assume to be commutative with identity.

We recall some basic definitions in the section.

Definition 1 An element $a \neq 0 \in R$ is said to be a zero divisor if there is an element $b \neq 0 \in R$ such that $ab = 0$.

A ring $R \neq 0$ and has no zero divisor is called an integral domain.

Proposition 2 A finite integral domain is a field.

Definition 3 A subring $I \subset R$ is an ideal if $rx \in R$ for all $r \in R, x \in I$. It will be denoted $I \triangleleft R$.
Proposition 4 A subset I is an ideal if and only if for all $a, b \in I, r \in R$, $a + b \in I$ and $ra \in I$.

Example 5

For $a \in R$, we have $(a) := aR$, the principal ideal generated by a.

Let $\mathfrak{N} \subset R$ be the subset of all nilpotent elements, i.e. $\mathfrak{N} := \{a \in R | a^n = 0, \text{ for some } n > 0\}$. Then \mathfrak{N} is an ideal, called the nilradical.

Definition 6 An element $a \in R$ is said to be a unit if $ab = 1$ for some $b \in R$.

Note that a is a unit if and only if $(a) = R$.

Definition 7 An ideal \mathfrak{p} in R is prime if $\mathfrak{p} \neq R$ and if $ab \in R$ then either $a \in R$ or $b \in R$.

An ideal \(m \) in \(R \) is maximal if \(m \nsubseteq R \) and if there is no ideal \(I \subsetneq R \) such that \(m \subsetneq I \).

It’s easy to check that

Proposition 8 \(p \triangleleft R \) is prime if and only if \(R/p \) is an integral domain.
\(m \triangleleft R \) is maximal if and only if \(R/m \) is a field.

Also

Proposition 9 \(\mathfrak{p} \triangleleft R \) if and only if for any ideal \(I, J \triangleleft R \), \(IJ \subset \mathfrak{p} \) implies that either \(I \subset \mathfrak{p} \) or \(J \subset \mathfrak{p} \).

By direct application of Zorn’s Lemma, it’s easy to that in a nonzero ring, there exists a maximal ideal. We leave the detail to the readers.

A ring with exactly one maximal ideal is called a *local ring*. We have the following equivalent
conditions:
1. \((R, \mathfrak{m})\) is local.
2. The subset of non-units is an ideal.
3. If \(\mathfrak{m} \triangleleft R\) is a maximal ideal and every element of \(1 + \mathfrak{m}\) is a unit.

Proposition 10 The nilradical is the intersection of all prime ideals.

Exercise 11 Let \(I \triangleleft R\) be an ideal. Let \(\sqrt{I} := \{x \in R | x^n \in I\}\). Then \(\sqrt{I} = \bigcap_{p: \text{prime}, I \subset p} p\).

Definition 12 we define the Jacobson radical of \(R\), denoted \(\mathfrak{J}(R)\), to be the intersection of all maximal ideals.

The Jacobson radical is clearly an ideal. It has the property that:

Proposition 13 \(x \in \mathfrak{J}\) if and only if \(1 - xy\) is a unit for all \(y \in R\).
To see this, suppose that $x \in \mathfrak{J}$ and $1 - xy$ is not a unit. Then $1 - xy \in \mathfrak{m}$ for some maximal ideal \mathfrak{m}. Since $x \in \mathfrak{J} \subseteq \mathfrak{m}$, we have $1 \in \mathfrak{m}$, a contradiction.

Conversely, if $x \notin \mathfrak{J}$, then $x \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m}. Then $\mathfrak{m} + (x) = R$. So we have $1 = xy + u$ for some $u \in \mathfrak{m}$, and hence $1 - xy = u$ is not a unit.

Theorem 14 (Chinese remainder theorem)
Let I_1, \ldots, I_n be ideals of R such that $I_i + I_j = R$ for all $i \neq j$. Given elements $x_1, \ldots, x_n \in R$, there exists $x \in R$ such that $x \equiv x_i \pmod{I_i}$ for all i.

The proof is left to the readers as an exercise.

Corollary 15 Let I_1, \ldots, I_n be ideals of R such that $I_i + I_j = R$ for all $i \neq j$. Let $f : R \to \prod_{i=1}^{n} R/I_i$. Then f is surjective with kernel $\cap I_i$.
Factorization

Definition 16 A non-zero element \(a \in R \) is said to be divide \(b \in R \), denoted \(a \mid b \) if there is \(c \in R \) such that \(ac = b \).

Elements \(a, b \in R \) are said to be associate, denoted \(a \sim b \), if \(a \mid b \) and \(b \mid a \).

The following properties are immediate.
1. \(a \mid b \) if and only if \((a) \supset (b)\).
2. \(a \sim b \) if and only if \((a) = (b)\).
3. \(a \) is a unit if and only if \((a) = R\).

Definition 17 A non-zero non-unit \(c \in R \) is said to be irreducible if \(c = ab \) then either \(a \) or \(b \) is unit.

A non-zero non-unit \(p \in R \) is said to be prime if \(p \mid ab \) then \(p \mid a \) or \(p \mid b \).
Then we have the following:

Proposition 18 Let p, c are non-zero non-unit elements in R.
1. p is primes if and only if (p) is prime.
2. c is irreducible if and only if (c) is maximal among all proper principal ideals.
3. Prime element is irreducible.
4. If R is a PID, then p is prime if and only if p is irreducible.
5. If $a = bu$ with u a unit, then $a \sim b$.
6. If R an integral domain, then $a \sim b$ implies $a = bu$ for some unit u.

Definition 19 An integral domain is called a unique factorization domain, UFD for short, if every non-zero non-unit element can be factored into products of irreducible elements. And the factorization is unique up to units.

Definition 20 A ring R is said to be an Euclidean ring if there is a function $\varphi : R - \{0\} \to \mathbb{N}$
such that:
1. if $a, b \neq 0 \in R$ and $ab \neq 0$, then $\varphi(a) \leq \varphi(ab)$.
2. if $a, b \neq 0 \in R$, then there exist $q, r \in R$ such that $a = qb + r$ with either $r = 0$ or $r \neq 0$ and $\varphi(r) < \varphi(b)$.

Lemma 21 Let R be a PID, then its ideals satisfies Ascending chain condition, i.e. for an ascending chain of ideals

$$I_1 \subset I_2 \ldots$$

there is n such that $I_n = I_{n+1} = \ldots$.
Theorem 22 Every Euclidean domain, ED for short, is a PID. Every PID is a UFD.
Localization

We need to recall some basic notion of localization.

Definition 23 A subset $S \subset R$ is said to be a multiplicative set if
1. $1 \in S$,
2. if $a, b \in S$, then $ab \in S$.

Given a multiplicative set, then one can construct a localized ring $S^{-1}R$ which I suppose the readers have known this. In order to be self-contained, I recall the construction:

In $R \times S$, we define an equivalent relation that $(r, s) \sim (r', s')$ if $(rs' - r's)t = 0$ for some $t \in S$. Let $\frac{r}{s}$ denote the equivalent class of (r, s). One can define addition and multiplication naturally. The set of all equivalent classes, denoted
\(S^{-1}R\), is thus a ring. There is a natural ring homomorphism \(\iota : R \to S^{-1}R\) by \(\iota(r) = \frac{r}{1}\).

Remark 24
1. If \(0 \in S\), then \(S^{-1}R = 0\). We thus assume that \(0 \notin S\).
2. If \(R\) is a domain, then \(\iota\) is injective. And in fact, \(S^{-1}R \hookrightarrow F\) naturally, where \(F\) is the quotient field of \(R\).
3. Let \(J \triangleleft S^{-1}R\). We will use \(J \cap R\) to denote the ideal \(\iota^{-1}(J)\). (If \(R\) is a domain, then \(J \cap R = \iota^{-1}(J)\) by identifying \(R\) as a subring of \(S^{-1}R\)).

I would like to recall the most important example and explain their geometrical meaning, which, I think, justify the notion of localization.

Example 25 Let \(f \neq 0 \in k[x_1, \ldots, x_n]\) and let \(S = \{1, f, f^2\ldots\}\). The localization \(S^{-1}k[x_1, \ldots, x_n]\) is usually denoted \(k[x_1, \ldots, x_n]_f\). This ring can
be regarded as "regular functions" on the open set $U_f := \mathbb{A}_k^n - \mathcal{V}(f)$. One notices that U_f is of course the maximal open subset that the ring $k[x_1, \ldots, x_n]_f$ gives well-defined functions.

Example 26 Let $x = (a_1, \ldots, a_n) \in \mathbb{A}_k^n$ and $m_x = (x_1 - a_1, \ldots, x_n - a_n)$ be its maximal ideal. Take $S = k[x_1, \ldots, x_n] - m_x$, then the localization is denoted $k[x_1, \ldots, x_n]_{m_x}$. It is the ring of regular functions "near x".

Recall that for a R-module M, one can also define $S^{-1}M$ which is naturally an $S^{-1}R$-module. And we have:

Proposition 27

1. If $I \triangleleft R$, then $S^{-1}I \triangleleft S^{-1}R$. Moreover, every ideal $J \triangleleft S^{-1}R$ is of the form $S^{-1}I$ for some $I \triangleleft R$.

2. For $J \triangleleft S^{-1}R$, then $S^{-1}(J \cap R) = J$.

3. $S^{-1}I = S^{-1}R$ if and only if $I \cap S \neq \emptyset$.

4. There is a one-to-one correspondence between \{p ∈ \text{Spec}(R)|p \cap S = \emptyset\} and \{q ∈ \text{Spec}(S^{-1}R)\}.

5. In particular, the prime ideals of the local ring R_p are in one-to-one correspondence with the prime ideals of R contained in p.

But for $I \triangleleft R$, then $S^{-1}I \cap R \supset I$ only. Indeed, if $x \in I \triangleleft R$. Then $x = \frac{x s}{s} \in S^{-1}I \cap R$. Conversely, for $x \in S^{-1}I \cap R$, then $\frac{x}{1} = \frac{y}{t}$ for some $y \in I$. Thus $(y - xt)s = 0$ for some $s, t \in S$. We can not get $y \in I$ in general. However, this is the case if I is prime and $S \cap I = \emptyset$. Thus we have
Proposition 28 If \(p \triangleleft R \) is a prime ideal and \(S \cap p = \emptyset \). Then \(S^{-1}p \cap R = p \).

Example 29 Let \(p \in \text{Spec}(R) \), then \(R_p \) is a local ring with the unique maximal ideal \(pR_p \). To see that, if there is a maximal ideal \(m \). By the correspondence, \(m = qR_p \) for some \(q \subset p \). Thus \(m \subset pR_p \) and thus must be equal.

A ring with a unique maximal ideal is called a local ring. Thus \(R_p \) is a local ring.

Proposition 30 The operation \(S^{-1} \) on ideals commutes with formation of finite sums, product, intersection and radicals.

Another important feature is that

Proposition 31 The operation \(S^{-1} \) is exact. That is, if

\[
M' \xrightarrow{f} M \xrightarrow{g} M''
\]
is an exact sequence of R-module, then

$$S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''$$

is exact as $S^{-1}R$-module.

Corollary 32 The operation S^{-1} commutes with passing to quotients by ideals. That is, let $I \triangleleft R$ be an ideal and \bar{S} the image of S in $\bar{R} := R/I$. Then $S^{-1}R/S^{-1}I \cong \bar{S}^{-1}\bar{R}$.