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Let G be an abelian group, there there is a natural important ho-
momorphism m : G → G by m(x) := mx for m ∈ N. The image is
denoted mG and kernel is denoted G[m]. Let G(p) = {u ∈ G|o(u) =
pn for some n ≥ 0}. One can show that G(p) is the Sylow p-subgroup
of G. And G is a direct sum of Sylow subgroups. Thus it remains
to study finite abelian p-groups. The only non-trivial part of classical
theory is showing that a finite abelian p-group is a direct sum of cyclic
p-groups.

We also remark that for a given finitely generated abelian group G,
the rank, invariant factors, and elementary divisors are unique. To see
this, we proceed as following steps:
1. if Zn ∼= Zm, then n = m.
To see this, let G ∼= Zn ∼= Zm. We consider G/2G ∼= Zn

2
∼= Zm

2 . Thus
n = m.
2. let Gtor := {u ∈ G|mu = 0 for some m}. It’s clear that Gtor < G.
3. If

G1 = Zd1 ⊕ ...⊕ Zdt ⊕ Zr,
∼= G2 = Zd′1 ⊕ ...⊕ Zd′

t′
⊕ Zr′

Then clearly, G1tor
∼= G2tor and also G1/G1tor = Zr ∼= G2/G2tor = Zr′ .

Hence in particular r = r′.
4. It remains to show that t = t′ and di = d′i.
To see this, it’s equivalent to show the uniqueness of elementary divisors
of finite abelian groups. So now we assume that G is finite abelian
group. Also note that if G1

∼= G2, then G1(p) ∼= G2(p). Thus we may
even assume that G is a finite abelian p-group.

Suppose now that

G1 := Zpa1 ⊕ ...⊕ Zpat

∼= G2 := Zpb1 ⊕ ...⊕ Zpbs ,

with a1 ≤ a2 ≤ ... ≤ at, b1 ≤ b2 ≤ ... ≤ bs.
Then we have pG1

∼= pG2 and G1/pG1
∼= G2/pG2. Note that

G1/pG1
∼= Zc1

p , with c1 = {i|ai > 1}. It follows that c1(G1) = c1(G2).
Similarly, we can define ck := {i|ai > k} and ck(G1) = ck(G2).

Moreover, G1[p] ∼= Zt
p
∼= G2[p] ∼= Zs

p. Hence t = s.
Since t, c1(G1), c2(G1)... determine a1, ..., at uniquely and s, c1(G2), c2(G2)...

determine b1, ..., bs uniquely. It follows that t = s and ai = bi for all i.
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2.8. Nilpotent groups, solvable groups. Given a group G, if G has
a normal subgroup N , then we have a quotient group G/N . One can
expect that knowing N and G/N would give some information on G.
In this section, we are going to introduce the general technique of this
idea.

Let G be a group. If G has no non-trivial normal subgroup, then G
is said to be simple.

In general, there are two natural way to produce normal subgroups.
The first one is the the center Z(G). It is a normal subgroup of G.
And we have the canonical projection G → G/Z(G). Let C2(G) be
the inverse image of Z(G/Z(G)) in G. By the correspondence theo-
rem, Z(G/Z(G)) is a normal subgroup of G/Z(G) hence C2(G) is a
normal subgroup of G. And then let C3(G) to be the inverse image of
Z(G/C2(G)). By doing this inductively, one has an ascending chain of
normal subgroups

{e} < C1(G) := Z(G) < C2(G) < ...

Notice that by the construction, each Ci(G) C G and Ci+1(G)/Ci(G)
is abelian.

Definition 2.8.1. G is nilpotent if Cn(G) = G for some n.

Proposition 2.8.2. A finite p-group is nilpotent.

Proof. We use the fact that a finite p-group has non-trivial center. Thus
one has Ci � Ci+1. The group G has finite order thus the ascending
chain must terminates, say at Cn. If Cn 6= G, then G/Cn has non-trivial
center. One has Cn � Cn+1 which is impossible. Hence Cn = G. ¤
Theorem 2.8.3. If H, K are nilpotent, so is H ×K.

Proof. The key observation is that Z(H ×K) = Z(H)× Z(K). Then
inductively, one proves that Ci(H ×K) = Ci(H)×Ci(K). If Cn(H) =
H, Cm(K) = K then Cl(H ×K) for l = max(m,n). ¤
Lemma 2.8.4. Let G be a nilpotent group and H � G be a proper
subgroup. Then H � NG(H).

Proof. Let C0(G) = {e}. Let k be the largest index such that Ck(G) <
H. Then Ck+1(G) 6< H. Pick a ∈ Ck+1 −H, then for every h ∈ H, we
have Ckha = CkhCka = CkaCkh = Ckah for Ck+1/Ck = Z(G/Ck(G)).
Thus aha−1 ∈ Ckh ⊂ H for all h ∈ H. That is a ∈ NG(H)−H. ¤

Then we are ready to prove the following:

Theorem 2.8.5. A finite group is nilpotent if and only if it’s a direct
product of Sylow p-subgroups.

Proof. By the previous two results, it’s clear that a direct product of
Sylow p-subgroups is nilpotent.
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Conversely, if G is nilpotent, then we will prove that every Sylow
p-subgroup is a normal subgroup of G. By checking the decomposition
criterion, one has the required decomposition.

It remains to show that if P is Sylow p-subgroup, then P C G.
To this end, it suffices to prove that NG(P ) = G. By applying this
Claim to NG(P ), then it says that NG(P ) can’t be a proper subgroup
of G since NG(NG(P )) = NG(P ). Thus it follows that NG(P ) = G. ¤
Example 2.8.6.

Let G = D12 = {xiyj|x6 = y2 = e, xy = yx5}. One of it’s Sylow 2-
subgroup is {e, x3, y, x3y} isomorphic to V4 and it’s Sylow 3-subgroup
is {e, x2, x4} ∼= Z3.

However Z(G) = {e, x3} and G/Z(G) ∼= D6
∼= S3 and Z(S3) = {e}.

Thus G is not nilpotent. And therefore, D12 6∼= V4 × Z3. ¤
We have seen that we have a series of subgroup by taking centers.

Another natural construction is to take commutators.

Definition 2.8.7. Let G be a group. The commutator of G, denoted
G′ is the subgroup generated by the subset {aba−1b−1|a, b ∈ G}.

Roughly speaking, the subgroup G′ measures the non-commutativity
of a group. More precisely, G′ = {e}, if and only G is abelian. The
smaller G′, the more commutative it is.

Proposition 2.8.8. We have:
1. G′ C G,
2. and G/G′ is ableian.
3. if N C G, then G/N is abelian if and only if G′ < N .

Proof. 1.) for all g ∈ G, g(aba−1b−1)g−1 ∈ G′, hence gG′g < G′. So
G′ C G.
2.) aG′bG′ = abG′ = ab(b−1a−1ba)G′ = baG′ = bG′aG′.
3.) Consider π : G → G/N . If G/N is abelian, then π(aba−1b−1) = e,
hence G′ < N . Conversely, if G′ < N , we have a surjective homomor-
phism G/G′ → G/N . G/G′ is abelian, hence so is it homomorphic
image G/N . ¤
Definition 2.8.9. We can define the the commutator inductively, i.e.
G(2) := (G′)′, etc. The G(i) is called the i-th derived subgroup of G. It’s
clear that G > G′ > G(2) > ....

A group is solvable is G(n) = {e} for some n.

Example 2.8.10.

Take G = S4. The commutator is the smallest subgroup that G/G′

is abelian. Since the only non-trivial normal subgroups of S4 are V, A4.
It’s clear that G′ = A4 (Or one can prove this by hand). Similarly, one
finds that G(2) = A′

4 = V , and G(3) = {e}. Hence S4 is solvable. ¤
Another useful description of solvable groups is the groups with solv-

able series.
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Definition 2.8.11. A groups G has a subnormal series if there is a
series of subgroups of G

G = H0 > H1 > H2 > ... > Hn,

such that Hi C Hi−1 for all 1 ≤ i ≤ n.
A subnormal series is a solvable series if Hn = {e} and Hi−1/Hi is

abelian for all 1 ≤ i ≤ n.
A subnormal series is a normal series if all Hi are normal subgroups

of G.

Theorem 2.8.12. A group is solvable if and only it has a solvable
series.

Proof. It’s clear that G > G′ > ...G(n) = {e} is a solvable series. It
suffices to prove that a group with a solvable series is solvable. Suppose
now that G has a sovable series {e} = Hn < ... < H0 = G. First
observe that G′ < H1 since G/H1 is abelian. We claim that G(i) < Hi

for all i inductively. Which can be proved by the observation that the
intersection of the series {e} = Hn < ... < H0 = G with G(i) gives a
solvable series of G(i). ¤
Example 2.8.13.

A finite p-group has a solvable series, hence is solvable.
Moreover, a nilpotent group is solvable. To see this, let G be a

nilpotent group. Then there exist a series

{e} < C1(G) := Z(G) < C2(G) < ... < Cn(G) = G.

Notice that Ci+1(G)/Ci(G) = Z(G/Ci(G)) is abelian. Therefore this
is a solvable series. ¤


