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3.3. irreducibility. One of the most important construction of field
extension comes from the extension of the form K[x]/(p(x)) with p(x)
an irreducible polynomial. It is therefore natural to give some criterion
for irreducibility of polynomials.

Theorem 3.3.1 (Gauss’ Lemma). Let D be a UFD, and K be its field
of quotients. Given a polynomial f(x) ∈ D[x]. Then f(x) is irreducible
in D[x] if and only if f(x) is irreducible in K[x].

Sketch. 1. f(x) is irreducible in K[x] then f(x) is irreducible in D[x].
2. Given an irreducible f(x) ∈ D[x]. We may assume that f(x) is
primitive, that is, the g.c.d of coefficient is 1. If f(x) = g(x)h(x) ∈
K[x], by clearing the denominators, we have af(x) = (bg(x))(ch(x))
with a, b, c ∈ K and af(x), bg(x), cf(x) ∈ D[x] being primitive.

The main ingredient is:
3. In D[x], if s[x], t[x] are primitive, then so is s[x]t[x].

To see this, suppose that d 6= 1 is the g.c.d of coefficient of s[x]t[x].
Let p be a prime factor of d. We consider the ring homomorphism
− : D[x] → D/(p)[x]. Then

0 = s[x]t[x] = (s[x])(t[x]) 6= 0.

4. It follows that af(x) ∈ D[x] is also primitive. Write a = q
p

with

(p, q) = 1. It follows that p|(qa0, ..., qan) = q, where ai are coefficients
of f(x). This is the required contradiction. ¤

The following observation is easy but useful:

Proposition 3.3.2. Let f(x) ∈ D[x] be a monic polynomial, p C d be

a prime ideal. We consider − : D[x] → D/p[x]. If f(x) is irreducible
in D/p[x], then f(x) is irreducible in D[x].

Example 3.3.3.

Given f(x) = x2 +517x+65535 ∈ Z[x], we may consider − : Z[x] →
Z2[x]. Then f(x) = x2 + x + 1 is irreducible in Z2[x], hence irreducible
in Z[x]. By Gauss’ Lemma, it’s also irreducible in Q[x]. ¤

We also recall

Proposition 3.3.4 (Eisenstein’s criterion). Let f(x) = anxn+...+a0 ∈
Z[x]. If there is a prime p such that p - an, p|an−1, ..., p|a0, and p2 - a0.
Then f(x) is irreducible.

Proof. If f(x) = g(x)h(x), then we consider − : Z[x] → Zp[x]. Thus

anxn = f(x) = g(x)h(x).

It follows that both g(x), h(x) are of the form αxm ∈ Zp[x] with m ≥ 1.
Therefore, we may write g(x) = bmxm + ... + b0,f(x) = ckx

k + ... + c0

with p|b0, p|c0. Then p2|b0c0 = a0, a contradiction. ¤
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3.4. algebraic closed fields and algebraic closure. In this section,
we are going to prove the existence and uniqueness of algebraic closure.
As a consequence, we are able to show the existence and uniqueness of
splitting fields.

To motivate the study of algebraic closure, we start with examples:

Example 3.4.1.

Consider Q[ 3
√

2]/Q and Q[ 3
√

2ω]/Q. There is a isomorphism ϕ :
Q[ 3
√

2] → Q[ 3
√

2ω] with ϕ( 3
√

2) = 3
√

2ω, and ϕ(a) = a for a ∈ Q.
This follows from the natural isomorphism Q[x]/(x3 − 2) → Q[ 3

√
2]

and Q[x]/(x3 − 2) → Q[ 3
√

2ω]. ¤
In general, given a extension F/K, if u, v ∈ F are two roots of an

irreducible polynomial p(x) ∈ K[x], then K[u] ∼= K[v]. Therefore,
starting with a field K and an irreducible polynomial p(x) ∈ K[x].
It’s convenient that we have a field F containing all roots of p(x) in
advance. Or even more, we would like to have a field containing all
roots of all polynomial in K[x].

Proposition 3.4.2. Let F be a field. The following are equivalent:

(1) Every polynomial of F [x] of degree ≥ 1 has a root in F .
(2) Every polynomial of F [x] of degree ≥ 1 has all the roots in F .
(3) Every irreducible polynomial in F [x] has degree ≤ 1
(4) If E is an algebraic extension over F , then E = F .
(5) There is a subfield K ⊂ F such that F is algebraic over K and

every polynomial in K[x] splits in F [x].

Definition 3.4.3. A field F satisfying above conditions is said to be
algebraically closed.

Sketch. (1) ⇒ (2) by induction on degree. And hence (1) ⇔ (2) are
equivalent. It’s easy to see that (2) ⇔ (3). We now look at (3) and
(4). If E is an algebraic extension. Pick u ∈ E algebraic over F
with minimal polynomial p(x). By (3), p(x) has degree 1, hence [E :
F ] = deg(p(x)) = 1. In particular, E = F . Conversely, if there is an
irreducible polynomial p(x) of degree > 1, then K[x]/(p(x)) gives an
algebraic extension of degree deg(p(x)). This leads to a contradiction,
hence (4) implies (3).

Lastly, it’s clear that (3) implies (5) by picking K = F . We now
prove that (5) ⇒ (4). Let E be an algebraic extension over F . For
any u ∈ E, u is algebraic over K as well. Let pF (x), pK(x) be the
minimal polynomial of u over F,K respectively. By viewing pK(x) as
a polynomial in F , then one has pF (x)|pK(x) ∈ F [x]. However, pK(x)
splits in F [x]. It follows that pF (x) has degree 1. And hence u ∈ F .
Thus E = F . ¤

We can also define the notion of algebraic closure.
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Proposition 3.4.4. Let F/K be an extension. The following are equiv-
alent.

(1) F/K is algebraic, and F is algebraically closed.
(2) F/K is algebraic, and every polynomial in K[x] splits in F [x].
(3) F is a splitting field of all polynomials of K.

Proof. The proof is an easy consequence of the Proposition 3.4.2, we
leave it to the readers. ¤
Definition 3.4.5. F is said to be an algebraical closure of K if F/K
satisfies the above conditions.

Theorem 3.4.6. Algebraic closure exists.

The following is due to M. Artin as it appeared in [Lang, Algebra].

Proof. Let K be a field.
Step 1. There is an extension E1 over K such that every polynomial

of degree ≥ 1 has a root in E1.
To this end, let S be the set of all polynomials of degree ≥ 1. We

consider K[S] to be the polynomial ring with indeterminates xf , for
f ∈ S. Consider now an ideal I =< f(xf ) >f∈S. We claim that
I 6= K[S], hence I ⊂ m for some maximal ideal m. The field K[S]/m
gives an extension E1 over K. Now, for every f(x) ∈ K[x], one sees

that f(xf ) = f(xf ) = 0 ∈ E. Hence f(x) has a root xf in E1.
It remains to show that I 6= K[S]. Suppose on the contrary that

I = K[S], in particular, 1 ∈ I. We may write

1 =
r∑

i=1

g(X)fi(xfi
).

One can construct an algebraic extension F/K such that each fi has a
root ui in F . Substitute xfi

by ui in F , one has

1 =
r∑

i=1

g(X)fi(ui) = 0 ∈ F,

which is the required contradiction.
Step 2. Inductively, one has K = E0 ⊂ E1 ⊂ E2.... Let E = ∪Ei,

then E is a field extension over K. And E is algebraically closed.
To see this, for any polynomial f(x) =

∑
aix

i ∈ E[x], ai ∈ Eji

for some ji. One can pick J maximal among ji so that ai ∈ EJ for
all i. Hence f(x) ∈ EJ . By construction, f(x) has a root in EJ+1,
and inductively, f(x) has all its root in EJ+d, where d = deg(f(x)).
Therefore, f(x) has all its root in E.

Step 3. Let Ea := {u ∈ E|u is algebraic over K}. Then Ea is an
algebraic closure of K.

It’s an easy exercise to check that Ea is a field extension over K.
We leave it to the readers. It’s also clear that Ea is algebraic over K.
Hence, it suffices to check that Ea is algebraically closed.
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To see this, one notices that every polynomial of K[x] splits in E
and it follows that every root of K[x] is in Ea. Therefore, one has that
every polynomial of K[x] splits in Ea and we are done. ¤
Remark 3.4.7. An algebraically closed field must be infinite.
Suppose that F is algebraically closed and F = {a1, .., an 6= 0}. We
consider f(x) :=

∏
(x − ai) + an. Then f(x) has no root in F , a

contradiction.

We next work on the uniqueness of algebraic closure. The main
ingredient is the following extension theorem.

Theorem 3.4.8 (Extension theorem). Let σ : K → L be an embedding
to an algebraically closed field L. Let E/K be an algebraic extension.
Then one can extend the embedding σ to an embedding σ̄ : E → L.
That is, there is an embedding σ̄ : E → L such that σ̄|K = σ.

We remark that L is not necessarily an algebraic closure of K. For
example, L could be something like K(x), an algebraic closure of K(x).

In order to prove the uniqueness, we need the following useful Lemma.

Lemma 3.4.9. Let E/K be an algebraic extension and σ : E → E be
an embedding such that σ|K = 1K. Then σ is an isomorphism.

Proof. If E/K is finite, then injective implies isomorphic in the case of
finite dimensional vector space.

In general, let’s pick any u ∈ E. It suffices to show that u is in the
image of σ. To see this, let p(x) be the minimal polynomial of u over K
and u = u1, u2, ..., ur be the roots of p(x) in E. Let E ′ := K(u1, ..., ur).
It’s clear that for each i, σ(ui) = uj for some j. Hence σ|E′ gives an
homomorphism from E ′ to E ′.

Now σ|E′ : E ′ → E ′ is an injective homomorphism of finite dimen-
sional vector space E ′/K. Therefore, σ|E′ is an isomorphism. In par-
ticular, u is in the image of σ|E′ and therefore in the image of σ. ¤
Sketch of the theorem. The staring point is an extension to a simple
extension. More precisely, let u ∈ E be algebraic over K with minimal
polynomial p(x). Then pσ(x) is an irreducible polynomial in σ(K)[x].
In L, Pick any root v of pσ(x) in σ(K)[x]. This is possible since L is
algebraically closed. One claims that there is an isomorphism ( hence
an embedding to L)

σ̄ : K(u) → σ(K)(v) ⊂ L

extending σ. We leave the detail to the readers.
In order to work on the general case, we apply Zorn’s Lemma to the

non-empty P.O. set of fields

S := {(F, τ)|K ⊂ F ⊂ E, τ : F → L, τ |K = σ}.
The ordering is given naturally as: (F1, τ1) ≤ (F2, τ2) if F1 ⊂ F2 and
τ1 = τ2|F1 .
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By Zorn’s Lemma, there is a maximal element, say Em. It’s easy to
see that Em = E. Otherwise, pick any u ∈ E, which is algebraic over
K and hence over Em. There is an extension to Em(u) as we have seen
in the first paragraph. This is a contradiction to the maximality of Em.
Hence Em = E. ¤
Lemma 3.4.10. Let E/K be an algebraic extension and σ : E → E
be an embedding such that σ|K = 1K. Then σ is an isomorphism.

Proof. If E/K is finite, then injective implies isomorphic in the case of
finite dimensional vector space.

In general, let’s pick any u ∈ E. It suffices to show that u is in the
image of σ. To see this, let p(x) be the minimal polynomial of u over K
and u = u1, u2, ..., ur be the roots of p(x) in E. Let E ′ := K(u1, ..., ur).
It’s clear that for each i, σ(ui) = uj for some j. Hence σ|E′ gives an
homomorphism from E ′ to E ′.

Now σ|E′ : E ′ → E ′ is an injective homomorphism of finite dimen-
sional vector space E ′/K. Therefore, σ|E′ is an isomorphism. In par-
ticular, u is in the image of σ|E′ and therefore in the image of σ. ¤
Corollary 3.4.11. Algebraic closure of a field is unique up to isomor-
phism.

Proof. Suppose that E, F are algebraic closure of K. By the extension
theorem, there are embedding σ : E → F and τ : F → E such that
σ|K = τ |K = 1K .

Hence one has an embedding σ◦τ : F → F , which is an isomorphism
by the Lemma. Similarly, τ ◦σ is an isomorphism. Hence E and F are
isomorphic. ¤

Therefore, we have seen that given a field K, there is a unique (up to
isomorphism) algebraic closure, denoted K. Then it is convenient for
our further study of roots of polynomial. Even though we do not know
the roots explicitly, we know that there are in its algebraic closure.
This make the discussion of splitting field more concrete.

3.5. splitting fields. Let K be a field and f(x) ∈ K[x]. Let {u1, ..., ur}
be the roots of f(x) in its algebraic closure K. Then the field K(u1, ..., ur)
is called the splitting field of f(x) over K.


