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Proposition 2.8.14. Let H be a subgroup of a solvable group G, then
H is solvable.

Let N be a normal subgroup of G. Then G is solvable if and only if
both N and G/N are solvable.

Sketch. G has a solvable series, intersecting the series with H gives a
solvable series of H.

If N CG, then we have π : G → G/N . Projecting the solvable series
of G to G/N gives a solvable series of G/N .

Finally, if N and G/N are solvable, they have solvable series respec-
tively. Apply π−1 to the solvable series of G/N gives a series from N
to G. Combine this series with the serious of H gives a solvable series
of G. ¤
Example 2.8.15.

We will prove in the coming subsection that A5 is not solvable, hence
so is Sn for n ≥ 5. ¤
2.9. normal and subnormal series. We turning back to series a
little bit more. A subnormal series is called a composition series if
every quotient is a simple group.

Definition 2.9.1. For a subnormal series, {e} = Hn < ... < H0 = G,
the factors of the series are the quotient groups Hi−1/Hi and the length
is the number of non-trivial factors. A refinement is a series obtained
by finite steps of one-step refinement which is {e} = Hn < . < K <
.. < H0 = G.

Definition 2.9.2. Two series are said to be equivalent if there is a
one-to-one correspondence between the non-trivial factors. And the
corresponding factors groups are isomorphism.

It’s clear that this defines an equivalent relation on subnormal series.
The main theorems are

Theorem 2.9.3 (Schreier). Any two subnormal (resp. normal) series
of a group G have a subnormal (resp. normal) refinement that are
equivalent.

An immediate corollary is the famous Jordan-Hölder theorem.

Theorem 2.9.4 (Jordan-Hölder). Any two composition series of a
group are equivalent.

The main technique is the Zassenhaus Lemma, or sometimes called
butterfly Lemma.

Lemma 2.9.5 (Zassenhaus). Let A∗ C A and B∗ C B be subgroups of
G. Then
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(1) A∗(A ∩B∗) C A∗(A ∩B).
(2) B∗(A ∩B) C B∗(A ∩B).
(3) A∗(A ∩B)/A∗(A ∩B∗) ∼= B∗(A ∩B)/B∗(A∗ ∩B).

Sketch. It’s clear that A ∩B∗ = (A ∩B) ∩B∗ C A ∩B. And similarly,
A∗ ∩ B C A ∩ B. Let D = (A ∩ B∗)(A∗ ∩ B) C A ∩ B. One can have
a well-defined homomorphism f : A∗(A ∩ B) → A ∩ B/D with kernel
A∗(A ∩B∗). And similarly for the other homomorphism. ¤

proof of Schreier’s theorem. Let {e} = Gn+1 < ... < G0 = G and
{e} = Hm+1 < ... < H0 = G be two subnormal series. Let G(i, j) :=
Gi+1(Gi ∩ Hj) (resp. H(i, j) := Hj+1(Gi ∩ Hj)). Then one has a
refinement

G = G(0, 0) > G(0, 1) > ... > G(0,m) > G(1, 0) > ... > G(n,m),

G = H(0, 0) > H(1, 0) > ... > H(n, 0) > H(0, 1) > ... > H(n,m).

By applying Zaseenhaus Lemma to Gi+1, Gi, Hj+1, Hj, one has

G(i, j)/G(i, j + 1) ∼= H(i, j)/H(i + 1, j).

¤

2.10. simplicity of A5. An element in Sn is said to be have cycle
structure (m1, .., mr) with m1 ≥ m2 ≥ ... ≥ mr , m1 + ...+mr = n if its
cycle decomposition is of length m1, ..., mr respectively. For example,
(1, 2)(3, 4) ∈ S4 has cycle structure (2, 2) and (1, 2) ∈ S4 has cycle
structure (2, 1, 1).

Remark 2.10.1. There is a one-to-one correspondence between cycle
structures of Sn and partition of the integer n.

A key observation is that any two elements are conjugate to each
other if and only if they have the same cycle structure. Let’s call
the set of all elements of cycle structure (m1, ..., mr) the cycle class of
(m1, ...mr). A consequence of this fact is that a subgroup N < Sn is
normal if and only if N is union of cycle classes.

Let’s put it another way, given a group G, we can always consider
the group action G × G → G by conjugation. The conjugate classes
are the orbits. A subgroup H < G is normal if and only if it is union
of orbits. If G = Sn, then orbits are cycle classes.

Example 2.10.2. In S4, V is the union of class (1, 1, 1, 1) and (2, 2).
A4 is the union of V and the class (3, 1).

The purpose of this subsection is to show that A5 is a simple non-
abelian group, hence a non-solvable group.

Theorem 2.10.3. A5 is a simple non-abelian group.



25

Proof. One note that in S5, possible cycle structures are (5), (4, 1),(3, 1
, 1),(3, 2), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) with 24, 30, 20, 20, 15, 10, 1 el-
ements in each class. While A5 is the union of classes of (5), (3, 1, 1), (2,
2, 1), (1, 1, 1, 1, 1).

We consider the actions of conjugation α : S5 × A5 → A5 and its
restriction β : A5 × A5 → A5. For σ ∈ A5, let Oα,σ be the orbit of the
α and Oβ,σ be the orbit of the β. And let Gα,σ, Gβ,σ be the stabilizer.

It’s clear that Gα,σ = CS5(σ) and Gβ,σ = CA5(σ) = CS5(σ) ∩ A5.
Thus we have either |Gβ,σ| = 1

2
|Gα,σ| or |Gβ,σ| = |Gα,σ|. Hence |Oβ,σ| =

|Oα,σ| or |Oβ,σ| = 1
2
|Oα,σ|.

case 1. If σ has cycle structure (5), then |Oα,σ| = 24, |Gα,σ| = 5. It
follows that |Gβ,σ| = 5 and hence |Oβ,σ| = 12.

case 2. If σ has cycle structure (3, 1, 1), then |Oα,σ| = 20, |Gα,σ| = 6.
However, one notice that there is an element τ ∈ CS5(σ)−CA5(σ) (e.g.
(45)(123) = (123)(45)). Hence |Gβ,σ| 6= |Gα,σ| and must be 1

2
|Gα,σ| = 3.

Therefore |Oβ,σ| = 20.
case 3. If σ has cycle structure (2, 2, 1),then |Oα,σ| = 15, |Gα,σ| = 8.

It follows that |Oβ,σ| = 15.
Combining all this, if H < A5 is a normal subgroup, then |H| =

1+ 12r1 +20r2 + 15r3, where ri are integers. Moreover |H| | |A5| = 60,
which is impossible unless |H| = 1 or 60. ¤

2.11. simple linear groups. We have seen that A5 is a simple group.
Another important source of simple groups is via the linear groups.

We first introduce some notions. Let V be a m-dimensional vector
space over a field K. Then the general linear group GL(V ) is the
group of all non-singular linear transformations on V . If we choose a
basis {e1, ..., em} of V , then a non-singular linear transformation can
be represented as a non-singular matrix in GL(m,K). If K is a field of
q elements ( thus unique up to isomorphism, which we will see later),
then we may write GL(m, q) instead.

Proposition 2.11.1. |GL(m, q)| = (qm − 1)(qm − q)...(qm − qm−1).

Proof. Let {e1, ..., em} be a basis and A a m × m matrix. A is non-
singular if and only {Ae1, ..., Aem} is again a basis. Or equivalently,
{Ae1, ..., Aem} is linearly independent. Ae1 can have anything but
zero, thus there are qm − 1 choices. And then Ae2 can be anything
independent of Ae1, thus there are qm − q choices. Inductively, we get
the formula. ¤

A matrix (or linear transformation) is called unimodular if deter-
minant is 1. Let SL(V ), (resp. SL(m,K) ) be the subgroups of uni-
modular matrices. An elementary transvection Bij(λ) is a matrix which
is 1 along diagonal, λ as its ij entry, and 0 elsewhere. A transvection
is a matrix B such that is similar (which is conjugate in group theory)
to some Bij(λ). Note that Bij(λ)−1 = Bij(−λ).
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Lemma 2.11.2. If A ∈ GL(m,K) with det A = µ, then A = UD(µ),
where U is a product of elementary transvections and D = diag(1, ..., 1, µ).

Sketch. Performing elementary row operations by multiplying elemen-
tary transvections on the left. One sees that it reaches a matrix of type
D(µ).

For example, we look at first column. Assume that a21 6= 0. Then
multiply B12(a

−1
21 (1 − a11)), one gets a matrix A′ with A′

11 = 1. Then
multiply B21(−a21), the one gets a matrix A′′ with A′′

11 = 1, A′′
21 =

0. ¤
Proposition 2.11.3. We have:
1. GL(m,K) is a semi-direct product of SL(m, K) by K∗.
2. SL(m,K) is generated by elementary transvections.

Proof. 1. Consider det : GL(m,K) → K∗. It’s clear that this is a group
homomorphism with kernel SL(m,K). Hence SL(m,K) C GL(m,K).
On the other hand, ∆ := {D(µ)|µ ∈ K∗} < GL(m,K) and ∆ ∼= K∗.
One can verify that GL(m,K) = SL(m,K)∆ by the abbove Lemma.
And it’s clear that SL(m,K) ∩∆ = {e}. Thus, we are done.
2. This follows immediately from above Lemma. ¤

We now introduce more notations. Let Z(m,K) (resp. Z(V )) be the
center of GL(m,K). Then it’s easy to see that Z(m,K) is nothing but
scalar matrices. Let SZ(m,K) = Z(m, K) ∩ SL(m,K), the group of
unimodular scalar matrices. One can also verify that Z(SL(m,K)) =
SZ(m,K).

In order to compute the cardinality of SZ(m, K), we recall the fol-
lowing fact:

Proposition 2.11.4. Let K be a field.
1. xn = 1 has at most n solutions in K.
2. Every finite subgroup of K∗ is cyclic. In particular, if K is finite,
then K∗ is cyclic.

As a result, if K is a finite field of q elements, then xm = 1 has
exactly (q − 1, m) solutions. Thus SZ(m, q) = (q − 1,m).

Let PGL(V ) := GL(V )/Z(V ) and PSL(V ) := SL(V )/SZ(V ). Then
we have

|PGL(m, q)| = |SL(m, q)| = (qm − 1)(qm − q)...(qm − qm−1)/(q − 1),

|PSL(m, q)| = (qm − 1)(qm − q)...(qm − qm−1)/d(q − 1),

where d = (q − 1,m).
We now give some more example of finite simple groups.

Theorem 2.11.5. The group PSL(2, q) are simple if and only if q > 3.

Proof. If q = 2, 3, then |PSL(2, 2)| = 6, |PSL(2, 3)| = 12. Hence they
are not simple.
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Assume now that q ≥ 4. Let N C PSL(2, q) and H C SL(2, q) be
its preimage. It is enough to show that if SZ(m, q) � H < SL(m, q),
then H = SL(m, q).
1. For any matrix A ∈ H−SZ(m, q). Then its rational canonical form

is either

[
α 0
0 α−1

]
or

[
0 −1
1 β

]
.

2. In either case, H contains a matrix of the form

[
α 0
β α−1

]
with

α 6= ±1.
To see this, it remains to consider A in the second case. We assume

A =

[
0 −1
1 β

]
. Then TAT−1A−1 =

[
α−2 0

β(α2 − 1) α2

]
∈ H for T =

[
α 0
0 α−1

]
. We can pick α so that α2 6= ±1 (unless q = 5, this case

need some extra care).

3. Let B = B21(1), A =

[
α 0
β α−1

]
with α 6= ±1. Then H contains

BAB−1A−1 = B21(1−α−2), an elementary tranvection with 1−α−2 6=
0.

4. If H contains B21(µ), then UB21(µ)U−1 = B12(−µ) for U =

[
0 −1
1 0

]
.

5. It remains to show that H contains B12(ν) for all ν ∈ K since
SL(m, q) is generated by transvections.

To see this, note that
[

α β
0 α−1

] [
1 µ
0 1

] [
α β
0 α−1

]−1

=

[
1 µα2

0 1

]
.

Let G = {0} ∪ {µ ∈ K|B12(µ) ∈ H}. It’s clear that G is an additive
group and contains all elements of the form µ(α2 − β2).

We claim that G = K.
If char(K) 6= 2, then ν = (1

2
(ν + 1))2 − (1

2
(ν − 1))2. Thus for given

ν ∈ K, νµ−1 = ξ2 − ζ2. It follows that ν ∈ G.
If char(K) = 2, then |K∗| is a cyclic group of odd order. Thus for

ν ∈ K∗, νµ−1 ∈ K∗ and νµ−1 = ζ2 for some ζ. Thus, ν = µζ2 ∈ G. ¤
Example 2.11.6.

On can even show that An is simple for n ≥ 5. ¤
Example 2.11.7.

|PSL(2, 4)| = |PSL(2, 5)| = 60. And they are simple. So In fact,
we have PSL(2, 4) ∼= PSL(2, 5) ∼= A5.
|PSL(2, 7)| = 168, so it can not be An.
PSL(2, 9) ∼= A6. ¤

We finally give some more results concerning simple groups. How-
ever, we are not going to prove these.
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Theorem 2.11.8 (Jordan-Dickson). If m ≥ 3 and V is an m-dimensional
vector space over a field K, then PSL(V ) is simple.

Proposition 2.11.9. PSL(3, 4) and A8 are non-isomorphic simple
groups of the same order.


