(1) * Complete the exercises and incomplete proofs in the note.
(2) Let M be a Noetherian R-module, and let $\mathfrak{a} \triangleleft M$ be the annihilator of M. Prove that M is a Noetherian R/\mathfrak{a}-module. How about if we replace Noetherian by Artinian?
(3) * Let R be a Noetherian local ring and M be a finitely generated R-module. Show that M is a Noetherian R/\mathfrak{a}-module. How about if we replace Noetherian by Artinian?
(4) Let R be a Noetherian local ring and M be a finitely generated R-module. Show that M is free if and only if M is flat.
(5) Let R be an Noetherian ring, and q be a p-primary ideal. Show that there exists $n \geq 1$ such that $p^n \subset q$.
Is it still true if R is not necessarily Noetherian?
(6) Let k be an algebraically closed field. Consider the ring homomorphism $f: A := k[x] \rightarrow B := k[x, y]/(y^2 - x)$ which sends $f(x) = x$.
 (a) Show that B is integral over A.
 (b) For each prime ideal $\mathfrak{p} \in \text{Spec}(A)$, determine the prime ideals of B lying over \mathfrak{p}.
 (c) Show that for each prime ideal $\mathfrak{q} \in \text{Spec}(B)$, lying over \mathfrak{p}, we have a local homomorphism $(A_\mathfrak{p}, \mathfrak{m}_\mathfrak{p}) \rightarrow (B_\mathfrak{q}, \mathfrak{m}_\mathfrak{q})$. Moreover, a k-vector space homomorphism $f_\mathfrak{q}: \mathfrak{m}_\mathfrak{p}/(\mathfrak{m}_\mathfrak{p})^2 \rightarrow \mathfrak{m}_\mathfrak{q}/(\mathfrak{m}_\mathfrak{q})^2$.
 (d) Show that for $\mathfrak{q} \neq 0$, all the above vector space $\mathfrak{m}_\mathfrak{p}/(\mathfrak{m}_\mathfrak{p})^2, \mathfrak{m}_\mathfrak{q}/(\mathfrak{m}_\mathfrak{q})^2$ has dimension 1. And also determine when $f_\mathfrak{q}$ is not isomorphism.
(7) Consider $B = k[x, y]/(xy - 1)$.
 (a) Let A_1 be the subring generated by x, show that B is not integral over A_1.
 (b) Let A_2 be the subring generated by $x + y$, show that B is integral over A_2.
 (c) Show that $\dim k[x, y]/(xy - 1) = 1$.
(8) Let R be a local Noetherian domain of $\dim R = 1$. Show that R is integrally closed if and only if the maximal ideal is principal and every ideal is of the form \mathfrak{m}^n.