All rings are commutative with identity unless otherwise stated.

(1) Prove that \(\mathbb{C} \) is algebraically closed.
(2) Prove that the only division rings finite dimensional over \(\mathbb{R} \) are \(\mathbb{H}, \mathbb{C}, \mathbb{R} \).
(3) Let \(A \) be a domain. Show that the following are equivalent:
 (a) \(A \) is integrally closed.
 (b) \(A_p \) is integrally closed for all prime ideal \(p \).
 (c) \(A_m \) is integrally closed for all maximal ideal \(m \).

Now let \(A = k[x, y]/(y^2 - x^2(x - 1)) \), where \(k \) is algebraically closed. Find all maximal ideal \(m \) of \(A \) such that \(A_m \) is not integrally closed.

(4) Prove or disprove:
 (a) Let \((A_m), (B, n) \) be local rings and \(m, n \) are the maximal ideals respectively. Let \(\varphi : A \to B \) be a non-zero homomorphism. Then \(\varphi^{-1}n = m \).
 (b) Let \(K \) be a field. For any integer \(n > 0 \) there is an irreducible polynomial of degree \(n \) in \(K[x] \).
 (c) Let \(\mathfrak{N} \) be the nil radical of \(R \). Then \(\mathfrak{N} = \cap_{p \in \text{Spec} R} p \).
 (d) Let \(I, J \) be \(p \)-primary ideals. Then there exist \(n \) such that \(I^n \subset J \).

(5) Let \(k \) be an algebraically closed field. And \(A = k[x, y, x] \). We consider an ideal \(I := (x^2 - yz, xz - x) \). Find a primary decomposition for \(I \).

(6) Let \(A \) be a local ring and \(M, N \) are finitely generated \(A \)-module. Prove that if \(M \otimes N = 0 \) then \(M = 0 \) or \(N = 0 \).

(7) Let \(R \) be a ring (not necessarily commutative) which is a finite dimensional algebra over a field. Show that \(R \) is Artinian.