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3.5. splitting fields and normal extensions. We have seen that
given a field K, there is a unique (up to isomorphism) algebraic closure,
denoted K. Then it is convenient for our further study of roots of
polynomial. Even though we do not know the roots explicitly, we know
that there are in its algebraic closure. This make the discussion of root
of polynomials more concrete.

Let K be a field and f(x) ∈ K[x]. Let {u1, ..., ur} be the roots of
f(x) in its algebraic closure K. Then the field K(u1, ..., ur) is called
the splitting field of f(x) over K. The splitting field is the smallest
field that containing all roots.

Given a set of polynomial S ⊂ K[x], we can similarly define the
splitting field of S to be the field generated by all roots of polynomials
in S.

In this section, we are going to prove the existence and uniqueness
of splitting fields. And we introduce the notion of normal extension.

Proposition 3.5.1. Let K be a field. And S be a set of polynomial in
K[x]. Then

(1) Any two splitting field are isomorphic.
(2) If F1, F2 are two splitting fields in a fixed algebraic closure K,

then F1 = F2.

Proof. Let F1 and F2 be two splitting fields, one has an K-embedding
σ : K → F2 = K. This embedding can be extended to σ̃ : F1 → F2

by the extension theorem. One can prove that image of σ̃ is in F2.
Hence one has an injective homomorphism σ̃ : F1 → F2. Similarly
there is another one τ̃ : F2 → F1. It’s easy to show that these give the
isomorphism. ¤
Proposition 3.5.2. Let N be an algebraic extension over K contained
in K. Then the following are equivalent:

(1) Any K-embedding σ : N → K induces an K-automorphism of
N .

(2) N is a splitting field of some S ⊂ K[x] over K.
(3) Every irreducible polynomial in K[x] having a root in N splits

in N .

Proof. For (1) ⇒ (2), (3), we prove that for every u ∈ N , with minimal
polynomial p(x), then v ∈ N for every root of p(x). To this end, start
with an isomorphism σ : K(u) → K(v). By extension theorem, one

can extend it to an embedding N → K(v) = K. The embedding is an
automorphism by (1). Thus, v = σ(u) ∈ N .

(3) ⇒ (2) is trivial.
For (2) ⇒ (1). Suppose that N is a splitting field of S over K. Let u

be a root of f(x) ∈ S. Let σ : N → K be any K-embedding. It’s clear
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that σ(u) is a root of f(x), hence σ(u) ∈ N . Thus σ(N) ⊂ N . Since σ
is injective and N/K is algebraic, σ is in fact an isomorphism. ¤

The property of being normal is not as well-behaved as begin alge-
braic or finite. For example, it’s not preserve after ”extension”

Example 3.5.3. If F/E and E/K are normal, then F/K is not nec-
essarily normal. For example, take F = Q( 4

√
2), E = Q(

√
2), K = Q.

It’s easy to see that a degree 2 extension is always normal, however,
Q( 4
√

2) is not normal over Q.
Also let’s consider K ⊂ E ⊂ F . Then F is normal over K implies

that F is normal over E. But it doesn’t imply that E is normal over
K. For example, take F = Q( 4

√
2, i), E = Q( 4

√
2), K = Q

Being normal is preserved by ”lifting” and ”compositum”

Proposition 3.5.4. Let E, F be extensions over K and contained in
a field L. If E/K is normal then EF/F is normal. Moreover, if both
E/K, F/K are normal, then EF/K is normal.

Proof. In order to show that EF is normal over F , we look at F -
embedding σ : EF → F . Since σ is identity on F , hence on K. By the
extension theorem and the proof of the previous Proposition, one can
show that σ|E is an automorphism. Hence σ(E) = E. It follows that

σ(EF ) = σ(E)F = EF.

Thus EF is normal over F .
Suppose now that E/K, F/K are normal. Let σ : EF → K be a

K-embedding. We have that σ|E, σ|F are K-embeddings. One sees that
σ(E) = E and σ(F ) = F by the normal assumption. If follows that

σ(EF ) = σ(E)σ(F ) = EF.

¤
3.6. finite dimensional Galois extension. In this section, we are
going to prove the fundamental theorem for finite dimensional Galois
extension.

Let F/K be an field extension, we define the Galois group of F over
K, denoted GalF/K or GF/K or AutK(F ), as

GalF/K := {σ|σ ∈ AutF, σ|K = 1K}.
It’s clear that for σ ∈ GalF/K and u ∈ F algebraic over K with mini-

mal polynomial p(x), then σ(u) satisfies the same minimal polynomial.
On the other hand, if F/K is normal, let u, v be two elements having

the same minimal polynomial p(x), then we claim that there is an
σ ∈ GalF/K such that σ(u) = v. To see this, we fix an algebraic closure

K containing F . There is an K-isomorphism σ0 : K(u) → K(v) which
extends to an embedding σ : F → K . Since F is normal over K, one
has σ(F ) ⊂ F . And hence σ ∈ AutF .
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Example 3.6.1.

Consider the field F := Q( 3
√

2, ω) which is a splitting field of x3 − 2
over Q. Thus it’s normal over Q. One can check that the Galois
group GalF/Q is generated by σ, τ that σ( 3

√
2) = 3

√
2ω, σ(ω) = ω, and

τ( 3
√

2) = 3
√

2, τ(ω) = ω2. It’s easy to check that GalF/Q ∼= S3. ¤
Example 3.6.2.

Consider the field F := Q( 3
√

2) over Q. Then it’s easy to check that
GalF/Q = {1F}. ¤

There is a natural correspondence between subgroups of Galois groups
and intermediate fields. To be precise, fix an extension F/K. Let
H < G := GalF/K be a subgroup. One can define

H ′ := {u ∈ F |σ(u) = u, ∀σ ∈ H}.
It’s clear that this is a field. On the other hand, given and intermediate
field L such that K ⊂ L ⊂ F , then one can define

L′ := {σ ∈ GalF/K |σ(u) = u, ∀u ∈ L} = {σ ∈ GalF/K |σ|L = 1L}.
It’s easy to check the following properties:

Proposition 3.6.3. Let F/K be an extension with Galois group G.
Let L be an intermediate field, i.e. K ⊂ L ⊂ F , and H < G is a
subgroup.

(1) F ′ = {1F}, K ′ = G, and {1F}′ = F .
(2) For any L, one has L ⊂ L′′, L′ = L′′′.
(3) For any H, one has H < H ′′, H ′ = H ′′′.
(4) For any intermediate fields L ⊂ M , one has M ′ < L′.
(5) For any subgroups J < H, one has H ′ ⊂ J ′.

Proof. Most of the proof follows directly from the definition. We only
sketch the proof for L′ = L′′′.

By L ⊂ L′′ and (4), one has

(L′′)
′
< L′.

On the other hand, by (5), one has

L′ < (L′)
′′
.

We are done. ¤
Proposition 3.6.4. There is a one-to-one correspondence between

{L|K ⊂ L ⊂ F,L′′ = L} ↔ {H|H < G,H ′′ = H}.
Proof. The correspondence is given by L 7→ L′ (or H 7→ H ′).

To show the injective, one sees that if L′1 = L′2, then L1 = L′′1 =
L′′2 = L2.

For any H with H ′′ = H, we take L = H ′, then H = L′. It suffices
to check that L′′ = L. This follows from the fact that H ′′′ = H ′. ¤
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In the proposition, one might expect that G′ = K. However, this is
not always the case (see e.g. Example 3.6.2). For extension with this
property, we call it Galois. It turns out that this naive definition is a
very delicate one which leads to some nice properties.

Definition 3.6.5. An extension F/K is said to be Galois if (GalF/K)′ =
K.

Example 3.6.6.

Keep the notation as in Example 3.6.1. One can check that G′ = Q,
hence a Galois extension.

In fact the group G has the following subgroups: {1}, < τ >,< τσ >
,< τσ2 >,< σ >,G of order 1, 2, 2, 2, 3, 6 respectively. Their fixed fields
are Q( 3

√
2, ω),Q( 3

√
2),Q( 3

√
2ω),Q( 3

√
2ω2),Q(ω),Q respectively.

Conversely, for these intermediate subfields, their fixed groups are
exactly those corresponding ones. ¤

In general, we have the following:

Theorem 3.6.7 (Fundamental theorem of finite dimensional Galois
extension). Let F/K be a finite dimensional Galois extension with Ga-
lois group G, then

(1) There is an one-to-one correspondence between

{L|K ⊂ L ⊂ F} ↔ {H|H < G}.
(2) The corresponding degree are equal. That is, if K ⊂ L ⊂ M ⊂

F , then [M : L] = [L′ : M ′]. And if J < H < G, then [H : J ] =
[J ′ : H ′].

(3) An intermediate field E is Galois over K if and only if E ′ CG.
And in this case, GalE/K

∼= G/E ′.

Proof. Step 1. [M : L] ≥ [L′ : M ′].
We prove the case that M = L(u) for some u ∈ M and by induction
on [M : L], we are done. Suppose now that M = L(u) and let p(x) be
the minimal polynomial of u over L. Let S be the set of roots of p(x)
in F . Then one has a map

Φ : L′ → S,

σ 7→ σ(u).

One can check that Φ induces an injective map L′/M ′ → S. Hence one
has

[L′ : M ′] = |L′/M ′| ≤ |S| ≤ deg(p(x)) = [M : L].

Step 2. [H : J ] ≥ [J ′ : H ′].
Let n = [H : J ]. Suppose on the contrary that there are n+1 elements
u1, ..., un+1 ∈ J ′ linearly independent over H ′.
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We consider the equation
∑n+1

i=1 uixi = 0 in F Consider now a set of
representative of H/J , denoted {e = σ1, ..., σn}. By applying σi to the
above equation. Then one has a system of linear equations in F .

(∗)





σ1(u1)x1 + σ1(u2)x2 + ... + σ1(un+1)xn+1 = 0
σ2(u1)x1 + σ2(u2)x2 + ... + σ2(un+1)xn+1 = 0
...
σn(u1)x1 + σn(u2)x2 + ... + σn(un+1)xn+1 = 0

Pick a solution in F with smallest number of non-zero ai’s, may
assume it’s (a1, ..., as, 0..., 0) and a1 = 1.

If there is an τ ∈ H such that τ(a2) 6= a2, then by applying τ to
the system (∗), one get the same system of equations with a solution
(τ(a1), τ(a2), ..., τ(as), 0, ..., 0 . Hence

(a1, ..., as, 0..., 0)− (τ(a1), τ(a2), ..., τ(as), 0, ..., 0) = (0, a2− τ(a2), ..., 0)

is a non-zero solution of smaller length. This is the required contradic-
tion.

To find τ . We look at u1a1 + ... + usas = 0. Since {u1, ..., us} is
independent over H ′, not all a1 is in H ′. We may assume that a2 6∈ H ′.
Hence there is a τ ∈ H such that τ(a2) 6= a2. We are done.

Step 3. We show that every intermediate field L, L′′ = L. And
every subgroup H < G, H ′′ = H.

By Step 1, one has

[L′′ : K] = [L′′ : K ′′] ≤ [K ′ : L′] ≤ [L : K],

however, one has L ⊂ L′′. Thus one has L = L′′. Similarly, one can
prove that H ′′ = H by considering [H ′′ : {1F}].

Step 4. [M : L] = [L′ : M ′] and [H : J ] = [J ′ : H ′].
This follows from [M : L] = [M : K]/[L : K] = [K ′ : M ′]/[K ′ : L′] =

[L′ : M ′]. And the other one is similar.
Step 5. F/K is normal and separable.
Given u ∈ F , with minimal polynomial p(x) over K. As in the proof

of Step 1. One has [K(u)′ : K ′] ≤ |S| ≤ deg(p(x)) = [K(u) : K]. By
Step 4, they are equalities. In particular, every root of p(x) is in F and
there is no multiple roots. Thus F is normal and separable over K.

Step 6. If N C G, then N ′ is stable. That is, for all σ ∈ G,
σ(N ′) ⊂ N ′ (indeed = N ′).

Since N C G, for all σ ∈ G and for all τ ∈ N , one has σ−1τσ ∈ N .
Thus, σ−1τσ(N ′) = N ′. It follows that τσ(N ′) = σ(N ′), for all τ ∈ N .
Hence σ(N ′) is fixed by all N and thus σ(N ′) ⊂ N ′.

Step 7. If E is a stable intermediate subfield. Then the restriction
map GalF/K → GalE/K is well-defined and surjective.

Since E is stable, then σ|E ∈ GalE/K for any σ ∈ GalF/K . Moreover,
let τ ∈ GalE/K , by the extension theorem, there is an extension τ :

F → K. Since F is normal over K, τ is in fact an automorphism of F .
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Step 8. If an intermediate field E is stable, then E/K is Galois.
To see this, it suffices to show that for any u ∈ E−K, there is an σ ∈

GalE/K such that σ(u) 6= u. Fix any F 3 v 6= u with the same minimal
polynomial as u. There is an K-isomorphism σ0 : K(u) → K(v) such
that σ(u) = v. σ can be extended to an embedding σ : F → K,
which gives an automorphism of F . The restriction σ = σ|E gives an
automorphism of E that σ(u) 6= u.

Step 9. If E/K is Galois, then E is stable.
One first notices that E/K is normal. For every σ ∈ GalF/K , σ

gives an embedding σ|E : E → K. Since E/K is normal, σ|E is an
automorphism of E. And hence E is stable under the Galois group
GalF/K action.

Step 10. If E is stable, then E ′ is normal.
This can be checked directly. For all σ ∈ G and τ ∈ E ′ and for all

u ∈ E,

σ−1τσ(u) = σ−1τ(σ(u)) = σ−1σ(u) = u,

since σ(u) ∈ E. Therefore, σ−1τσ ∈ E ′. ¤
Remark 3.6.8. Some of the result we proved still true in a more gen-
eral setting. We list some here:

(1) If F/K is an extension, and an intermediate field E is stable,
then E ′ C GalF/K.

(2) Let F/K be an extension. If N C GalF/K, then H ′ is stable.
(3) If F/K is Galois, and E is a stable intermediate field, then E is

Galois over K. (finite-dimensional assumption is unnecessary
here)

(4) An intermediate field E is algebraic and Galois over K, then E
is stable.

We conclude this section with the following theorem concerning the
relation between Galois extension, normal extension and splitting fields.

Definition 3.6.9. An irreducible polynomial f(x) ∈ K[x] is said to be
separable if its roots are all distinct in K.

Let F be an extension over K and u ∈ F is algebraic over K. Then
u is separable over K if its minimal polynomial is separable.

An extesnion F over K is separable if every element of F is separable
over K.

Theorem 3.6.10. Let F/K be an extension, then the following are
equivalent

(1) F is algebraic and Galois over K.
(2) F is separable over K and F is a splitting field over K of a set

S of polynomials.
(3) F is a splitting field of separable polynomials in K[X].
(4) F/K is normal and separable.
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Proof. Fix u ∈ F with minimal polynomail p(x) over K. Let {u =
u1, ..., ur} be distinct roots of p(x) in F . For any σ, then σ permutes
{u = u1, ..., ur}. Thus f(x) :=

∏r
i=1(x − ui) is invariant under σ.

Hence f(x) ∈ K[x]. It follows that f(x) = p(x). This proved that
(1) ⇒ (2), (3), (4).

One notices that (2) ⇔ (4). Thus it remains to show that (2) ⇒ (3),
and (3) ⇒ (1).

For (2) ⇒ (3), let f(x) ∈ S and let g(x) be an monic irreducible
component of f(x). Since f(x) splits in F , it’s clear that g(x) is an
minimal polynomial of some element in F . Moreover, since F/K is
separable, g(x) is separable. One sees that F is in fact a splitting field
of such g(x)’s.

For (3) ⇒ (1), we first note that F/K is algebraic since F is a split-
ting field. We shall prove that (4) ⇒ (1). The implication (3) → (4)
follows from a general fact about separable extension that an algebraic
extension F/K is separable if F is generated by separable elements.

To this end, pick any u ∈ F −K, with minimal polynomial p(x) of
degree ≥ 2 and separable. Hence there is a different root, say v, of p(x)
in F . It’s natural to consider the K-isomorphism σ : K(u) → K(v).
Which can be extended to σ̄ : F → K. Since F is normal, σ̄ is an
automorphism of F , hence in GalF/K sending u to v 6= u. So F/K is
Galois.

¤


