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3. field theory

3.1. definitions and basic properties. A field F is a set together
two binary operation +, ∗ such that (F, +) is an abelian group with
identity 0, (F ∗ := F − {0}, ∗) is an abelian group with identity 1, and
satisfying a ∗ (b + c) = a ∗ b + a ∗ c.

Let E, F be fields, a homomorphism of fields is nothing but a ring
homomorphism ϕ : E → F . Note that ϕ(1E) = 1F

Example 3.1.1.

Let p be a prime. Then Zp is a field. Let F be a field of p elements,
then clearly there is an isomorphism F ∼= Zp (by sending 1Zp to 1F ).
Thus we usually say the field of p-elements and denoted Fp. ¤

Give a field F , let P be its minimal (non-zero) subfield. Then we
have:

Proposition 3.1.2. P is isomorphic to either Q or Fp.

Proof. Consider the additive subgroup H generated by 1F , then H is
either Z or Zp. If it’s Zp then this is exactly P . And if H = Z, then
one can show that P ∼= Q. ¤
Definition 3.1.3. The minimal subfield if called the prime field of
F . If the prime field is Fp, then we say that F has characteristic p,
denoted char(F ) = p. Otherwise, we say that F has characteristic 0,
denoted char(F ) = 0.

The most important feature for field of characteristic p is that it has
a non-trivial Frobenius map ϕ : F → F, ϕ(x) 7→ xp. To verify that this
is an homomorphism, we need to check that ϕ(x) + ϕ(y) = ϕ(x + y).
Note that px = 0 for all x ∈ F and thus nx = 0 for all n divisible by
p. It follows that Cp

i x = 0 for all 0 < i < p and all x ∈ F . Hence
(x + y)p = xp + yp.

In fact, the FRobenius map is always injective for if xp = yp, then
xp − yp = (x− y)p = 0. Thus x− y = 0.

Example 3.1.4.

We have the following important construction of fields. Let F be a
field, F [x] be the polynomial ring. Let p(x) ∈ F [x] be an irreducible
polynomial. We claim that F [x]/(p(x)) is a field.

Recall that there is a division algorithm on F [x]. That is, given
f(x), g(x) 6= 0 ∈ F [x], there exist q(x), r(x) ∈ F [x] such that f(x) =
g(x)q(x) + r(x) with either r(x) = 0 or deg(r(x)) < deg(g(x)). (This
shows that F [x] is an Euclidean domain (E.D.).)

With this properties, one can show that every ideal is of the form
(f(x)), i.e. F [x] is a principal ideal domain (PID). For a given ideal
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I C F [x], this can be achieved by pick f(x) ∈ I of minimal degree.
For any g(x) ∈ I, performing the division algorithm, one sees that
r(x) = 0 for otherwise one gets a polynomial of even smaller degree,
which is absurd.

One method is to show that (p(x))lhdF [x] is a maximal ideal. Sup-
pose we have (p(x)) < m � F [x]. Since m = (f(x)), it follows that
p(x) ∈ (f(x)) and thus p(x) = f(x)g(x). p(x) is irreducible implies
that f(x) = cp(x) for some c ∈ F . Anyway, (p(x)) = (f(x)).

Or explicitly, a non-zero element in F [x]/(p(x)) is of the form f(x)
for some f(x) ∈ F [x] and f(x) 6∈ (p(x)). Thus (f(x), p(x)) = 1. By
the division algorithm, there exists s(x), t(x) such that 1 = s(x)f(x) +

t(x)p(x). Hence f(x)s(x) = 1.
If n = deg(p(x)), then the element in the field F [x]/(p(x)) can be

written as {a0 + a1x̄ + ...an−1x̄
n−1}. ¤

Before we move on, we need the following facts.

Proposition 3.1.5. Let f(x) ∈ F [x] be a polynomial of degree n, then
there are at most n roots in F .

Proof. a is said to be a root of f(x) if f(a) = 0. Note that, by division
algorithm, f(x) = q(x)(x−a)+ r(x) with r(x) = 0 or deg(r(x)) = 0. a
is a root if and only if r(x) = 0 if and only if (x− a)|f(x). Inductively
and by the unique factorization of F [x]. One sees that there are at
most n roots. ¤

Proposition 3.1.6. Let G < F ∗ be a finite group. Then G is cyclic.

Proof. By Corollary 2.7.8, G ∼= Zm1⊕ ...⊕Zmd
. Note that, on the right

hand side, mdx = 0 for all x. Thus amd = 1 for all a ∈ G. ( On G, we
use multiplicative notations, while right hand side is additive). Thus
every element in G is a root of xmd − 1. So we have

|G| = m1...md ≤ md.

This is possible only when d = 1. ¤

3.2. field extensions. Let K be a subfield of F , then we say that F
is an extension over K and denote it by F/K. Recall that F can be
viewed as a vector space over K. We say that the extension F/K is
finite of infinite according the dimension of F as a vector space over
K.

Let F/K be an extension, an element u ∈ F is said to be algebraic
over K if there is a non-zero polynomial f(x) ∈ K[x] such that f(u) =
0. In other words, the ring homomorphism

ϕ : K[x] → F,

f(x) 7→ f(u)
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has a non-zero kernel. Let I be the kernel. Since K[x] is a PID,
I = (p(x)) for some p(x). Let K[u] be the image of ϕ, then

K[x]/(p(x)) ∼= K[u] ⊂ F.

It’s easy that (p(x)) is a prime ideal, that is, p(x) is irreducible. We
may assume that p(x) has leading coefficient 1. Such p(x) is called the
minimal polynomial of u over K.

We say that F/K is algebraic if every element of F is algebraic over
K.

Let’s recall some more properties. If F/K, then we denote [F : K]
to be the dimension dimKF .

Proposition 3.2.1. If E/F and F/K, then [E : F ][F : K] = [E : K].

Sketch of the proof. Let {ui}i∈I be a basis of E/F and {vj}j∈J be a
basis of F/K. Then one can prove that {uivj}(i,j)∈I×J is a basis of
E/K. Hence

[E : K] = |I × J | = |I| · |J | = [E : F ] · [F : K].

¤
Proposition 3.2.2. Suppose that we have a tower of fields K ⊂ F ⊂
E. Then E is finite over K if and only if E is finite over F and F is
finite over K.

Proof. Easy corollary of the previous proposition. ¤
Proposition 3.2.3. If F/K is finite, then F/K is algebraic.

Proof. suppose that [F : K] = n. For any u 6= 0 ∈ F , then {1, u, ..., un}
is linearly dependent over K. Thus there are a0, ..., an ∈ K non all
zero such that

∑n
i=0 aiu

i = 0. It follows that u satisfies the polynomial
f(x) =

∑n
i=0 aix

i ∈ K[x]. ¤
Let F/K be an extension, and u ∈ F . We denote by K(u) the

smallest subfield of F containing K and u. It’s easy to see that

K(u) = {f(u)

g(u)
|f(x), g(x) ∈ K[x], g(u) 6= 0}.

Similarly, for S ⊂ F , we denote by K(S) the smallest subfield contain-
ing both K and S. If F = K(S) for a finite set S, then F is said to be
finitely generated over K.

Proposition 3.2.4. Let F/K be an extension. Then u ∈ F is algebraic
over K if and only if K(u) = K[u]. And in the algebraic case, [K[u] :
K] = deg(p(x)), where p(x) is the minimal polynomial.

Sketch of the proof. If u ∈ F is algebraic over K, let p(x) be the min-
imal polynomial. One sees that g(u) 6= 0 if and only (g(x), p(x)) = 1.
There are s(x), t(x) such that

1 = s(x)g(x) + t(x)p(x),
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hence 1 = s(u)g(u). One has f(u)
g(u)

= f(u)s(u) and hence K(u) ⊂ K[u].

Conversely, 1
u
∈ K(u) = K[u]. Thus 1

u
= f(u) for some f(x) ∈ K[x].

One sees that u satisfies xf(x)− 1. ¤
Proposition 3.2.5. F/K is finite if and only if F/K is finitely gen-
erated and algebraic.

Sketch of the proof. If F/K is finite, let {u1, ..., un} be a basis of F/K,
then F = K(u1, ..., un) hence is finitely generated.

Conversely, suppose that F = K(u1, ..., un) is algebraic over K. In
particular, each ui is algebraic over K. In particular, u1 is algebraic
over K, u2 is algebraic over K(u1), and so on. Then one has that

[K(u1, ..., un) : K] = [K(u1, ..., un) : K(u1, ..., un−1)]·[K(u1, ..., un−1) : K]

is finite by induction. ¤
Proposition 3.2.6. Suppose that we have a tower of fields K ⊂ F ⊂
E. Then E is algebraic over K if and only if E is algebraic over F
and F is algebraic over K.

Sketch of the proof. We will only prove that E is algebraic over F and
F is algebraic over K implies that E is algebraic over K. The remaining
statement are easy.

Pick any u ∈ E. Since u is algebraic over F , let f(x) =
∑

aix
i be

the minimal polynomial of u over F .
We then consider the field F ′ := K(a0, ..., an). It’s clear that u

satisfies a polynomial f(x) ∈ F ′[x]. It follows that u ∈ F ′(u) which is
finite over K. Therefore, u is algebraic over K. ¤

Let L/K and M/K are extensions over K and both L,M are con-
tained in a field F . We denote by LM the smallest subfield containing
both L and M . LM is called the compositum of L and M .

A useful remark is that if L = K(S) for some S ⊂ L, then LM =
M(S).

For a certain property of field extension, denoted C, we are interested
whether C is preserved after extension, lifting or compositum. More
precisely, we would like to know a property C satisfying the following
conditions:

(1) (extension) Both E/F and F/K are C if and only if E/K is C.
(2) (lifting/ base change) If E/K is C, then EF/F is C.
(3) (compositum) If both E/K,F/K are C, then EF/K is C.

Proposition 3.2.7. The property of being finite or algebraic satisfying
the above three.

Sketch of the proof. It’s easy to that being finite and finitely generated
satisfies the above three statement. Hence so does being algebraic. ¤
Theorem 3.2.8. Let F be an extension over K, and E the set of all
elements in F which is algebraic over K. Then E is a field.
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Proof. If u, v ∈ E, we need to show that u + v, uv ∈ E. Note that
u + v, uv ∈ K(u, v) and K(u, v)/K is finitely generated and algebraic,
hence finite. It follows that both u + v, uv are algebraic over K. ¤
Example 3.2.9.

Consider C/Q. A number u ∈ C which is algebraic over Q is called
an algebraic number. The set of all algebraic numbers, denoted A, is
a field, algebraic but not finite over Q.


