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Oct. 20, 2006 (Fi.)

Let G be an abelian group, there there is a natural important ho-
momorphism m : G — G by m(z) := ma for m € N. The image is
denoted mG and kernel is denoted G[m]. Let G(p) = {u € Glo(u) =
p™ for some n > 0}. One can show that G(p) is the Sylow p-subgroup
of G. And G is a direct sum of Sylow subgroups. Thus it remains
to study finite abelian p-groups. The only non-trivial part of classical
theory is showing that a finite abelian p-group is a direct sum of cyclic
p-groups.

We also remark that for a given finitely generated abelian group G,
the rank, invariant factors, and elementary divisors are unique. To see
this, we proceed as following steps:

1. if Z" =2 Z™, then n = m.
To see this, let G = Z" =2 Z™. We consider G/2G = Z3 = 7Z%'. Thus
n=m.
2. let Gior = {u € Gimu = 0 for some m}. It's clear that Gy, < G.
3. If

G =24 @ ... 0%y DL,

=~ G2 = Zd/l @ @ Zd/t’ @ ZT,

Then clearly, G0, = Goyor and also Gy /Gl = 77 = Go/Gayor = 7.
Hence in particular r = r’.

4. It remains to show that ¢t = t' and d; = d.

To see this, it’s equivalent to show the uniqueness of elementary divisors

of finite abelian groups. So now we assume that G is finite abelian
group. Also note that if G; = G, then G1(p) = Go(p). Thus we may

even assume that G is a finite abelian p-group.

Suppose now that

Gl = Zpal @ EB Zpat
Gy = Zpbl D...D Zpbs,
with ay < as <...< CLt,bl < bQ <. < bs.

Then we have pG; = pGe and G1/pG; = Gy/pGs. Note that
Gl/pGl = Zzl, with C1 = {Z|CLZ > 1} It follows that Cl(Gl) = Cl(G2>.
Similarly, we can define ¢;, := {i|a; > k} and ¢, (G1) = cx(G2).

Moreover, G [p] = Z! = Gs[p| = Z3. Hence t = s.

Since t, ¢1(Gh), c2(Gy)... determine ay, ..., a; uniquely and s, ¢1(G3), c2(G32)...
determine by, ..., by uniquely. It follows that t = s and a; = b; for all 7.
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2.8. Nilpotent groups, solvable groups. Given a group G, if G has
a normal subgroup N, then we have a quotient group G/N. One can
expect that knowing N and G/N would give some information on G.
In this section, we are going to introduce the general technique of this
idea.

Let G be a group. If G' has no non-trivial normal subgroup, then G
is said to be simple.

In general, there are two natural way to produce normal subgroups.
The first one is the the center Z(G). It is a normal subgroup of G.
And we have the canonical projection G — G/Z(G). Let Cy(G) be
the inverse image of Z(G/Z(G)) in G. By the correspondence theo-
rem, Z(G/Z(G)) is a normal subgroup of G/Z(G) hence Cy(G) is a
normal subgroup of G. And then let C5(G) to be the inverse image of
Z(G/Cy(G)). By doing this inductively, one has an ascending chain of
normal subgroups

{e} < C1(G) = Z(G) < C5(G) < ...
Notice that by the construction, each C;(G) < G and C;1(G)/Ci(G)
is abelian.
Definition 2.8.1. G is nilpotent if C,,(G) = G for some n.
Proposition 2.8.2. A finite p-group is nilpotent.

Proof. We use the fact that a finite p-group has non-trivial center. Thus
one has C; S Ciy1. The group G has finite order thus the ascending
chain must terminates, say at C,. If C,, # G, then G/C,, has non-trivial
center. One has C,, S C,,4+1 which is impossible. Hence C,, = G. O

Theorem 2.8.3. If H, K are nilpotent, so is H x K.

Proof. The key observation is that Z(H x K) = Z(H) x Z(K). Then
inductively, one proves that C;(H x K) = C;(H) x C;(K). If C,(H) =
H,C,(K) = K then C)(H x K) for | = max(m,n). O

Lemma 2.8.4. Let G be a nilpotent group and H < G be a proper
subgroup. Then H < Ng(H).

Proof. Let Cy(G) = {e}. Let k be the largest index such that Cy(G) <
H. Then Cyy1(G) £ H. Pick a € Cyy1 — H, then for every h € H, we
have C’kha = C’thka = C’kaCkh = Ckah for Ck+1/Ck = Z(G/Ck(G>>
Thus aha™ € Cyh C H for all h € H. That is a € Ng(H) — H. O

Then we are ready to prove the following:

Theorem 2.8.5. A finite group is nilpotent if and only if it’s a direct
product of Sylow p-subgroups.

Proof. By the previous two results, it’s clear that a direct product of
Sylow p-subgroups is nilpotent.
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Conversely, if G is nilpotent, then we will prove that every Sylow
p-subgroup is a normal subgroup of GG. By checking the decomposition
criterion, one has the required decomposition.

It remains to show that if P is Sylow p-subgroup, then P < G.

To this end, it suffices to prove that Ng(P) = G. By applying this
Claim to Ng(P), then it says that Ng(P) can’t be a proper subgroup
of G since Ng(Ng(P)) = Ng(P). Thus it follows that Ng(P) = G. O

Example 2.8.6.

Let G = Dy = {a'y’|2% = y? = e, 7y = y2°}. One of it’s Sylow 2-
subgroup is {e, x®,y, 23y} isomorphic to V} and it’s Sylow 3-subgroup
is {e, 22, 2} = Zs.

However Z(G) = {e, 2%} and G/Z(G) = D¢ = S3 and Z(S3) = {e}.
Thus G is not nilpotent. And therefore, D15 2V X Zs. Il

We have seen that we have a series of subgroup by taking centers.
Another natural construction is to take commutators.

Definition 2.8.7. Let G be a group. The commutator of G, denoted
G’ is the subgroup generated by the subset {aba='b"'|a,b € G}.

Roughly speaking, the subgroup G’ measures the non-commutativity
of a group. More precisely, G’ = {e}, if and only G is abelian. The
smaller G', the more commutative it is.

Proposition 2.8.8. We have:

1. G' <@,

2. and G/G' is ableian.

3. if N <G, then G/N is abelian if and only if G' < N.

Proof. 1.) for all g € G, g(aba™'b"1)g™ € G', hence gG'g < G'. So
G'<G.

2.) aG'bG' = abG' = ab(b~ra"'ba)G" = baG’ = bG'aG'.

3.) Consider 7 : G — G/N. If G/N is abelian, then w(aba™'b™1) = e,
hence G < N. Conversely, if G' < N, we have a surjective homomor-
phism G/G' — G/N. G/G' is abelian, hence so is it homomorphic
image G/N. O

Definition 2.8.9. We can define the the commutator inductively, i.e.
G® = (G"), etc. The G is called the i-th derived subgroup of G. It’s
clear that G > G' > G? > ...

A group is solvable is G™ = {e} for some n.

Example 2.8.10.

Take G = S;. The commutator is the smallest subgroup that G/G’
is abelian. Since the only non-trivial normal subgroups of S are V, Ay.
It’s clear that G’ = A4 (Or one can prove this by hand). Similarly, one
finds that G = A}, =V, and G® = {e}. Hence S, is solvable. O

Another useful description of solvable groups is the groups with solv-
able series.
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Definition 2.8.11. A groups G has a subnormal series if there is a
series of subgroups of G

G:HO>H1>H2>...>Hn7

such that H; < H;_1 for all 1 < i <n.

A subnormal series is a solvable series if H, = {e} and H;_1/H; is
abelian for all 1 < i <n.

A subnormal series is a normal series if all H; are normal subgroups

of G.

Theorem 2.8.12. A group is solvable if and only it has a solvable
series.

Proof. 1t’s clear that G > G’ > ..G™ = {e} is a solvable series. It
suffices to prove that a group with a solvable series is solvable. Suppose
now that G has a sovable series {e} = H,, < ... < Hy = G. First
observe that G’ < H, since G/H, is abelian. We claim that G < H;
for all ¢ inductively. Which can be proved by the observation that the
intersection of the series {e} = H,, < ... < Hy = G with G gives a
solvable series of G, O

Example 2.8.13.

A finite p-group has a solvable series, hence is solvable.
Moreover, a nilpotent group is solvable. To see this, let G be a
nilpotent group. Then there exist a series

{e} < C1(G) = Z(G) < Cy(G) < ... < Ch(G) = G.

Notice that C;11(G)/C;(G) = Z(G/C;(Q)) is abelian. Therefore this
is a solvable series. O



