemma 7.8. Suppose that $\Gamma = D_1 + \cdots + D_m$ is an ordered linear chain contained in D such that $\Gamma.(D-\Gamma) = 1$. Let $D_t \leq \Gamma$ and $D_{m+1} \leq D - \Gamma$ such that $D_t D_{m+1} = 1$. If either $t = m$ or $D_t^2 \leq -3$, then $\Gamma \leq \text{Supp}(N)$.

Proof. Write $P = \sum_j p_j D_j$. If $t = m$, we set $D_t^2 = -2$ ($1 \leq i \leq m$) in Lemma 7.7 and obtain $p_i \leq b_i = (i/(m+1)) p_{m+1} < 1$ and hence $\Gamma \leq \text{Supp}(N)$. If $D_t^2 \leq -3$, we have only to show that $p_t < 1$ because we already have $p_j < 1$ for every $1 \leq j \leq m$ with $j \neq t$, by the previous case. Now $0 \leq P D_t = p_t D_t^2 + p_{t+1} + p_{t+1} + p_{m+1} < -3p_t + 3$, whence $p_t < 1$. This proves the lemma.
For L in Proposition 7.10, let $L_{\text{red}} = P + N$ be the Zariski decomposition, so $P \geq 0$ and $N \geq 0$. By the maximality of P, we have $L_{\text{red}} \geq P \geq L$. So $P_{\text{red}} = L_{\text{red}}$. Write

$$P = \sum_{i=0}^{n} p_i C_i,$$

Then $0 < p_i \leq 1$. Note that $p_j = 1$ for some j for otherwise $\text{Supp}(L) = \text{Supp}(P) \subseteq \text{Supp}(N)$ would be negative definite. So we assume the following (after relabelling):

Remark 7.9. Additional assumption : $L = P$ and $p_0 = 1$ (and also $\# P \leq 9$).

Now we state the main result of the section.

Proposition 7.10. Let X be a minimal nonsingular projective surface (i.e., K_X is nef) with $p_0(X) = 0$. Suppose that a \mathbb{Q}-divisor L is nef and big and a rational tree. Then X is simply connected and $\text{Supp}(L)$ is connected. Moreover, either (the number of irreducible components) $\# L \geq 10 = \rho(X)$ and $\kappa(X) = 1$, or $\# L \leq 9$ and (A) or (B) below is true:

(A) There is a linear chain $C = \sum_{i=0}^{r} C_i \leq L_{\text{red}}$ with $r \geq 0$ (after relabelling) such that $L_{\text{red}} \cdot \sum_{i=0}^{r} C_i \geq 2$.

(B) $\text{Supp}(L)$ supports an effective divisor C of type in \{ I_{n}^\ast, III^\ast, IV^\ast \} but the weights of the multiplicity 2 components of C are all -2, so $C.(K_X + C) = -2$. Also the type III^\ast occurs only when L_{red} is given as follows:

Case (B1). $\kappa(X) = 1$ and $\rho(X) = 10$; $\det(\text{Pic}(X)) = -1$, and $\text{Pic}(X)$ is generated by the divisor class of K_X and those of the 9 curves in $L_{\text{red}} = \sum_{i=0}^{8} C_i$; C_0 meets exactly C_1, C_2, C_3; $C_2 + C_4 + C_6$ and $C_3 + C_5 + C_7 + C_8$ are linear chains; $C_0^2 = -3$ and $C_i^2 = -2$ ($i \neq 6$).

Proof. Since L is nef and big and a rational tree, $\kappa(X) = 1, 2$. Since L is nef and big, a positive multiple of L is Cartier and 1-connected. By [No, Cor. 2.3] or the proof of Lemma 2.3, $\pi_1(X) = (1)$. In particular, $q(X) = 0$ and $\chi(O_X) = 1$.

Since $p_0 = 1$ by the additional assumption, C_0 is not in $\text{Supp}(N)$. Since $0 \leq P.C_0 = C_0^2 + \sum p_j$ and $C_0^2 \leq -2$, where j runs in the set so that C_j meets C_0, this C_0 meets at least two components of $\text{Supp}(P) - C_0$. Now the proposition follows from the lemmas below.

Lemma 7.11. Suppose that C_0 meets exactly two components of $\text{Supp}(P) - C_0$. Then Proposition 7.10 is true.

Proof. Suppose that C_0 meets only C_1 and C_2 in $\text{Supp}(P) - C_0$. Then $0 \leq P.C_0 = C_0^2 + p_1 + p_2$ and $C_0^2 \leq -2$ imply that $p_1 = p_2 = 1$ and $C_0^2 = -2$. Inductively, we can prove that there is an ordered linear chain (after relabelling) $\sum_{i=a}^{b} C_i$ in $\text{Supp}(P)$ such that $p_i = 1$ and $C_i^2 = -2$ for all $a \leq i \leq b$ and C_a (resp. C_b) meets C_{a-1} and C_{a-2} (resp. C_{b+1} and C_{b+2}) such that $C_{a-2} + C_{a-1} + 2 \sum_{i=a}^{b} C_i$ if $b+2$ is of type I_{a-1}^\ast and Proposition 7.10 (B) is true.

Lemma 7.12. Suppose that C_0 meets at least four components of $\text{Supp}(P) - C_0$. Then Proposition 7.10 is true.

Proof. Suppose that C_0 meets C_i ($1 \leq i \leq k$) with $k \geq 4$. Let Δ_i ($1 \leq i \leq k$) be the connected component of $P_{\text{red}} - C_0$ containing C_i. Set $n_i := \# \Delta_i$. Assume that for only $1 \leq j \leq s$ the divisor $C_0 + \Delta_j$ is a linear chain. By the proof of Lemma 7.8, we have $p_j \leq n_j/(n_j + 1)$ ($j \leq s$).
If $P_{\text{red}}, C_0 = C_0^2 + k \geq 2$, then Proposition 7.10 (A) is true. So assume that $C_0^2 \leq 1 - k \leq -3$. Note that $0 \leq P.C_0 = C_0^2 + \sum_{i=1}^{s} p_i \leq C_0^2 + (k - s) + \sum_{i=1}^{s} p_i \leq 1 - s + \sum_{i=1}^{s} p_i \leq 1 - \sum_{i=1}^{s} 1/(n_i + 1)$. Suppose that $\# \Delta_i = 1$ for $1 \leq i \leq s_1$ and $\# \Delta_i \geq 2$ for $i \geq s_1 + 1$. Then

$$0 \leq \sum_{i=s_1+1}^{s} 1/(n_i + 1) \leq 1 - s_1/2.$$

Note also that $\# \Delta_j \geq 3$ for all $s + 1 \leq j \leq k$. Thus,

$$3k - s - s_1 = s_1 + 2(s - s_1) + 3(k - s) \leq \# P - 1 \leq 8.$$

These two highlighted inequalities imply that $s = 2$ and $(\# \Delta_1, \ldots, \# \Delta_k) = (1, 1, 3, 3)$.

Note that C_0 meets the mid-component C_j of Δ_j ($j = 3, 4$). By the proof of Lemma 7.8, for every j with $j \neq 0, 3, 4$, we have $p_j \leq 1/2$. Thus $0 \leq P.C_0 = C_0^2 + \sum_{i=1}^{4} p_i \leq -3 + (1/2) + (1/2) + (1/2) + (1/2) + 1 + 1 = 0$, so $C_0^2 = -3$ and $p_3 = p_4 = 1$. Now $0 \leq P.C_3 \leq C_3^2 + p_0 + (1/2) + (1/2)$ implies $C_3^2 = -2$. So $P_{\text{red}}(C_0 + C_3) = 2$ and Proposition 7.10 (A) is true. □

Now we assume that C_0 meets exactly three components C_i ($i = 1, 2, 3$) of $\text{Supp}(P) - C_0$. Let Δ_i be the connected component of $\text{Supp}(P) - C_0$ containing C_i. Set $n_i := \# \Delta_i$. Then $\sum_{i=1}^{3} n_i = \# P - 1 \leq 8$. We may assume that $n_1 \leq n_2 \leq n_3$. Then $n_3 \leq 6$ and $n_1 \leq 2$, so $C_0 + \Delta_1$ is a linear chain. By the proof of Lemma 7.8, we have $p_i \leq n_i/(n_i + 1) < 1$. This and $0 \leq P.C_0 = C_0^2 + p_1 + p_2 + p_3$, together with $C_0^2 \leq -2$, imply that $C_0^2 = -2$. We shall apply Lemma 7.6 frequently, where C_0 can be chosen as C_0 or C_3.

Lemma 7.13. Suppose that $\# \Delta_i = 1$ for $i = 1$ and 2 (this is true if $\# \Delta_1 = 6$). Then Proposition 7.10 is true.

Proof. By the proof of Lemma 7.8, we have $p_i \leq 1/2$ for $i = 1$ and 2. Now $0 \leq P.C_0 = C_0^2 + p_1 + p_2 + p_3$ (and $C_0^2 = -2$) imply $p_3 \geq 1$ and $p_i = 1/2$ ($i = 1, 2$). By Lemma 7.11 and 7.12 (applied to C_3), we may assume that C_3 meets exactly three components C_0, C_1, C_3 of $\text{Supp}(P) - C_3$. If $C_3^2 = -2$, then $P_{\text{red}}(C_0 + C_3) = 2$ and Proposition 7.10 (A) is true. Suppose that $C_3^2 \leq -3$. Then as above $C_3^2 + p_0 + p_3 + p_3 = P.C_3 \geq 0$ implies that $C_3^2 = -3$ and $p_0 = p_3 = 1$. (Of course, $p_0 = 1$ is always assumed). Again by the same Lemmas we may assume that C_i ($i = 4, 5$) meets exactly three components (one of which is C_3). Then $\# P \geq 10$, a contradiction to the additional assumption $\# P \leq 9$. □

Lemma 7.14. Suppose that $C_0 + \Delta_1$ is a linear chain for all $i = 1, 2, 3$. Then Proposition 7.10 is true.

Proof. Note that $\sum_{i=1}^{3} n_i = \# P - 1 \leq 8$. By Lemma 7.13, we may assume that $n_3 \leq 5$. Except the cases below, P is negative (semi-) definite by Lemma 7.2 (which is impossible):

$$(n_1, n_2, n_3) = (1, 3, 4), (2, 2, 4), (2, 3, 3), (2, 2, 3).$$

In the first (resp. the last three) cases, $\text{Supp}(P)$ supports a divisor D of type III^* (resp. IV^*). We need to show that the coefficient ≥ 2 components of D are (-2)-curves and that $P_{\text{red}} = L_{\text{red}}$ is given as in Proposition 7.10 (B1) in the first case. These follow from Lemma 7.6 applied to all $0 \leq k \leq 8$. For instance, in notation of Proposition 7.10 (B1), if we set $-2 \geq G_2^k = -x_k$ ($k = 6, 8$) and
Suppose that $G^j = -2$ ($j \neq 6,8$), then $\det(G_i G_j)_{0 \leq i,j \leq 8} = -4 + 3x_6 + 4x_8 - 2x_6x_8 > 0$ provided that $G^j > C^j_1$; also if $G^j = -2$ ($i \neq 8$) then (-2)-components of P would support a C of type III^*.

When P_{red} is as in Proposition 7.10 (B1), one can check that the lattice $\mathbb{Z}[K_X, C'_i | s]$ generated by the divisor class of K_X and those of the nine curves in P, has determinant $K^2_X - 1$. Note also that $\rho(X) \leq 10 - K^2_X$. So either $K^2_X = 0$ (and $\kappa(X) = 1$), $Pic(X) = \mathbb{Z}[K_X, C'_i | s]$ (noting that $Pic(X)$ is torsion free for $\pi_1(X) = (1)$), $\det(Pic(X)) = -1$ and Proposition 7.10 (B1) is true, or $K^2_X = 1$; but the latter situation implies, after a direction calculation, that K_X is numerically (and hence linearly, for $\pi_1(X) = (1)$) equivalent to an effective integral divisor $\sum k_i C_i$ with $(k_1, k_2, \ldots, k_5) = (10, 5, 7, 8, 4, 6, 1, 4, 2)$, contradicting the assumption that $p_g(X) = 0$.

\begin{lemma}
Suppose that $n_4 = \# \Delta_4 = 5$. Then Proposition 7.10 is true.
\end{lemma}

\begin{proof}
Since $n_1 + n_2 = \# P - 1 - n_3 \leq 3$, we have $(n_1, n_2) = (1,1), (1,2)$ and $C_0 + \Delta_i$ ($i = 1, 2$) is a linear chain. By Lemma 7.13, we may assume that $C_0 + \Delta_3$ is not a linear chain.

We shall apply Lemma 7.6 to deduce the result. The case $\# P \leq 8$ can be reduced to the case $\# P = 9$ because if an effective P_1 with $\# P_1 = 8$ supports a nef and big divisor then P with $P > P_1$ supports a nef and big divisor too. So $(n_1, n_2) = (1, 2)$.

Suppose that Δ_3 is a linear chain. By Lemma 7.6, we have $C^2_i = -2$, whence $P_{red}(C_0 + C_3) = 2$ and Proposition 7.10 (A) is true. Indeed, if we set $-2 \geq G^i_3 = -x_3$ and $G^j_3 = -2$ ($j \neq 3$) then $0 < \det(G_{i,j})_{0 \leq i,j \leq 8}$ equals $114 - 45x_3$ (when C_0 meets the middle component of Δ_3), or $98 - 40x_3$ (otherwise), provided that $G^j_3 \geq C^j_3$.

Suppose that Δ_3 is not a linear chain. Then it is of type I_3^* or D_5^*. We denote by C_t the central component. Consider the case where Δ_3 is of type I_3^*. If C_3 in Δ_3 (and meeting C_0) is a tip component (resp. the central component C_t) of Δ_3, then applying Lemma 7.6, we have $C^2_t = -2$ (resp. $C^2_t = -2, -3$). Thus $L C_t \geq 2$ and Proposition 7.10 (A) is true.

Consider the case where Δ_3 is of type D_t^* so that $C_0 + C_3 + C_t$ is the ordered linear chain in Δ_3. If C_3 is C_α (resp. C_{β}, or C_ℓ, or a tip component $C_\gamma \neq C_\alpha$ of Δ_3), applying Lemma 7.6, we have $C^2_t = -2$ for all C_t in C so that $P_{red}. C = 2$ and hence Proposition 7.10 (A) is true, where C equals $C_0 + C_\alpha + C_\beta + C_t$ (resp. $C_0 + C_3 + C_\ell$, or $C_0 + C_\gamma + C_t$).

\begin{lemma}
Suppose that $n_3 = \# \Delta_3 = 4$. Then Proposition 7.10 is true.
\end{lemma}

\begin{proof}
As in the previous lemma, we only need to consider the case $\# P = 9$. Then $n_1 + n_2 = \# P - 1 - n_3 = 4$ and $(n_1, n_2) = (1, 3), (2, 2)$. So $C_0 + \Delta_1$ is a linear chain.

Consider the case that $C_0 + \Delta_2$ is not a linear chain. Then $(n_1, n_2) = (1, 3)$. If $C^2_3 = -2$, then $P_{red}(C_0 + C_2) = 2$ and Proposition 7.10 (A) is true. Suppose that $C^2_3 \leq -3$. By Lemma 7.8, $\Delta_1 + \Delta_2 \leq Supp(N)$, and by Lemma 7.7 with $G^j_3 = -2$ (resp. $G^2_3 = -3$) we have $p_3 \leq 1/2$ (resp. $p_3 \leq 1/2$, and the other two components of Δ_2 have coefficients less than or equal to 1/4 in P). This and $0 \leq P.C_0 = C^2_0 + p_1 + p_2 + p_3$ imply that $p_3 = 1$. By Lemma 7.11 and 7.12 we may assume that C_0 meets exactly three components (one of which is C_0), so Δ_3 is a linear chain. If $C^2_3 = -2$, then $P_{red}(C_0 + C_3) = 2$ and Proposition 7.10
Suppose that \(C_0 + \Delta_2 \) is a linear chain but \(C_0 + \Delta_3 \) is not a linear chain (see Lemma 7.14). If \(\Delta_3 \) is a linear chain and \(C_0^2 = -2 \), then \(P_{\text{red}}(C_0 + C_3) = 2 \) and Proposition 7.10 (A) is true. If \(\Delta_3 \) is a linear chain and \(C_0^2 \leq -3 \), then as above we have \(p_3 \leq 6/11 \) and \(p_1 + p_2 \leq \sum_{i=1}^{2} \frac{n_i}{m_i+1} \leq 4/3 \). This leads to that \(0 \leq P.C_0 = C_0^2 + p_1 + p_2 + p_3 \leq -2 + (4/3) + (6/11) < 0 \), a contradiction.

Thus we may assume that \(\Delta_3 \) is not a linear chain, hence of type \(D_i \) with the central component \(C_i \). For both cases of \((n_1, n_2) = (1,3)\) and \((2,2)\), if \(C_3 \) is a tip component (resp. \(C_\ell \)) of \(\Delta_3 \), then applying Lemma 7.6 we have \(C^2_i = -2 \) for all \(C_i \) in \(C \) so that \(P_{\text{red}}.C = 2 \) and Proposition 7.10 (A) is true, where \(C \) equals \(C_0 + C_3 + C_\ell \) (resp. \(C_\ell \)). This proves the lemma. \(\square \)

Lemma 7.17. Suppose that \(n_3 = \# \Delta_3 \leq 3 \). Then Proposition 7.10 is true.

Proof. As in the previous lemmas, we may assume that \# \(P = 9 \), so \((n_1, n_2, n_3) = (2, 3, 3)\). Hence \(C_0 + \Delta_1 \) is a linear chain. By Lemma 7.14, we may assume that \(C_0 + \Delta_3 \) is not a linear chain. When \(C_0 + \Delta_i \) (\(i = 1 \) or \(2 \)) is not a linear chain and \(C^2_i = -2 \), we have \(P_{\text{red}}(C_0 + C_i) = 2 \) and Proposition 7.10 (A) is true. So assume that \(C^2_3 \leq -3 \). Then \(p_3 \leq 1/2 \) by Lemmas 7.8 and 7.7 with \(G^2_2 := -3 \). Also we may assume either \(C_0 + \Delta_2 \) is a linear chain or otherwise and \(C^2_2 \leq -3 \) (and hence \(p_2 \leq 1/2 \)). If the former case occurs, by the proof of Lemma 7.8, we have \(p_1 \leq n_i/(n_i+1) \) (\(i = 1, 2 \)) and \(0 \leq P.C_0 = C_0^2 + p_1 + p_2 + p_3 \leq -2 + (2/3) + (3/4) + (1/2) < 0 \), a contradiction. If the latter case occurs, then \(0 \leq P.C_0 \leq -2 + (2/3) + (1/2) + (1/2) < 0 \), a contradiction. This proves the lemma. The proof of Proposition 7.10 is also completed. \(\square \)

8. **Surfaces of Kodaira dimension 1 or 2**

In this section we shall prove the two theorems below:

Theorem 8.1. Let \(X \) be a minimal nonsingular projective surface of Kodaira dimension 2. Let \(L \) be a nef and big effective \(\mathbb{Q} \)-divisor. Then \(H^0(X, K_X + 3L_{\text{red}}) \neq 0 \).

Theorem 8.2. Let \(X \) be a minimal nonsingular projective surface of Kodaira dimension 1. Let \(L \) be a nef and big effective \(\mathbb{Q} \)-divisor.

1. We have \(H^0(X, K_X + 4L_{\text{red}}) \neq 0 \).
2. Suppose that \(H^0(X, K_X + 3L_{\text{red}}) = 0 \). Then \(L_{\text{red}} \) contains at least its name sake with 9 components given in Proposition 7.10 (B1). Further, \(\pi_1(X) = (1) \), \(\rho(X) = 10 \), \(\det(\text{Pic}(X)) = -1 \) and the elliptic fibration \(\pi : X \rightarrow \mathbb{P}^1 \) has exactly two multiple fibres, and their multiplicities are 2 and 3. The \(\text{Pic}(X) \) is generated by the divisor class of \(K_X \) and those of the 9 components of \(L \).

We now prove Theorems 8.1 and 8.2 simultaneously. By Theorem 3.1, we may assume that \(q(X) = 0 \). We may also assume that \(H^0(X, K_X + L_{\text{red}}) = 0 \), so \(p_g(X) = 0 \) and \(\chi(\mathcal{O}_X) = 1 \). By Proposition 2.4, the \(L_{\text{red}} \) is a connected rational tree and \(\pi_1(X) = (1) \). So we can apply Proposition 7.10.
Consider first the case \(\# L \leq 9 \) (this is true if \(\kappa(X) = 2 \) by Proposition 7.10). We apply Proposition 7.10. If Proposition 7.10 (A) occurs, applying the Serre duality and Riemann Roch theorem, we have \(h^0(X, K_X + L_{\text{red}} + C) \geq \frac{1}{2}(K_X + L_{\text{red}} + C) \cdot \text{Supp}(C) + \chi(O_X) = \frac{1}{2}((K_X + L_{\text{red}}) \cdot L_{\text{red}} + (C^2 + K_X.C) + 2C.L_{\text{red}}) + 1 \geq \frac{1}{2}((-2) + ((-2) + 2 \times 2) + 1 = 1 \), where the terms \((-2)\) are due to the fact that both \(L_{\text{red}} \) and \(C \) are connected rational trees. Since \(2L_{\text{red}} \geq L_{\text{red}} + C \), the theorems follow in this case.

Suppose Proposition 7.10 (B) occurs. As above we have \(h^0(X, K_X + C) \geq \frac{1}{2}(K_X + C) \cdot C + \chi(O_X) = 0 + 1 = 1 \). If \(C \) is of type \(III^* \), then \(L_{\text{red}} \) is given in Proposition 7.10 (B1) (so \(\kappa(X) = 1 \)) and we have \(4L_{\text{red}} \geq C \); thus both Theorems 8.2 and 8.1 are true by Lemma 8.3 below. If \(C \) is of other type, then \(3L_{\text{red}} \geq C \).

This proves the theorems.

It remains to consider the case where \(\# L \geq 10 \). So \(\kappa(X) = 1 \) and \(\rho(X) = 10 \) by Proposition 7.10. By Lemma 7.4 and the calculation above, we may proceed with the additional assumption that no divisor of elliptic fibre type is supported by some \((-2)\)-components of \(\text{Supp}(L) \). By Lemma 7.3, we have \(\rho(X) = 10 \) and we may assume that \(\text{Pic}(X) \otimes \mathbb{Q} \) is generated by \(C_i (1 \leq i \leq 10) \) in \(L_{\text{red}} \) after relabelling: first find 9 components of \(L_{\text{red}} \) having a negative definite intersection matrix, and then the 10th generator can be found from \(\text{Supp}(L) \) because \(L \) is nef and big (so not negative definite).

Therefore, \(K_X \) is numerically equivalent to a \(\mathbb{Q} \)-linear combination of \(C_i (1 \leq i \leq 10) \). Split the combination as \(L_2 - L_1 \) so that \(K_X + L_1 \sim_{\mathbb{Q}} L_2 \), where both \(L_j \) are effective, \((L_j)_{\text{red}} \sim \sum_{i=1}^{10} C_i \) and there is no common component of \(L_1 \) and \(L_2 \). Since \(\kappa(X) = 1 \), we have \(L_2 > 0 \). Also \(L_2 \) is nef, noting that \(K_X \) is nef.

Suppose that \(L_2 \) is not big. Then \(0 = L_2^2 = L_2.K_X + L_2.L_1 \geq 0 + 0 \). Thus \(K_X.L_2 = 0 \) and hence \(L_2 \) is contained in fibres of the elliptic fibration \(\pi : X \rightarrow \mathbb{P}^1 \), noting that \(q(X) = 0 \), (so that \(K_X \) is numerically equal to a positive multiple of a fibre). This and the fact that \(L_2^2 = 0 \) and fibre components are semi negative definite [Re], imply that \(L_2 = \sum b_j F_j \) where \(b_j \)'s are positive rational numbers and \(F_j \)'s are full fibres, whence \((-2)\)-components of \(L_{\text{red}} \) support an elliptic fibre, contradicting the additional assumption.

Therefore, \(L_2 \) is nef and big. Thus \(L_1 \neq 0 \) because \(K_X \sim_{\mathbb{Q}} L_2 - L_1 \) is nef but not big. This and the fact that \(\# L_1 + \# L_2 = \# (L_1 + L_2) \leq 10 \) imply that \(\# L_2 \leq 9 \).

So we are reduced to the case \(\# L \leq 9 \) after replacing \(L_{\text{red}} \) by its subdivisor \((L_2)_{\text{red}} \). This proves the theorem.

Lemma 8.3. Suppose that \(X \) is a minimal nonsingular projective surface of Kodaira dimension \(\kappa(X) = 1 \) and \(p_g(X) = 0 \). Let \(D \) be the reduced divisor given in Proposition 7.10 (B1) (denoted as \(L_{\text{red}} \) there). Then the elliptic fibration \(\pi : X \rightarrow \mathbb{P}^1 \) has exactly two multiple fibres, and their multiplicities are 2 and 3.

Proof. We change the labelling and write \(D = \sum_{i=0}^{8} D_i \), where \(D_0 \) meets \(D_1, D_5 \) and \(D_4; D_1 + \cdots + D_4 \) and \(D_5 + D_6 + T_7 \) are linear chains; \(D_7^2 = -3 \) and \(D_8^2 = -2 \) \((i \neq 7)\). We can check that \(D \) supports a nef and big divisor (the Zariski positive part of \(D) \): \(P = D_0 + \frac{1}{5}(D_4 + 2D_3 + 3D_2 + 4D_1) + \frac{1}{2}(D_7 + 3D_6 + 5D_5) + \frac{1}{3}D_8 \). Indeed, \(P^2 = P.D_0 = 1/70 \). By [No, Cor. 2.3] or the proof of Lemma 2.3, we have \(\pi_1(X) = (1) \), whence \(q(X) = 0 \) and \(\chi(O_X) = 1 \). As in the proof of Lemma 7.4, we have \(\rho(X) \leq 10 \). We can check that the lattice \(\mathbb{Z}[K_X, D_i] \) generated by the divisor...
classes of \(K_X\) and those of the 9 curves of \(D\) has determinant \(-1\). So this lattice equals \(\text{Pic}(X)\) and \(\rho(X) = 10\), noting that \(\text{Pic}(X)\) is torsion free for \(\pi_1(X) = (1)\).

By Lemma 2.5 (and the notation there) and by the canonical divisor formula we have \(K_X \sim q(1 - \frac{1}{m_1} - \frac{1}{m_2})F_1\). We still have to show that \((m_1, m_2) = (2, 3)\). Let \(F_3\) be the fibre of \(\pi\) containing the eight \((-2)\)-components of \(D\). Then \(F_3\) must be of type \(I^r\), so there is a \((-2)\)-curve \(G\) such that \(G\) and the eight \((-2)\)-components of \(D\) support the fibre \(F_3\) (whence \(G.D_4 = 1\) and \(G.D_i = 0\) \((i \neq 4, 7)\)).

On the other hand, express \(G \sim kK_X + \sum_{i=0}^8 d_iD_i\) for some integers \(k, d_i\). Intersecting the equality by \(K_X\), we obtain \(0 = d_2D_2, K_X = d_7\). So \(kK_X \sim G - \sum_{i\neq 7} d_iD_i\) and the RHS is supported on the fibre \(F_3\) and has self intersection \(0\) (because \(K_X^2 = 0\)). Since the fibre components are negative semi-definite, this implies that the RHS is a multiple of \(F_3\). Now \(G\) has coefficient \(1\) in \(F_3\), so the RHS = \(F_3\). Namely, \(kK_X \sim F_3\), or \(K_X \sim q F_3/k\). Comparing with the expression of \(K_X\) in the previous paragraph, we obtain: \(\frac{1}{k} = (1 - \frac{1}{m_1} - \frac{1}{m_2})\). Simplifying, we obtain: \(m_1m_2 = k(m_1m_2 - m_1 - m_2)\). Since \(m_1\) and \(m_2\) are coprime, we have \(m_1m_2|k\). So \(k = m_1m_2\) and \(m_1m_2 - m_1 - m_2 = 1\), or \(1 = \frac{1}{m_1} + \frac{1}{m_2} + \frac{1}{m_1m_2}\). One sees then \((m_1, m_2) = (2, 3)\). By the way, then \(F_3 \sim F_1 \sim 6K_X\). Intersecting this relation with \(D_7\), we see that \(D_7\) is a 6-section and \(D_7G = 4\). This proves the lemma. \(\square\)

Remark 8.4. The non-vanishing of \(H^0(X, K_X + L_{\text{red}})\) or \(H^0(X, K_X + [L])\), when \(\kappa(X) = 1\), is subtle and is not easy to be proven at all. Indeed, suppose that \(X\) is a minimal nonsingular projective surface with Kodaira dimension \(1\), \(q(X) = 0\) and \(p_g(X) = 0\). Let \(\pi : X \to \mathbb{P}^1\) be the elliptic fibration. Suppose that there is a type \(I^r\) elliptic fibre \(F_0\) and also there is a 6-section \(E (\cong \mathbb{P}^1)\) such that \(E\) meets the multiplicity-6 component of \(F_0\). (We have this possible situation in mind: \(\pi\) has exactly two multiple fibres. Their multiplicities are \(2, 3\); see Lemma 2.5). Then \(L = \frac{1}{6n}(E + nF_0)\) is nef and big for \(n \gg 0\). Clearly, \(L_{\text{red}}\) is a connected rational tree (hence also of simple normal crossing) and the round up \([L] = L_{\text{red}}\). By the Kawamata-Viehweg vanishing and Riemann-Roch theorem, we have \(h^0(X, K_X + L_{\text{red}}) = \frac{1}{6}(K_X + L_{\text{red}}).L_{\text{red}} + \chi(\mathcal{O}_X) = (-1) + 1 = 0\). (However, as in the proof of Theorem 8.2 or Lemma 7.4, we have \(H^0(X, K_X + 2L_{\text{red}}) \neq 0\)). Therefore, to prove the desired non-vanishing, one has to show that the above geometric situation will never occur.

9. ON NON-MINIMAL SURFACES

Let’s fix some notation first. Let \(X\) be a surface and \(L\) is nef and big effective \(\mathbb{Q}\)-divisor such that \(K_X + L\) is nef. Let \(M := [L]\). It’s clear that \(H^i(X, K_X + M) = 0\) for \(i = 1, 2\). Let \(C\) be an irreducible component of \(L\), then we denote by \(\nu_C(L)\) the coefficient of \(L\) along \(C\).

We assume that \(X\) is non-minimal with \(p_g = q = 0\) and \(\kappa = -\infty\). There exists at least a \((-1)\) curve.

Lemma 9.1. Let \(X\) be a non-singular surface with \(p_g = q = 0\). Let \(M\) be an effective divisor on \(X\). The following are equivalent.

1. \(H^i(X, K_X + M) = 0\) for \(i = 0, 1\).
2. there is a sequence of divisors \(0 = M_0 < \ldots < M_n = M\) such that \(M_i = M_{i-1} + C_i\) for \(i = 1, \ldots, n\) and \(H^j(K_X + M_j) = 0\) for \(j = 0, 1, 2\). Each \(C_i\) is a rational curve.
(3) there is a sequence of divisors $0 = M_0 < \ldots < M_n = M$ as above such that $M_{i_0} = M_{\text{red}}$ for some i_0.

A sequence in (3) is called a NN (non-nef) sequence of M.

Proof. It’s clear that (2) implies (1) by direct computation on cohomology. To see that (1) implies (2), we recall Riemann-Roch theorem,

$$0 = h^0(X, M) = \chi(X, M) = 1 + \frac{1}{2}(K_X + M).M.$$

Hence we may assume that $K_X + M$ is non-nef. Pick an irreducible component C of M such that $(K_X + M).C < 0$. Let $M_n := M, M_{n-1} = M - C$. We consider now the exact sequence:

$$0 \to \mathcal{O}(K_X + M_{n-1}) \to \mathcal{O}(K_X + M_n) \to \mathcal{O}_C(d) \to 0,$$

where $d = (K_X + M).C < 0$. We have $H^i(X, K_X + M_{n-1}) = 0$ for $i = 0, 1, 2$. Moreover, $d = -1$. Proceed this process inductively, we are done.

Suppose now that we have a sequence as in (2). Let j_0 be the smallest number such that $M_{j_0} > M_{\text{red}}$. Then clearly, there is a curve C such that $v_C(L_{j_0}) = 1, v_C(L_{j_0-1}) = 0$. That is, M_{j_0} is obtained from M_{j_0-1} by joining a curve C which is not in its support.

If M_{j_0} is reduced, then we are done. Suppose now that M_{j_0} is not reduced. Let k be the largest number such that M_k is obtained by joining a curve Γ which is in the support of M_{k-1}. We now have a sequence

$$M_{k-1} \xrightarrow{+\Gamma} M_k \xrightarrow{+C_{k+1}} M_{k+1} \xrightarrow{+C_{k+2}} \ldots \to M_{j_0-1} \xrightarrow{+\Gamma} M_{j_0}.$$

Note that C_{k+1} is not in the support of M_k and $M_k, C_{k+1} = 1$, thus $\Gamma.C_{k+1} = 0$. Hence joining Γ commutes with joining C_{k+1}. Therefore, let $M'_k := M_{k-1} + C_{k+1}$, we have

$$M_{k-1} \xrightarrow{+C_{k+1}} M'_k \xrightarrow{+\Gamma} M_{k+1} \xrightarrow{+C_{k+2}} \ldots \to M_{j_0-1} \xrightarrow{+\Gamma} M_{j_0}.$$

Similarly, one can obtained a sequence

$$M_{k-1} \xrightarrow{+C_{k+1}} M'_k \xrightarrow{+C_{k+2}} M'_{k+1} \xrightarrow{+C_{k+3}} \ldots \to M'_{j_0-1} \xrightarrow{+\Gamma} M'_{j_0}.$$

Now $M'_{j_0-1} > M_{\text{red}}$ with smaller non-reduced part. Inductively, we are done. \qed

We assume now that $\kappa = -\infty$. We are now going to verify the conjecture. Let $f : X \to X$ be a contraction map with exceptional divisor E. And let mX be a minimal model of X. We write $L := f_*(L)$. Then $L = f^*L - aE$ for some $a \geq 0$ if L is nef and so is $K_X + L$. By direct computation, one sees that if L is nef and big with $K_X + L$ nef on X, then L is nef and big and $K_{X, i} + L$ is nef on iX for $0 \leq i \leq m$. We assume that $mX = \mathbb{F}_d$ for some $d \geq 0$.

In order to handle non-minimal surface, we need the following filling-up lemma:

Lemma 9.2. Let C be a reduced irreducible curve on X, with image mC under a birational map $f : X \to X$. Given an effective divisor M of the form $C + \sum c_iE_i$ which possesses a NN-sequence, where E_i are exceptional divisors, then $f^*(mC)$ has a NN-sequence.

Proof. We prove by induction on number of exceptional divisors. Let

$$f : X \xrightarrow{g} X \xrightarrow{h} mX,$$

where g contracting one (-1) curve E.

By induction hypothesis, we may assume that there is a NN-sequence on 1_X

$$1 M_0 := g(M_{\text{red}}) \rightarrow 1 M_1 \rightarrow ... \rightarrow 1 M_k := h^*(m C).$$

We claim that one can produce a NN-sequence on X out of this.

First of all, we may assume that there is $1 M_{j_0} = (h^*(m C))_{\text{red}}$.

We next distinguish the following two cases

Case 1. E meets only one other component, say P. Let $j_0 \leq j_1 \leq j_2 \leq ... \leq j_r \leq k$ be those indexes such that $1 M_{j_i}$ is obtained by joining P for $i = 1, ..., r$.

Let $M_{j_0} := (f^*(m C))_{\text{red}}$ which clearly possesses a NN-sequence. For $j_0 < i < j_1$, we let $M_i := g^*(1 M_i)$ which clearly satisfies the requirement because we are joining curves which are unchanged under g. Let $M_{j_1} := M_{j_1-1} + P$, $N_{j_1} := M_{j_1} + E$. Then $N_{j_1} = g^* M_{j_1}$. Then for $j_1 < i < j_2$, we let $M_i := g^*(1 M_i)$. Inductively, we have a sequence

$$M_0 = M_{\text{red}} \rightarrow ... \rightarrow M_{j_0} \rightarrow ... \rightarrow M_{j_1} \xrightarrow{+E} N_{j_1} \rightarrow M_{j_1+1} \rightarrow ...$$

$$\rightarrow M_{j_2} \rightarrow N_{j_2} \rightarrow ... \rightarrow N_{j_r} \rightarrow ... \rightarrow M_k.$$

It’s easy to verify that this is a NN-sequence for $M_k = f^*(m C)$.

Case 2. E meets two other components, say P_1, P_2. Let $j_0 \leq j_1 \leq j_2 \leq ... \leq j_r \leq k$ be those indexes such that $1 M_{j_i}$ is obtained by joining P_1 or P_2 for $i = 1, ..., r$. It’s easy to see that similar construction holds. □

We are now ready to prove the main theorem.

Proof. Step 1. Suppose that the support of $m L$ has only one horizontal curve, say C. We may write $L = a C + \sum_p b_p B_p + \Delta_p$, where B_p are the curves that meets C, Δ_p are the remaining part that supports on the fiber F_p over p.

Along each reducible fibers F_p, after contractions, it turns out to be of the type $E_1 + E_2$ with E_1 being (1)-curves. In fact, by changing minimal models, we may assume that $i+1 F_p$ is obtained by blowing-up along a point not at $C \cap (F_p)$, and $C^2 = -d$.

Since $(K_X + L).F = a - 2 \geq 0$, we have $a \geq 2$. Moreover, if $d \geq 2$, then we have $\sum b_p \geq ad \geq 2d \geq d + 2$ for $L.C \geq 0$. If $d = 1$, then $(K_X + L).C \geq 0$ implies that $\sum b_p \geq a + 1 \geq 3 = d + 2$. It follows that $\sum [b_p] \geq d + 2$.

Suppose on the contrary that $H^0(X, K_X + M) = 0$, then M has a NN-sequence. Where

$$M = [a] C + \sum_p [b_p] B_p + [\Delta_p].$$

We claim that there exist a NN-sequence for $M' := [a] C + \sum_p [b_p] F_p$ by filling-up fibers. Grant this claim, then $H^0(X, K_X + M') = 0$. However,

$$K_X + M' = K_{X/\text{red}} + M' - 2 C - (d + 2) F \geq 0$$

is effective. This leads to a contradiction. □

Lemma 9.3. Let E be an irreducible component of M which is a (1) curve that meet more than three other components. Then $v_{E}(M) = 1$.

Proof. Suppose on the contrary that $v_{E}(M) \geq 2$. Then there is L_k in the NN sequence such that $v_{E}(L_j) = 1$ for $j_0 \leq j \leq k - 1$ and $v_{E}(L_k) = 2$. However, $1 = L_{k-1}.C_k \geq 3 - 1$ which is absurd. □
References

[Xi] Q. Xie, On Effective Non-vanishing of Weil Divisors on Algebraic Surfaces, math.AG/0404276.

Department of Mathematics, National Taiwan University, Taipei, 106, Taiwan

Mathematics Division, National Center for Theoretical Science at Taipei
E-mail address: jkchen@math.ntu.edu.tw

Institute of Mathematics, Fudan University, Shanghai, 200433, P. R. China
E-mail address: mchen@fudan.edu.cn

Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore
E-mail address: matzdq@math.nus.edu.sg